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APPENDIX

A RELATED WORKS

Semi-supervised learning: There have been many existing results discussing about various meth-
ods of SSL. The book by Chapelle et al. (2006) presented a comprehensive overview of the SSL
methods both theoretically and practically. Chawla & Karakoulas (2005) presented an empirical
study of various SSL techniques on a variety of datasets and investigated sample-selection bias
when the labelled and unlabelled data are from different distributions. Zhu (2008) classified various
SSL methods into six main classes: generative models, low-density separation methods, graph-based
methods, self-training and co-training. Pseudo-labelling is a technique among the self-training and
co-training (Zhu & Goldberg, 2009). In self-training, the model is initially trained by the limited
number of labelled data and generate pseudo-labels to the unlabelled data. Subsequently, the model
is retrained with the pseudo-labelled data and repeats the process iteratively. It is a simple and ef-
fective SSL method without restrictions on the data samples (Triguero et al., 2015). A variety of
works have also shown the benifits of utilizing the unlabelled data. Singh et al. (2008) developed a
finite sample analysis that characterized how the unlabelled data improves the excess risk compared
to the supervised learning, with respect to the number of unlabelled data and the margin between
different classes. Li et al. (2019) studied multi-class classification with unlabelled data and provided
a sharper generalization error bound using the notion of Rademacher complexity that yields a faster
convergence rate. Carmon et al. (2019) proved that using unlabelled data can help to achieve high
robust accuracy as well as high standard accuracy at the same time. Dupre et al. (2019) considered it-
eratively pseudo-labelling the whole unlabelled dataset with a confidence threshold and showed that
the accuracy converges relatively quickly. Oymak & Gulcu (2021), in which part of our analysis
hinges on, studied SSL under the binary Gaussian mixture model setup and characterized the corre-
lation between the learned and the optimal estimators concerning the margin and the regularization
factor. However, these works do not investigate how the unlabelled data affects the generalization
error over the iterations.

Generalization error bounds: The traditional way of analyzing generalization error includes the
Vapnik-Chervonenkis or VC dimension (Vapnik, 2000) and the Rademacher complexity (Boucheron
et al., 2005). Recently, Russo & Zou (2016) proposed using mutual information between the esti-
mated output of an algorithm and the actual realized value of the estimates to analyze and bound
the bias in data analysis, which can be regarded equivalent to the generalization error. This new
approach is simpler and can handle a wider range of loss functions compared to the abovementioned
methods and other methods like differential privacy, total-variation information and so on. It also
paves a new way to improving generalization capability of learning algorithms from an information-
theoretic aspects. Following Russo & Zou (2016), Xu & Raginsky (2017) derived upper bounds
on generalization error of learning algorithms with mutual information between the input dataset
and the output hypothesis, which formalizes the intuition that less information that a learning algo-
rithm can extract from training dataset leads to less overfitting. Later Pensia et al. (2018) derived
generalization error bounds for noisy and iterative algorithms and the key contribution is to bound
the mutual information between input data and output hypothesis. Negrea et al. (2019) improved
mutual information bounds for Stochastic Gradient Langevin Dynamics (SGLD) via data-dependent
estimates compared to distribution-dependent bounds.

However, one major shortcoming of the aformentioned mutual information bounds is that the bounds
go to infinity for (deterministic) learning algorithms without noise, e.g., Stochastic Gradient Descent
(SGD). Some other works have tried to overcome this problem. Lopez & Jog (2018) derived upper
bounds on the generalization error using the Wasserstein distance involving the distributions of
input data and output hypothesis, which are shown to be tighter under some natural cases. Esposito
et al. (2021) derived generalization error bounds via Rényi-, f -divergences and maximal leakage.
Steinke & Zakynthinou (2020) proposed using Conditional Mutual Information (CMI) to bound
the generalization error, which can still preserve the chain rule property. Bu et al. (2020) provided a
tightened upper bound based on the individual mutual information (IMI) between the individual data
sample and the output. Wu et al. (2020) extended Bu et al. (2020)’s result to the transfer learning
problems and characterized the upper bound based on IMI and KL-divergence. In a similar manner,
Jose & Simeone (2020) provided a tightened bound on transfer generalization error based on the
Jensen-Shannon divergence.
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B PROOF OF THEOREM 1

Before the proof, let us define some notation. The cumulant generating function (CGF) of a random
variable L 2 R is ⇤L(�) := logEL

⇥
e�(L�E[L])

⇤
for all � 2 R. Note that ⇤L(0) = ⇤0

L(0) = 0 and
⇤L(�) is convex. Then for any L ⇠ subG(R), it means ⇤L(�)  R2�2

2 , for all � 2 R.

For any convex function  : [0, b) 7! R, its Legendre dual  ⇤ is defined as  ⇤(x) := sup�2[0,b) �x�
 (�) for all x 2 [0,1). According to Boucheron et al. (2013, Lemma 2.4), when  (0) =  0(0) =
0,  ⇤(x) is a nonnegative convex and nondecreasing function on [0,1). Moreover, for every y � 0,
its generalized inverse function  ⇤�1(y) := inf{x � 0 :  ⇤(x) � y} is concave and can be
rewritten as  ⇤�1(y) = inf�2[0,b)

y+ (�)
� .

We first introduce the following theorem that is applicable to more general loss functions.

Theorem 4. For any ✓̃t 2 ⇥, let  �(�, ✓̃t) and  +(�, ✓̃t) be convex functions of � and  +(0, ✓̃t) =
 0
+(0, ✓̃t) =  �(0, ✓̃t) =  0

�(0, ✓̃t) = 0. Assume that ⇤l(✓̃t,Z̃)(�, ✓̃t)   +(�, ✓̃t) for all � 2
[0, b+) and ⇤l(✓̃t,Z̃)(�, ✓̃t)   �(�, ✓̃t) for � 2 (b�, 0] under distribution PZ̃|✓(t�1) = PZ , where

0 < b+  1 and �1  b� < 0. Let  +(�) = sup✓̃t  +(�, ✓̃t) and  �(�) = sup✓̃t  �(�, ✓̃t).
We have

gent(PZ , PX , {P✓k|Sl,Su
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⇥
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, (29)
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0
i
kPZ)

�i
, (30)

where PX0
i,Ŷ

0
i |✓(t�1)(x, y|✓̂(t�1)) = PX(x) {y = f✓̂t�1

(x)} for any x 2 X , y 2 Y and ✓̂(t�1) 2
⇥t�1

, and PZ|✓(t�1) = PZ .

Proof. Consider the Donsker–Varadhan variational representation of KL-divergence between any
two distributions P and Q on X :

D(PkQ) = sup
g2G

{EX⇠P [g(X)]� logEX⇠Q[e
g(X)]} (31)

where the supremum is taken over the set of measurable functions in G = {g : X 7! R :
EX⇠Q[eg(X)] < 1}.

