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1 SUMMARY
This supplementary material provides a comprehensive understand-
ing of our proposed DCGH method. Specifically, we first present
the whole algorithm procedure. Then, on the other three datasets,
we provide the comparison results, convergence analysis, parame-
ter analysis, and comparison on time cost to further evaluate our
method.

2 ALGORITHM PROCEDURE
To better show the overview of the proposed method, we give the
details of the proposed DCGH in Algorithm 1.

Algorithm 1: Distribution Consistency Guided Hashing

Require: Training data 𝑿 𝑣 , semantic label 𝒀 , query data 𝑲 𝑣 , code
length 𝑟 , and anchors 𝑘

1: Parameter setting: 𝛼 , 𝛽 , and 𝜆;
2: Initialize: 𝑩𝑣 , 𝑯 ,𝑾 𝑣 , 𝑼 , 𝑭 𝑣 , and 𝑬 ;
3: repeat
4: Update 𝑩𝑣 with Eq.8;
5: Update 𝑯 with Eq.11;
6: Update𝑾 𝑣 with Eq.13;
7: Update 𝑼 with Eq.15;
8: Update 𝑭 𝑣 with Eq.17;
9: Update 𝑬 with Eq.19;
10: until Reach the convergence criteria;
11: Learn hash function 𝑷 𝑣 with Eq.20;
12: Obtain hash codes 𝑯 of query set via Eq.21;
Ensure: Cross-modal retrieval results.

3 EXPERIMENTS
In this section, we conduct more experiments on the other three
datasets (i.e., WIKI, MIRFlickr-25K, and NUS-WIDE) to validate the
performance of our proposed DCGH. Our experimental environ-
ment is MATLAB 2021b for Windows, installed on a host with 64GB
of memory.

3.1 Datasets
More descriptions of the four datasets are given as follows.

WIKI: It is a single-label cross-modal dataset. It contains 2866
image-text pairs collected from Wikipedia, divided into 10 cate-
gories. In our approach, textual examples are represented as 10-
dimensional topic vectors, while image examples are represented
as 128-dimensional SIFT vectors.

MIRFlickr-25K: It is a cross-modal dataset comprising 25000
images sourced from the Flickr website, each associated with at

least one of the 24 textual labels. In our experiments, every visual
instance is described as a 512-dimensional vector, while every tex-
tual instance is described as a 1386-dimensional vector. It is worth
mentioning that we only select those instances with more than 20
textual labels.

IAPR-TC12: It comprises 20,000 geographical images, each
paired with single or multiple textual descriptions. The textual
descriptions are categorized into 255 classes. We employ GIST fea-
tures to represent image data and BOW features to represent textual
data, with dimensions of 512 and 2912, respectively.

NUS-WIDE: It is a large-scale dataset that contains 269684 im-
ages along with its corresponding semantic concepts chosen from
the total 81 categories. Our experiments only select 186577 instances
associated with the top-10 concepts. Each image instance is mapped
into a 500-dimensional BOVW vector, and each textual instance is
mapped into a 1000-dimensional BOW vector.

3.2 Setting
In our experiments, we perform some comparison experiments on
fully paired datasets and partially paired datasets. Fig.1(a) shows
the scenario where all data are fully paired. Fig.1(b) portrays the
scenario of unpaired data.
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Figure 1: Examples of fully paired and partially paired
datasets. (Shapes represent different categories, while col-
ors represent different modalities)

3.3 Experimental Results
We conduct experiments with 11 comparison methods on the other
three datasets with fully paired and partially paired. We report the
PR and Top-k precision curves in Fig.2 and Fig.3 on fully paired
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(a) WIKI(Image→ Text)
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(b) MIRFlickr-25K(Image→ Text)
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(c) NUS-WIDE(Image→ Text
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(d) WIKI(Text→ Image)
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(e) MIRFlickr-25K(Text→ Image)
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(f) NUS-WIDE(Text→ Image)

Figure 2: PR curves with 8 bits on three datasets.
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(a) WIKI(Image→ Text)
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(b) MIRFlickr-25K(Image→ Text)
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(c) NUS-WIDE(Image→ Text)
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(e) MIRFlickr-25K(Text→ Image)
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(f) NUS-WIDE(Text→ Image)

Figure 3: Top-k precision curves with 8 bits on three datasets.
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(a) Image→ Text(16 bits)
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(b) Image→ Text(32 bits)
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(c) Image→ Text(64 bits)
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(d) Text→ Image(16 bits)

0% 20% 40% 60% 80% 100%
Percentage of unpaired data

0.55

0.60

0.65

0.70

0.75

0.80

0.85
m

AP
RFDH
LCMFH
MTFH
FCMH
FDDH
BATCH
EDMH
DAH
ALECH
WASH
AMSH
DCGH
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Figure 4: The mAP results with varying proportions of unpaired data with different hash lengths on MIRFlickr-25K dataset.

datasets. Moreover, we draw the corresponding mAP results on
MIRFlickr-25K with different bits in Fig.4. These experimental anal-
ysis is provided in our manuscript.

3.4 Parameter Sensitivity Analysis
On the other three datasets, we further perform parameter sen-
sitivity analysis. As shown in Fig.5, DCGH consistently achieves
superior results across most ranges, which indicates that DCGH is
stable to hyperparameters to some extent.

3.5 Convergence Analysis
As shown in Fig.6, we add more convergence analysis on the other
datasets. The results indicates the objective value of our algorithm
consistently decreases with each iteration, which provides clear
evidence of the convergence of our proposed algorithm.

3.6 Comparison on Time Cost
We compare the training time of different methods across four
datasets. The outcomes of our experiments are presented in Table 1.
It is evident from the table that BATCH achieves the fastest training
speed due to its asymmetric strategy and efficient matrix decompo-
sition. Conversely, MTFH is the slowest because its computational
complexity in the optimization process reaches 𝑂 (𝑛2). It is notice-
able that our DCGH achieves highly competitive training efficiency
compared with most baselines. Specifically, the training speed of
DCGH is slightly slower than that of ALECH, BATCH, and DAH
because the process of searching the cross-modal class distribution

center is time-consuming. In general, DCGH outperforms most
baselines in terms of training time.

Table 1: Training time (seconds) of different methods with
64-bit hash codes on four datasets.

Method WIKI MIRFlickr-25K IAPR-TC12 NUS-WIDE

RFDH [7] 6.65 76.38 118.16 624.46
LCMFH [6] 0.14 3.42 16.32 27.89
MTFH [3] 79.54 190.24 326.51 /
FCMH [8] 0.79 47.68 230.12 279.28
FDDH [4] 1.56 27.81 28.59 307.64
BATCH [9] 0.12 0.58 0.83 0.41
EDMH [1] 0.65 9.63 22.86 69.11
DAH [11] 0.14 0.59 0.88 5.56
ALECH [2] 0.50 1.15 1.92 9.15
WASH [10] 0.91 2.92 6.65 23.39
AMSH [5] 1.84 6.93 8.13 59.84
Our DCGH 0.24 1.55 3.85 12.68
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Figure 5: The mAP scores with 8 bits in terms of parameters 𝛼 and 𝛽 on three datasets.
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Figure 6: The convergence results with 8 bits on three datasets.
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