Recall that ✓̃t and Z̃ are independent copies of ✓t and Z respectively, such that P✓̃t,Z̃ = Q✓t ⌦ PZ ,
P✓̃t,Z̃|✓(t�1) = P✓t|✓(t�1) ⌦ PZ . For any iterative SSL algorithm, by applying the law of total
expectation, the generalization error can be rewritten as

gent(PZ , PX , {P✓k|Sl,Su
}tk=0, {f✓k}t�1

k=0)

= w
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0
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i ))]

◆
(32)
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Note that  +(�) = sup✓̃t  +(�, ✓̃t) and  �(�) = sup✓̃t  �(�, ✓̃t) are convex, and so their Legen-
dre duals  ⇤

�,  ⇤
+, and the corresponding inverses are well-defined.

Let ľ(✓, z) = l(✓, z) � EZ [l(✓, Z)]. We have the fact that EZ̃ [ľ(✓̃t, Z̃)] = 0 for any ✓̃t. Again, by
the Donsker–Varadhan variational representation of the KL-divergence, for any fixed ✓(t�1) and any
� 2 [0, b+), we have

I✓(t�1)(✓t;Z) = D(P✓t,Z|✓(t�1)kP✓t|✓(t�1) ⌦ PZ)
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�
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⇤
(38)
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= �
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�
�  +(�). (40)

where (37) follows from the definition of ⇤l(✓̃t,Z̃)(�, ✓̃t) in (52), (38) follows from the assumption
that ⇤l(✓̃t,Z̃)(�, ✓̃t)   +(�, ✓̃t) for all � 2 [0, b+) and (39) follows since +(�) = sup✓̃t  +(�, ✓̃t).
Thus, we have

E✓t,Z [l(✓t, Z)|✓(t�1)]� E✓̃t,Z̃ [l(✓̃t, Z̃)|✓(t�1)]

 inf
�2[0,b+)
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�
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+

�
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�
. (42)

Similarly, for � 2 (b�, 0],

E✓̃t,Z̃ [l(✓̃t, Z̃)|✓(t�1)]� E✓t,Z [l(✓t, Z)|✓(t�1)]
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�
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�
. (44)

By applying the same techniques, for any pair of pseudo-labelled random variables (X 0, Ŷ 0) used at
iteration t and any � 2 [0, b+), we have

I✓(t�1)(✓t;X
0, Ŷ 0) +D✓(t�1)(PX0,Ŷ 0kPZ)

= D✓(t�1)(P✓t,X0,Ŷ 0kP✓t ⌦ PX0,Ŷ 0) +D✓(t�1)(P✓t ⌦ PX0,Ŷ 0kP✓t ⌦ PZ) (45)
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0, Ŷ 0))|✓(t�1)]� E✓t
⇥
EZ [l(✓t, Z)]|✓(t�1)

⇤⌘

� logE✓̃t|✓(t�1)

⇥
exp

�
⇤l(✓̃t,Z̃)(�, ✓̃t)

�⇤
(48)

� �
⇣
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where (47) follows from the Jensen’s inequality. Thus, we get
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and
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�
. (51)

The proof is completed by applying inequalities (42), (44), (50) and (51) to the expansion of gent
in (34).

Let ✓̃t and Z̃ be independent copies of ✓t and Z respectively, such that P✓̃t,Z̃ = Q✓t ⌦ PZ , where
Q✓t is the marginal distribution of ✓t. For any fixed ✓̃t 2 ⇥, let the cumulant generating function
(CGF) of l(✓̃t, Z̃) be

⇤l(✓̃t,Z̃)(�, ✓̃t) := logEZ̃ [e
�(l(✓̃t,Z̃)�EZ̃ [l(✓̃t,Z̃)])]. (52)

When the loss function l(✓, Z) ⇠ subG(R) under Z ⇠ PZ for any ✓ 2 ⇥, we have ⇤l(✓̃t,Z̃)(�, ✓̃t) 
R2�2

2 for all � 2 R. Then we can let  �(�, ✓̃t) =  +(�, ✓̃t) = R2�2

2 for all ✓̃t 2 ⇥. Hence,
 +(�) =  �(�) = sup✓̃t2⇥

R2�2

2 = R2�2

2 and  ⇤�1
+ (y) =  ⇤�1

� (y) =
p
2R2y for any y � 0.

Finally, Theorem 1 can then be directly obtained from Theorem 4.

C PROOF OF THEOREM 2

Theorem 2 can be proved iteratively by applying Theorem 1. For simplicity, in the following proofs,
we abbrviate gent(PZ, PX, {P✓k|Sl,Su

}tk=0, {f✓k}t�1
k=0) as gent.

1. Initial round t = 0: Since YiXi
i.i.d.⇠ N (µ,�2Id), we have ✓0 ⇠ N (µ, �

2

n Id) and for some
constant c 2 R+,
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1� 2�

⇣�
p
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�

⌘◆d

=: 1� �pnc,d. (53)

By choosing c large enough, �pnc,d can be made arbitrarily small. Consider ✓̃0 and (X̃, Ỹ ) as
independent copies of ✓0 ⇠ Q✓0 and (X, Y ) ⇠ PX,Y = PY ⌦N (Y µ,�2Id), respectively, such
that P✓̃0,X̃,Ỹ = Q✓0 ⌦ PX,Y . Then the probability that l(✓0, (X, Y )) ⇠ subG((c2 � c1)/2)
under (X, Y ) ⇠ PX,Y is given as follows
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= (1� �pnc,d)(1� �r,d), (57)
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where the last equality follows from (14) and (53).
Fix some d 2 N, ✏ > 0 and � 2 (0, 1). There exists n0(d, �) 2 N, r0(d, �) 2 R+ such that for
all n > n0, r > r0, �pnc,d < �

3 , �r,d < �
3 , and then with probability at least 1� �, the absolute

generalization error can be upper bounded as follows
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r
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2
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Then mutual information can be calculated as follows
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(62)

=
d

2
log

n
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Thus we can get (23).
2. Pseudo-label using ✓0: For any i 2 [1 : m] and X 0

i 2 Su, the pseudo-label is given by

Ŷ 0
i = sgn(✓>

0 X
0
i). (64)

Given any pair of (⇠0,µ?), ✓0 is fixed and {Ŷ 0
i }i2[1:m] are conditionally i.i.d. from PŶ 0|⇠0,µ? 2

P(Y). Recall the pseudo-labelled dataset is defined as Ŝu,1 = {(X0
i, Ŷ

0
i )}mi=1.

Since ✓0 ⇠ N (µ, �
2

n Id), inspired by Oymak & Gulcu (2021), we can decompose it as follows:

✓0 = µ+
�p
n
⇠ (65)

= µ+
�p
n
(⇠0µ+ µ?) (66)

=

✓
1 +

�p
n
⇠0

◆
µ+

�p
n
µ?, (67)

where ⇠ ⇠ N (0, Id), ⇠0 ⇠ N (0, 1), µ? ? µ, µ? ⇠ N (0, Id � µµ>) and µ? is independent
of ⇠0.
Recall the correlation between ✓0 and µ given in (19), the decomposition of ✓̄0 in (20) and ↵,�.
Since sgn(✓>

0 X
0
i) = sgn(✓̄>

0 X
0
i), in the following we can analyze the normalized parameter ✓̄0

instead.
Given any (⇠0,µ?), ↵ is fixed, and for any i 2 N, let us define a Gaussian noise vector gi ⇠
N (0, Id) and decompose it as follows

gi = g0,iµ+ gi� + g?
i , (68)

where g0,i, gi ⇠ N (0, 1), g?
i ⇠ N (0, Id �µµ> ���>), g?

i ? µ, g?
i ? � and g0,i, gi,g?

i are
mutually independent.
For any sample X0

i ⇠ N (µ,�2Id), we can decompose it as

X0
i = µ+ �gi = µ+ �(g0,iµ+ gi� + g?

i ). (69)
Then we have

✓̄>
0 X

0
i = (↵µ+ ��)>(µ+ �gi) (70)

= ↵+ �(↵µ+ ��)>(g0,iµ+ gi� + g?
i ) (71)

= ↵+ �(↵g0,i + �gi) (72)
=: ↵+ �hi. (73)
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Note that hi ⇠ N (0, 1) for any ↵ 2 [�1, 1]. Similarly, for any sample X0
i ⇠ N (�µ,�2Id), we

have
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i = �µ+ �gi (74)

and
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Denote the true label of X0
i as Y 0

i and PY 0
i
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i is equal to 1 is given by

Pr(Ŷ 0
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We also have Pr(Ŷ 0
i = �1) = 1� Pr(Ŷ 0

i = 1) = 1/2, and so PŶ 0
i
= PY .

3. Iteration t = 1: Recall (18) and the new model parameter learned from the pseudo-labelled
dataset Ŝu,1 is given by

✓1 =
1

m

mX

i=1

Ŷ 0
i X

0
i =

1

m

mX

i=1

sgn(✓>
0 X

0
i)X

0
i =

1

m

mX

i=1

sgn(✓̄>
0 X

0
i)X

0
i. (80)

(a) First let us calculate the conditional expectation of ✓1 given ✓0.
Given any (⇠0,µ?), for any j 2 [1 : m], let µ⇠0,µ

?

1 := E[sgn(✓̄>
0 X

0
j)X

0
j |⇠0,µ?] and P⇠0,µ?

denotes the probability measure under the parameters (⇠0,µ?).
The expectation µ⇠0,µ

?

1 can be calculated as follows:

µ⇠0,µ
?

1 = E[sgn(✓̄>
0 X

0
j)X

0
j |⇠0,µ?] (81)

= EY 0
j
[ E[sgn(✓̄>

0 X
0
j)X

0
j | ⇠0,µ?, Y 0

j ] ] (82)

=
1

2
E[sgn(✓̄>

0 X
0
j)X

0
j | ⇠0,µ?, Y 0

j = �1] +
1

2
E[sgn(✓̄>

0 X
0
j)X

0
j | ⇠0,µ?, Y 0

j = 1].

(83)

Different from (68), here we decompose the Gaussian random vector gj ⇠ N (0, Id) in another
way

gj = g̃j ✓̄0 + g̃?
j , (84)

where g̃j ⇠ N (0, 1), g̃?
j ⇠ N (0, Id � ✓̄0✓̄>

0 ), g̃j and g̃?
j are mutually independent and

g̃?
j ? ✓̄0.

Then we decompose X0
j and ✓̄0X0

j as

X0
j = Y 0

jµ+ �g̃j ✓̄0 + �g̃?
j , and (85)

✓̄>
0 X

0
j = Y 0

j↵+ �g̃j . (86)

Then we have

E[sgn(✓̄>
0 X

0
j)X

0
j | ⇠0,µ?, Y 0

j = �1]

= E[sgn(�↵+ �g̃j)(�µ+ �g̃j ✓̄0 + �g̃?) | ⇠0,µ?] (87)

= �E[sgn(�↵+ �g̃j)|⇠0,µ?]µ+ �E[sgn(�↵+ �g̃j)g̃j |⇠0,µ?]✓̄0

+ �E[sgn(�↵+ �g̃j)g̃
?|⇠0,µ?] (88)

= �E[sgn(�↵+ �g̃j)|⇠0,µ?]µ+ �E[sgn(�↵+ �g̃j)g̃j |⇠0,µ?]✓̄0, (89)
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where (89) follows since g̃? is independent of g̃j and E[g̃?] = 0.
For the first term in (89), recall g̃j ⇠ N (0, 1) and we have

� E[sgn(�↵+ �g̃j)|⇠0,µ?]µ =

✓
1� 2Q

✓
↵

�

◆◆
µ. (90)

For the second term in (89), we have

E[sgn(�↵+ �g̃j)g̃j |⇠0,µ?]✓̄0

=

✓
�
Z ↵

�

�1

1p
2⇡

e
�g2

2 g dg +

Z 1

↵
�

1p
2⇡

e
�g2

2 g dg

◆
✓̄0 (91)

=
2p
2⇡

exp

✓
� ↵2

2�2

◆
✓̄0. (92)

By combining (90) and (92), we have

E
⇥
sgn

�
✓̄>
0 X

0
j

�
X0

j | ⇠0,µ?, Y 0
j = �1

⇤
=

✓
1� 2Q

✓
↵

�

◆◆
µ+

2�p
2⇡

exp

✓
� ↵2

2�2

◆
✓̄0,

(93)

and similarly,

E
⇥
sgn

�
✓̄>
0 X

0
j

�
X0

j | ⇠0,µ?, Y 0
j = 1

⇤
=

✓
2Q

✓
�↵
�

◆
� 1

◆
µ+

2�p
2⇡

exp

✓
� ↵2

2�2

◆
✓̄0.

(94)

Thus, recall ✓̄0 = ↵µ+ �� and µ⇠0,µ
?

1 is given by

µ⇠0,µ
?

1 = E[sgn(✓>
0 X

0
j)X

0
j |⇠0,µ?]

=

✓
1� 2Q

✓
↵

�

◆◆
µ+

2�p
2⇡

exp

✓
� ↵2

2�2

◆
✓̄0 (95)

=

✓
1� 2Q

✓
↵

�

◆
+

2�↵p
2⇡

exp

✓
� ↵2

2�2

◆◆
µ+

2��p
2⇡

exp

✓
� ↵2

2�2

◆
�. (96)

The l1 norm between µ⇠0,µ
?

1 and µ can be upper bounded by

kµ⇠0,µ
?

1 � µk1



s✓
� 2Q

✓
↵

�

◆
+

2�↵p
2⇡

exp

✓
� ↵2

2�2

◆◆2

+
2�2�2

⇡
exp

✓
� 2↵2

2�2

◆
(97)

<

s✓
2�

✓
1

�

◆
+

2�p
2⇡

◆2

+
2�2

⇡
=: c̃1, (98)

where c̃1 is a constant only dependent on �.
(b) Next, we need to calculate the probability that l(✓1, (X, Y )) ⇠ subG((c2 � c1/2)) under

(X, Y ) ⇠ PX,Y .

Let Vi = sgn(✓̄>
0 X

0
i)X

0
i � µ⇠0,µ

?

1 . For any k 2 [1 : d], let Vi,k, ✓1,k, µ1,k denote the k-
th components of Vi, ✓1 and µ⇠0,µ

?

1 , respectively. Recall the decompositions X0
i = Y 0

i µ +
�g̃i✓̄0 + �g̃?

i in (85) and ✓̄0X0
i = Y 0

i ↵ + �g̃i in (86). Suppose the basis of Rd is denoted by
B = {v1, . . . ,vd} and let v1 = ✓̄0. Then we have

g̃?
i = g̃?i,2v2 + . . .+ g̃?i,dvd, (99)

where g̃?i,k ⇠ N (0, 1) for any k 2 [2 : d] and {g̃i,k}dk=2 are mutually independent. We also let
µ = (µ0,1, . . . , µ0,d).
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Given any (⇠0,µ?), the moment generating function (MGF) of Vi,1 is given as follows: for any
s1 > 0,
EVi,1 [e

s1Vi,1 ]

= Q

✓
�↵
�

◆
Eg̃i

h
es1(µ0,1�µ1,1+�g̃i)

���g̃i >
�↵
�

i
+Q

✓
↵

�

◆
Eg̃i

h
es1(�µ0,1�µ1,1+�g̃i)

���g̃i >
↵

�

i

(100)

= es1(µ0,1�µ1,1)e
�2s21

2 �

✓
↵

�
+ �s1

◆
+ es1(�µ0,1�µ1,1)e

�2s21
2 �

✓
�↵
�

+ �s1

◆
. (101)

The final equality follows from the fact that the MGF of a zero-mean univariate Gaussian
truncated to (a, b) is e�

2s2/2
h
�(b��s)��(a��s)

�(b)��(a)

i
. The second derivative of logEVi,1 [e

s1Vi,1 ] is
given as

R̃1(s1) :=
d2 logEVi,1 [e

s1Vi,1 ]

ds21
(102)

 �2 +
const.

�
�(↵� + �s1)eskµ0,k + �(�↵� + �s1)e�skµ0,k

�2 < 1. (103)

For k 2 [2 : d] and any sk > 0, the MGF of Vi,k is given as

EVi,k [e
skVi,k ] = E�g̃?

i,k,Y
0
i

h
esk(Y

0
i µ0,k�µ1,k+�g̃

?
i,k)

i
(104)

= Q

✓
�↵
�

◆
esk(µ0,k�µ1,k)e

�2s2k
2 +Q

✓
↵

�

◆
esk(�µ0,k�µ1,k)e

�2s2k
2 , (105)

and the second derivative of logEVi,k [e
skVi,k ] is given by

R̃k(sk) :=
d2 logEVi,k [e

skVi,k ]

ds2k
= �2 +

4µ2
0,kQ(�↵� )Q(�↵� )

(Q(�↵� )eskµ0,k +Q(↵� )e
�skµ0,k)2

. (106)

Fix k 2 [1 : d]. According to Taylor’s theorem, we have

logEVi,k [e
skVi,k ] =

R̃k(⇠L,k)

2
s2k, (107)

for some ⇠L,k 2 (0, sk) and R̃k(⇠L,k) < 1. Then the Cramér transform of logEVi,k [e
skVi,k ]

can be lower bounded as follows: for any " > 0,

sup
sk>0

⇣
sk"� logEVi,k [e

skVi,k ]
⌘
� sup

sk>0

⇣
sk"�

R̃k(⇠L,k)s2k
2

⌘
=

"2

2R̃k(⇠L,k)
. (108)

Let R̃⇤ = max⇠0,µ? mink2[1:d] R̃k(⇠L,k), which is a finite constant only dependent on �. Since
{sgn(✓̄>

0 X
0
i)X

0
i}mi=1 are i.i.d. random variables conditioned on (⇠0,µ?), by applying Chernoff-

Cramér inequality, we have for all " > 0

P⇠0,µ?

⇣
k✓1 � µ⇠0,µ

?

1 k1 > "
⌘

= P⇠0,µ?

⇣
max
k2[1:d]

|✓1,k � µ1,k| > "
⌘

(109)


dX

k=1

P⇠0,µ?

⇣
|✓1,k � µ1,k| > "

⌘
(110)

=
dX

k=1

P⇠0,µ?

✓����
1

m

mX

i=1

Vi,k

���� > "

◆
(111)


dX

k=1

2 exp
⇣
�m sup

s>0

⇣
s"� logEVi,k [e

sVi,k ]
⌘⌘

(112)

 2d exp

✓
� m"2

2R̃⇤

◆
(113)

=: �m,",d, (114)
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where �m,",d
a.s.��! 0 as m ! 1 and does not depend on ⇠0,µ?.

Choose some c 2 (c̃1,1) (c̃1 defined in (98)). We have

P⇠0,µ?
�
✓1 2 ⇥µ,c) � P⇠0,µ?(k✓1 � µ⇠0,µ

?

1 k1  c� c̃1
�
� 1� �m,c�c̃1,d. (115)

Consider ✓̃1 as an independent copy of ✓1 and independent of (X̃, Ỹ ). Then the probability
that l(✓1, (X, Y )) ⇠ subG((c2 � c1)/2) under (X, Y ) ⇠ PX,Y is given as follows

P⇠0,µ?

✓
⇤l(✓̃1,(X̃,Ỹ ))(�, ✓̃1) 

�2(c2 � c1)2

8

◆
(116)

� P⇠0,µ?(✓̃1 2 ⇥µ,c)P⇠0,µ?

✓
⇤l(✓̃1,(X̃,Ỹ ))(�, ✓̃1) 

�2(c2 � c1)2

8

���✓̃1 2 ⇥µ,c

◆
(117)

= (1� �m,c,d)(1� �r,d). (118)

Thus, for some c 2 (c̃1,1), with probability at least (1 � �m,c�c̃1,d)(1 � �r,d), the absolute
generalization error can be upper bounded as follows:
|gen1| = |E[LPZ(✓1)� LŜu,1

(✓1)]| (119)

=

����
1

m

mX

i=1

E⇠0,µ?


E
h
l(✓1, (X, Y ))� l(✓1, (X

0
i, Ŷ

0
i ))|⇠0,µ?

i ����� (120)

 1

m

mX

i=1

E⇠0,µ?

r
(c2 � c1)2

2

⇣
I⇠0,µ?(✓1, (X0

i, Ŷ
0
i )) +D⇠0,µ?(PX0

i,Ŷ
0
i
kPX,Y )

⌘ �
, (121)

where P✓1,(X,Y )|⇠0,µ? = Q✓1|⇠0,µ? ⌦ PX,Y and Q✓1|⇠0,µ? denotes the marginal distribution of
✓1 under parameters (⇠0,µ?).
In the following, we derive the closed form expressions of the mutual information and KL-
divergence in (121). For any j 2 [1 : m]:

• Calculate I⇠0,µ?(✓1;X0
j , Ŷ

0
j ): For arbitrary random variables X and U , we define the disin-

tegrated conditional differential entropy of X given U as
hU (X) := h(PX|U ). (122)

Conditioned on a certain pair of (⇠0,µ?), the mutual information between ✓1 and (X0
i, Ŷ

0
i ) is

given by

I⇠0,µ?(✓1;X
0
j , Ŷ

0
j )

= h⇠0,µ?

✓
1

m

mX

i=1

sgn(✓>
0 X

0
i)X

0
i

◆
� h⇠0,µ?

✓
1

m

mX

j=1

Ŷ 0
i X

0
i

����X
0
j , Ŷ

0
j

◆
(123)

= h⇠0,µ?

✓
1

m

mX

i=1

sgn(✓>
0 X

0
i)X

0
i

◆
� h⇠0,µ?

✓
1

m

X

i2[m],i 6=j

sgn(✓>
0 X

0
i)X

0
i

◆
(124)

= h⇠0,µ?

✓
1

m

mX

i=1

sgn(✓>
0 X

0
i)X

0
i

◆

� h⇠0,µ?

✓
1

m� 1

X

i2[m],i 6=j

sgn(✓>
0 X

0
i)X

0
i

◆
� d log

m� 1

m
. (125)

As m ! 1, I⇠0,µ?(✓1;X0
i, Ŷ

0
i ) ! 0 almost surely and hence, in probability. Thus, for any

✏ > 0, and there exists m0(✏, d, �) 2 N such that for all m > m0,

P⇠0,µ?(I⇠0,µ?(✓1;X
0
i, Ŷ

0
i ) > ✏)  �. (126)

• Calculate D⇠0,µ?(PX0
j ,Ŷ

0
j
kPX,Y ): First of all, since PŶ 0

j
= PY (cf. (79)) regardless of the

values of (⇠0,µ?), the disintegrated conditional KL-divergence can be rewritten as
D⇠0,µ?(PX0

j ,Ŷ
0
j
kPX,Y )

= PŶ 0
j
(�1)D⇠0,µ?(PX0

j |Ŷ 0
j=�1kPX|Y=�1) + PŶ 0

j
(1)D⇠0,µ?(PX0

j |Ŷ 0
j=1kPX|Y=1). (127)
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Recall the decomposition of a Gaussian vector g̃j ⇠ N (0, Id) in (84). Note that
rank(Cov(g̃?

j )) = rank(Id � ✓̄✓̄>) = d� 1.
For any pair of labelled data sample (X, Y ), from (85), we similarly decompose X as X =
Y µ+�(g̃✓̄0+g̃?), where g̃ ⇠ N (0, 1) and g̃? ⇠ N (0, Id�✓̄0✓̄>

0 ). Let pg̃ and pg̃? denote the
probability density functions of g̃ and g̃?, respectively. For any x = µ+�(u✓̄0+u?) 2 Rd,
the joint probability distribution at (X, Y ) = (x, 1) is given by

PX,Y (x, 1) = PY (1)pµ(x|1)

=
PY (1)p
(2⇡)d�d

exp

✓
� 1

2�2
(x� yµ)>(x� yµ)

◆
(128)

=
PY (1)p
(2⇡)d�d

exp

✓
� 1

2�2
(�u✓̄ + �u?)>(�u✓̄ + �u?)

◆
(129)

=
PY (y)p
(2⇡)d�d

exp

✓
� u2

2

◆
exp

✓
� (u?)>u?

2

◆
(130)

= PY (1)pg̃(u)pg̃?(u?). (131)

Similarly, for any x = �µ + �(u✓̄0 + u?) 2 Rd, the joint probability density evaluated at
(X,Y ) = (x,�1) is given by

PX,Y (x,�1) = PY (�1)pµ(x|� 1) = PY (�1)pg̃(u)pg̃?(u?). (132)

Second, we have PX0
j |Ŷ 0

j
=

P
y2{�1,+1} PX0

j |Ŷ 0
j ,Y

0
j=yPY 0

j=y|Ŷ 0
j
. The conditional probability

distribution PY 0
j |Ŷ 0

j
can be calculated as follows

PY 0
j |Ŷ 0

j
=

PŶ 0
j |Y 0

j
PY 0

j

PŶ 0
j

= PŶ 0
j |Y 0

j
, (133)

where the last equality follows since PY 0
j
(�1) = PY 0

j
(1) = PŶ 0

j
(�1) = PŶ 0

j
(1) = 1/2. Since

Ŷ 0
j = sgn(Y 0

j↵+ �g̃j) (cf. (86)), we have

PŶ 0
j |Y 0

j
(�1|� 1) = Pr(Y 0

j↵+ �g̃j < 0|Y 0
j = �1) = Q

✓
�↵
�

◆
, (134)

and similarly,

PŶ 0
j |Y 0

j
(1|� 1) = Q

✓
↵

�

◆
, PŶ 0

j |Y 0
j
(�1|1) = Q

✓
↵

�

◆
, PŶ 0

j |Y 0
j
(1|1) = Q

✓
�↵
�

◆
. (135)

Thus, we conclude that

PY 0
j |Ŷ 0

j
(y0j |ŷ0j) =

⇢
Q(�↵� ) y0j = ŷ0j
Q(↵� ) y0j 6= ŷ0j .

(136)

To calculate the conditional probability distribution PX0
j |Ŷ 0

j ,Y
0
j
, recall the decomposition of

X0
j and ✓̄>

0 X
0
j in (85) and (86). Since the event {Ŷ 0

j = �1, Y 0
j = �1} is equivalent to

{g̃j < ↵/�} and g̃j ⇠ N (0, 1), the conditional density of g̃j given Ŷ 0
j = �1, Y 0

j = �1 is
given by

pg̃j |Ŷ 0
j ,Y

0
j
(u|� 1,�1) = pg̃j |g̃j↵/�(u) =

{u  ↵/�}pg̃j (u)
�(↵/�)

, 8u 2 R. (137)

Similarly, for any u 2 R

pg̃j |Ŷ 0
j ,Y

0
j
(u|� 1, 1) = pg̃j |g̃j�↵/�(u) =

{u  �↵/�}fg̃j (u)
�(�↵/�) , (138)

pg̃j |Ŷ 0
j ,Y

0
j
(u|1,�1) = pg̃j |g̃j>↵/�(u) =

{z > ↵/�}fg̃j (u)
Q(↵/�)

, (139)

pg̃j |Ŷ 0
j ,Y

0
j
(u|1, 1) = pg̃j |g̃j>�↵/�(u) =

{u > �↵/�}pg̃j (u)
Q(�↵/�) . (140)
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For any x = µ + �(u✓̄0 + u?) 2 Rd, given Ŷ 0
j = 1, Y 0

j = 1, the conditional probability
distribution at X0

j = x is given by

PX0
j |Ŷ 0

j ,Y
0
j
(x|1, 1) = Pµ+�g̃j ✓̄0+�g̃?

j |Ŷ 0
j ,Y

0
j
(µ+ �(u✓̄0 + u?)|1, 1) (141)

= P�g̃j ✓̄0+�g̃?
j |Ŷ 0

j ,Y
0
j
(�(u✓̄0 + u?)|1, 1) (142)

= pg̃j |Ŷ 0
j ,Y

0
j
(u|1, 1)pg̃?

j
(u?), (143)

where (143) follows since g̃j and g̃?
j are mutually independent and ✓̄0 ? g̃?

j .
Since we can decompose 2µ/� as

2µ

�
=

2↵✓̄0 + 2�2µ� 2↵��

�
=

2↵

�
✓̄0 + ✓̄?

0 , (144)

given Ŷ 0
j = 1, Y 0

j = �1, the conditional probability distribution at X0
j = x is given by

PX0
j |Ŷ 0

j ,Y
0
j
(x|1,�1) = P�µ+�g̃j ✓̄0+�g̃?

j |Ŷ 0
j ,Y

0
j
(µ+ �(u✓̄0 + u?)|1,�1) (145)

= P�g̃j ✓̄0+�g̃?
j |Ŷ 0

j ,Y
0
j

⇣
�
⇣2µ
�

+ u✓̄0 + u?
⌘���1,�1

⌘
(146)

= pg̃j |Ŷ 0
j ,Y

0
j

⇣
u+

2↵

�

���1,�1
⌘
pg̃?

j
(u? + ✓̄?

0 ). (147)

Similarly, for any x = �µ + �(u✓̄0 + u?) 2 Rd, given Ŷ 0
j = �1, Y 0

j = 1, the conditional
distribution at X0

j = x is given by

PX0
j |Ŷ 0

j ,Y
0
j
(x|� 1, 1) = Pµ+�g̃j ✓̄0+�g̃?

j |Ŷ 0
j ,Y

0
j
(�µ+ �(u✓̄0 + u?)|� 1, 1) (148)
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0
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⇣
u� 2↵

�

���� 1, 1
⌘
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j
(u? � ✓̄?

0 ); (149)

and given Ŷ 0
j = �1, Y 0

j = �1,

PX0
j |Ŷ 0

j ,Y
0
j
(x|� 1,�1) = P�µ+�g̃j ✓̄0+�g̃?

j |Ŷ 0
j ,Y

0
j
(�µ+ �(u✓̄0 + u?)|� 1,�1) (150)

= pg̃j |Ŷ 0
j ,Y

0
j
(u|� 1,�1)pg̃?

j
(u?). (151)

Furthermore, for any x = �µ+ �(u✓̄0 + u?) 2 Rd, we have

PX0
j |Ŷ 0

j=�1(x) =
X

y2{�1,+1}

PX0
j |Ŷ 0

j=�1,Y 0
j=y(x)PY 0

j |Ŷ 0
j=�1(y) (152)

= PY 0
j |Ŷ 0

j=�1(1)pg̃j |Ŷ 0
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⌘
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+ PY 0
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(u|� 1,�1)pg̃?

j
(u?) (153)

=
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⇣
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(u? � ✓̄?) +

n
u  ↵

�

o
pg̃j (u)pg̃?

j
(u?);

(154)

for any x = µ+ �(u✓̄0 + u?) 2 Rd, we have

PX0
j |Ŷ 0

j=1(x) =
X

y2{�1,+1}

PX0
j |Ŷ 0

j=1,Y 0
j=y(x)PY 0

j |Ŷ 0
j=1(y) (155)

=
n
u > �↵
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o
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⇣
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�

⌘
pg̃?

j
(u? + ✓̄?) +

n
u > �↵
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o
pg̃j (u)pg̃?

j
(u?). (156)

Define the set U?
0 (⇠0,µ?) := {u? 2 Rd : u? ? ✓0}. We also use U?

0 to represent
U?
0 (⇠0,µ?), if there is no risk of confusion. Recall (21) and note that

R
U?

0
pg̃?(u?)du? = 1.
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Finally, the KL-divergence is given by

D⇠0,µ?(PX0
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j=�1kPX|Y=�1)

=
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⇣
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j
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du du? (157)

= G�(↵, ⇠0,µ
?) (158)

and
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=

Z

U?
0

Z +1

�↵
�

✓
pg̃j

⇣
u+

2↵

�

⌘
pg̃?

j
(u? + ✓̄?

0 ) + pg̃j (u)pg̃?
j
(u?)

◆

⇥ log

✓
1 +

pg̃j

⇣
u+ 2↵

�

⌘
pg̃?

j
(u? + ✓̄?

0 )

pg̃j (u)pg̃?
j
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= G�(↵, ⇠0,µ
?), (160)

where (160) follows from since pg̃j and pg̃?
j

are zero-mean Gaussian distributions. Then
from (127), we have

D⇠0,µ?(PX0
j ,Ŷ

0
j
kPX,Y ) = G�(↵, ⇠0,µ

?). (161)

Thus, by combining the aforementioned results, we get the closed-form expression of the upper
bound for |gen1|. Indeed, if we fix some d 2 N, ✏ > 0 and � 2 (0, 1), there exists n0(d, �) 2 N,
m0(✏, d, �) 2 N, c0(d, �) 2 (c̃1,1), r0(d, �) 2 R+ such that for all n > n0,m > m0, c >
c0, r > r0, �m,c�c̃1,d < �

3 , �r,d < �
3 , and with probability at least 1� �,

|gen1| 
r

(c2 � c1)2

2
E⇠0,µ?

q
G�(↵(⇠0,µ?), ⇠0,µ?) + ✏

�
. (162)

4. Pseudo-label using ✓1: Let ✓̄1 := ✓1/k✓1k2. For any i 2 [m + 1 : 2m], the pseudo-labels are
given by

Ŷ 0
i = sgn(✓>

1 X
0
i) = sgn(✓̄>

1 X
0
i). (163)

It can be seen that the pseudo-labels {Ŷ 0
i }2mi=m+1 are conditionally i.i.d. given ✓1 and let us denote

the conditional distribution under fixed ✓1 as PŶ 0|✓1
2 P(Y). The pseudo-labelled dataset is

denoted as Ŝu,2 = {(X0
i, Ŷ

0
i )}2mi=m+1.

For any fixed ✓̄1 2 ⇥, we can decompose it as ✓̄1 = ↵0
1µ + �0

1�, where ↵0
1 2 [�1, 1] and

�0
1 =

p
1� (↵0

1)
2. Recall the decomposition of X0

i and ✓̄>
0 X

0
i in (69) and (73). Similarly, we

have

✓̄>
1 X

0
i =: Y 0

i ↵
0
1 + �h1

i , (164)

where h1
i ⇠ N (0, 1). Note that PŶ 0

i |✓1,⇠0,µ? = PŶ 0
i |✓1

and then the conditional probability
PŶ 0

i |✓1,⇠0,µ? can be given by

PŶ 0
i |✓1,⇠0,µ?(1) = PŶ 0

i |✓1
(1) = P✓1

�
✓̄>
1 X

0
i > 0

�
(165)

=
1

2
P✓1

�
↵0
1 + �h1

i > 0
�
+

1

2
P✓1

�
↵0
1 + �h1

i  0
�
=

1

2
, (166)

and PŶ 0
i |✓1,⇠0,µ?(�1) = 1/2, where P✓1 denotes the probability measure under parameter ✓1.
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5. Iteration t = 2: Recall (18) and the new model parameter learned from the pseudo-labelled
dataset Ŝu,2 is given by

✓2 =
1

m

2mX

i=m+1

Ŷ 0
i X

0
i =

1

m

2mX

i=m+1

sgn(✓̄>
1 X

0
i)X

0
i, (167)

where {sgn(✓̄>
1 X

0
i)X

0
i}2mi=m+1 are conditionally i.i.d. random variables given ✓1, ⇠0,µ?.

Given any (✓1, ⇠0,µ?), for any j 2 [m+1 : 2m], let µ✓1,⇠0,µ
?

2 := E[sgn(✓̄>
1 X

0
j)X

0
j |✓1, ⇠0,µ?]

and P✓1,⇠0,µ? denotes the probability measure under the parameters ✓1, ⇠0,µ?. Following the
similar steps that derive (114), for any " > 0, we have

P✓1,⇠0,µ?
�
k✓2 � µ✓1,⇠0,µ

?

2 k1 > "
�
 �m,",d. (168)

From (98), no matter what ✓1 is, we always have kµ✓1,⇠0,µ
?

2 � µ⇠0,µ
?k  c̃1. Then, for some

c 2 (c̃1,1),

P✓1,⇠0,µ?(✓2 2 ⇥µ,c) � 1� �m,c�c̃1,d. (169)

With probability at least (1��m,c�c̃1,d)(1��r,d), the absolute generalization error can be upper
bounded as follows:

|gen2| = |E[LPZ(✓2)� LŜu,2
(✓2)]| (170)

=

����
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2mX

i=m+1
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
E
h
l(✓2, (X, Y ))� l(✓2, (X

0
i, Ŷ

0
i ))|✓1, ⇠0,µ?

i ����� (171)


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2mX
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i, Ŷ
0
i )) +D✓1,⇠0,µ?(PX0

i,Ŷ
0
i
kPX,Y )

�
, (172)

where P✓2,X,Y |✓1,⇠0,µ? = P✓2|✓1,⇠0,µ? ⌦ PX,Y .
Similar to (126), for any ✏ > 0 and � 2 (0, 1), there exists m1(✏, d, �) such that for all m > m1,

P✓1,⇠0,µ?(I✓1,⇠0,µ?(✓2; (X
0
i, Ŷ

0
i )) > ✏)  �. (173)

Recall (166) that PŶ 0
i |✓1,⇠0,µ? ⇠ unif({�1,+1}). For any fixed (✓1, ⇠0,µ?), let ✓̄1 be decom-

posed as ✓̄1 = ↵0
1(⇠0,µ

?)µ + �0
1(⇠0,µ

?)�, where ↵0
1(⇠0,µ

?) 2 [�1, 1] and �0
1(⇠0,µ

?) =p
1� (↵0

1(⇠0,µ
?))2.

By following the similar steps in the first iteration, the disintegrated conditional KL-divergence
between pseudo-labelled distribution and true distribution is given by

D✓1,⇠0,µ?
�
PX0

i,Ŷ
0
i
kPX,Y

�

=
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�
(174)

= G�

�
↵0
1(⇠0,µ

?), ⇠0,µ
?�, (175)

Given any pair of (⇠0,µ?), recall the decomposition of µ⇠0,µ
?

1 in (96). Then the correlation
between µ⇠0,µ

?

1 and µ is given by

⇢(µ⇠0,µ
?

1 ,µ) =
1� 2Q

�
↵
�

�
+ 2�↵p

2⇡
exp(� ↵2

2�2 )
q�

1� 2Q
�
↵
�

�
+ 2�↵p

2⇡
exp(� ↵2

2�2 )
�2

+ 2�2(1�↵2)
⇡ exp(�↵2

�2 )
(176)

= F�(↵(⇠0,µ
?)). (177)
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By the strong law of large numbers, we have ↵0
1(⇠0,µ

?)
a.s.��! F�(↵(⇠0,µ?)) as m ! 1. Then

for any ✏ > 0 and � 2 (0, 1), there exists m2(✏, d, �) such that for all m > m2,

P✓1,⇠0,µ?

⇣���G�

�
↵0
1(⇠0,µ

?), ⇠0,µ
?��G�

⇣
F�(↵(⇠0,µ

?)), ⇠0,µ
?
⌘��� > ✏

⌘
 �. (178)

Therefore, fix some d 2 N, ✏ > 0 and � 2 (0, 1). There exists n0(d, �) 2 N, m3(✏, d, �) 2
N, c0(d, �) 2 (c̃1,1), r0(d, �) 2 R+ such that for all n > n0,m > m3, c > c0, r > r0,
�m,c�c̃1,d < �

3 , �r,d < �
3 , and then with probability at least 1 � �, the absolute generalization

error at t = 2 can be upper bounded as follows:

|gen2| 
r

(c2 � c1)2

2
E⇠0,µ?

"r
G�

⇣
F�(↵(⇠0,µ?)), ⇠0,µ?

⌘
+ ✏

#
. (179)

6. Any iteration t 2 [3 : ⌧ ]: By similarly repeating the calculation in iteration t = 2, we obtain
the upper bound for |gent| in (24).

Remark 2 (Extra remarks about Theorem 2). In the other extreme case, when ↵ = ⇢(✓0,µ) = �1
and ✓̄0 = �µ, the error probability Pr(Ŷ 0

j 6= Y 0
j ) = 1 � Q(1/�) > 1

2 (for all � > 0) and

D⇠0,µ?(PX0
j ,Ŷ

0
j
kPX,Y ) < 1, so in this other extreme (flipped) scenario, we have more mis-

takes than correct pseudo-labels. The reason why D↵,µ?(PX0
j ,Ŷ

0
j
kPX,Y ) is finite is that when

PX,Y (x, y) is small, it means that x is far from both �µ and µ, and then PX(x) is also small.

Thus, PX0
j ,Ŷ

0
j
(x, y) = PŶ 0

j |X0
j
(y|x)PX(x) is also small.

D REUSING Sl IN EACH ITERATION

If the labelled data Sl are reused in each iteration and w = n
n+m (cf. (5)), for each t 2 [1 : ⌧ ], the

learned model parameter is given by

✓t =
n

n+m
✓t�1 +

1

n+m

tmX

i=(t�1)m+1

Ŷ 0
i X

0
i (180)

=
n

n+m
✓t�1 +
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tmX

i=(t�1)m+1

sgn(✓̄>
t�1X

0
i)X

0
i. (181)
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Figure 10: F̃ (t)

�,⇠0,µ?(x) versus x under
t 2 {0, 1, 2} when � = 0.5, ⇠0 = 0,
kµ?k2 = 1, n = 10, m = 1000.
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Figure 11: Upper bound for |gent| versus t for
m = 100 and m = 1000, when n = 10,

� = 0.6, d = 2, µ = (1, 0).

Recall the definition of the function F̃�,⇠0,µ? in (27). Let the t-th iterate of F̃�,⇠0,µ? be denoted as
F̃ (t)
�,⇠0,µ? with initial condition F̃ (0)

�,⇠0,µ?(x) = x. As shown in Figure 10, we can see that for any

fixed (�, ⇠0,µ?), F̃ (t)
�,⇠0,µ? has a similar behaviour as F (t)

� as t increases, which implies that the

upper bound in (28) in Corollary 3 also decreases as t increases. As a result, F̃ (t)
�,⇠0,µ? represents the

improvement of the model parameter ✓t over the iterations.
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As shown in Figure 11, under the same setup as Figure 6(c), when the labelled data Sl are reused
in each iteration, the upper bound for |gent| is also a decreasing function of t. When m = 1000,
the upper bound is almost the same as that one in Figure 6(c), which means that for large enough
m/n, reusing the labelled data does not necessarily help to improve the generalization performance.
Moreover, when m = 100, the upper bound is higher than that for m = 1000, which coincides with
the intuition that increasing the number of unlabelled data helps to reduce the generalization error.

E PROOF OF COROLLARY 3

Following the similar steps in Appendix C, we first derive the upper bound for |gen1| as follows.

At t = 1, from (65) and (96), the expectation µ⇠0,µ
?

1 = E[✓1|⇠0,µ?] is rewritten as
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Then the correlation between µ⇠0,µ
?

1 and µ is given by

⇢(µ⇠0,µ
?

1 ,µ) = F̃�,⇠0,µ?(↵). (184)

Let ✓0
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m
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0
i. For some c 2 (c̃1,1), from (53) and (114),
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 �pnc,d + �m,c�c̃1,d (187)

Thus, from Theorem 1, for some some c 2 (c̃1,1), with probability at least (1 � �pnc,d �
�m,c�c̃1,d)(1� �r,d), the absolute generalization error can be upper bounded as follows:
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(191)

where P✓1,(X,Y )|⇠0,µ? = Q✓1|⇠0,µ? ⌦ PX,Y and Q✓1|⇠0,µ? denotes the marginal distribution of ✓1
under parameters (⇠0,µ?), and (190) follows since (Xi, Yi)� ✓0 � ✓1 forms a Markov chain.

In (191), the KL-divergence is already given in (161) and the disintegrated conditional mutual infor-
mation can be calculated as follows. Since we have
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from (126), for any ✏ > 0 and any � 2 (0, 1), there exists m0
1(✏, �, d) 2 N such that for all m >
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Therefore, fix d 2 N, any ✏ > 0 and any � 2 (0, 1), and there exists n0(d, �) 2 N, m4(✏, d, �) 2 N,
c0(d, �) 2 (c̃1,1), r0(d, �) 2 R+ such that for all n > n0,m > m3, c > c0, r > r0, �pnc,d < �

6 ,
�m,c�c̃1,d < �

6 , �r,d < �
3 , and with probability at least 1� �, the absolute generalization error |gen1|

can be upper bounded as follows:
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. (194)

For t � 2, the only difference from the derivation in Appendix C is the correlation function
F̃�,⇠0,µ?(·) (compared to (177)). Thus by replacing F�(·) with F̃�,⇠0,µ?(·), we obtain the upper
bound in (28), completing the proof of Corollary 3.

F ADDITIONAL EXPERIMENTS

Table 1: The l2 distances between the RGB-mean and RGB-variance of different pairs of classes from the
CIFAR10 dataset.

Classes RGB-mean l2 distance RGB-variance l2 distance Difficulty

horse-ship 0.0180 3.90e-05 Easy
automobile-truck 0.0038 7.06e-05 Moderate

cat-dog 0.0007 4.95e-05 Challenging

In Table 1, we display the RGB means and variances of the test data in six classes taken from the
CIFAR10 dataset. We observe that the RGB variances of each pair are almost 0 (and small compared
to the RGB-mean l2 distances), and thus, the RGB-mean l2 distance is indicative of the difficulty of

27



Under review as a conference paper at ICLR 2022

the classification task. Indeed, a smaller RGB-mean l2 distance implies a higher overlap of the two
classes and consequently, greater difficulty in distinguishing them. Therefore, the “cat-dog” pair,
which is more difficult to disambiguate compared to the “horse-ship” and “automobile-truck” pairs,
is analogous to the bGMM with large variance (i.e. large overlap between the {±1} classes).

Figure 12: Binary classification on “cat” and “dog” from the CIFAR10 dataset.

Under the same experimental settings as in Section 5, we perform another classification experiment
on the “cat-dog” pair (from the CIFAR10 dataset). As shown in Figure 12, the test accuracy at the
initial point when only labelled data are used is about 65% and the test loss is about 1.4; these are
much worse than the performances of the classification tasks as shown in Figures 7 and 8, which
means that the two classes are more challenging to classify.

It can be observed from Figure 12 that although the training loss decreases and the test and train-
ing accuracies increase as the iteration count increases (which are expected), the test loss and the
generalization error both increase. The fact that both the test loss and test accuracy appear to in-
crease with t is, in fact, not contradictory. To intuitively explain this, in binary classification using
the softmax (hence, logistic) function to predict the output classes, the learned probability of a data
example belonging to its true class is p 2 [0, 1] and if p 2 (1/2, 1], the classification is correct. In
other words, the accuracy is 100%. However, when p (i.e., the classification confidence) decreases
towards (1/2)+, the corresponding decision margin 2p� 1 (Cao et al., 2019) also decreases and the
test loss � log p increases commensurately. Thus, when the decision margin is small, even though
the test accuracy may increase as the iteration counter t increases, the test loss (representing our lack
of confidence) may also increase at the same time.

In summary, for the classification task involving the “cat” and “dog” classes, our above observations
correspond to that for the bGMM in Figure 6(d), namely that the unlabelled data does not help to
improve the generalization error when the classification task is challenging and the initialization
with the labelled data Sl does not already result in a relatively high accuracy.
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