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Multimodal Fusion via Hypergraph Autoencoder and Contrastive
Learning for Emotion Recognition in Conversation

Anonymous Authors

ABSTRACT
Multimodal emotion recognition in conversation (MERC) seeks to
identify the speakers’ emotions expressed in each utterance, of-
fering significant potential across diverse fields. The challenge of
MERC lies in balancing speaker modeling and context modeling,
encompassing both long-distance and short-distance contexts, as
well as addressing the complexity of multimodal information fusion.
Recent research adopts graph-based methods to model intricate
conversational relationships effectively. Nevertheless, the majority
of these methods utilize a fixed fully connected structure to link
all utterances, relying on convolution to interpret complex context.
This approach can inherently heighten the redundancy in contex-
tual messages and excessive graph network smoothing, particularly
in the context of long-distance conversations. To address this is-
sue, we propose a framework that dynamically adjusts hypergraph
connections by variational hypergraph autoencoder (VHGAE), and
employs contrastive learning to mitigate uncertainty factors during
the reconstruction process. Experimental results demonstrate the
effectiveness of our proposal against the state-of-the-art methods
on IEMOCAP and MELD datasets. We release the code to support
the reproducibility of this work (currently it is uploaded as the
"complementary material" within the review system and will be
made public following the completion of the review process).

CCS CONCEPTS
• Information systems→ Sentiment analysis; • Computing
methodologies→ Discourse, dialogue and pragmatics.

KEYWORDS
Multimodal Emotion Recognition in Conversation, Variational Hy-
pergraph Autoencoder, Contrastive Learning, Multimodal Fusion

1 INTRODUCTION
Emotion is one of the crucial characteristics of human behavior [19].
Experienced psychiatrists can assess emotions by observing an indi-
vidual’s behavior, which serves as a key indicator for understanding
their inclinations and responses. As human-computer interaction
(HCI) advances, the capability to discern emotions from dialogues
using multimodal information is becoming increasingly signifi-
cant [29, 38]. This process is commonly referred to as multimodal
emotion recognition in conversation (MERC). The multimodality
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herein includes different modal information such as the speaker’s
language, tone, facial expression, body movement and so on [6, 35].
From a modeling perspective, a conversation consists of a sequence
of utterances. Each utterance contains one or more modalities of
information and is linked to speaker information. The target of
MERC is to identify the emotion category of each utterance by
analyzing the available information and contextual cues.

Compared with the emotion recognition in non-dialogue sce-
narios [10], MERC necessitates a specific emphasis on modelling
the speakers involved in the dialogue. Also unlike the analysis of
single-modal information [9], the processing of multimodal infor-
mation demands the utilization of distinct processing techniques to
extract meaningful information from various modalities. Different
modalities of information need to be synthesized to facilitate the
comprehensive analysis of a conversation. For example, when a
speaker utters the word "ok" with a tone of helplessness, solely re-
lying on textual cues may not fully convey the speaker’s emotional
state. By taking into account factors such as intonation and tone
assist in inferring the underlying feeling of sadness expressed by
the speaker. Efficient integration and utilization of multimodal in-
formation play a crucial role in enhancing the precision of emotion
recognition during conversations [31].

Current research methodologies regarding MERC can be clas-
sified into two main categories: non-graph-based method [13, 24,
25] and graph-based method [3, 9, 12, 14, 21]. Non-graph-based
method typically utilizes recurrent neural networks (RNN) or long
short-term memory (LSTM) to capture contextual information,
while the output utterance representations are used for label classi-
fication. However, these methods encounter challenges in modeling
long-range dependencies because of issues in information propaga-
tion and gradient vanishing problems [9]. Graph-based method
typically uses a graph to depict a conversation, with each utterance
represented as a node and the relationships between utterances
shown through edge weights or connections between nodes. Con-
textual information is captured through graph convolutions, and
the resulting node embeddings are fed into subsequent classification
steps [19].

Graph-basedmethods can be further divided into standard graph-
based and hypergraph-based methods. Standard graph-based
method [9, 12, 14, 21] is a typical graph-based method, which
represents textual information in utterances as nodes and captures
contextual relationships by connecting nodes with various types
of edges within a specific window size. For the standard graph-
based methods, the pairwise connection approach fails to depict
the actual physical structure of MERC accurately. Additionally, as
the number of graph convolution layers rises, the training time and
storage requirements increase exponentially. It can also result in
oversmoothing of the graph and redundancy of nodes, potentially
leading to inaccurate assessments [27].

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Hypergraph-based method changes the point-to-point con-
nection to a hyperedge connection structure that more closely fits
the model [3]. Hypergraph is a special graph structure capable of
capturing high-order correlations, enabling the exploration of more
intricate relationships [1]. By linking multiple modalities within
a single utterance and connecting all nodes of the same modality
using hyperedges, the hypergraph-based method can achieve out-
standing performance improvement. Nevertheless, the fixed fully
connected hypergraph structure still results in information redun-
dancy, graph smoothing and slow convergence, especially when
processing long-distance conversations [37].

To address the aforementioned issues in existing hypergraph-
based methods, we propose a multimodal fusion framework via
hypergraph autoencoder and contrastive learning named HAUCL
for MERC, which is applicable to multimodal data and capable
of adaptively adjusting hypergraph connections. The framework
consists of five modules: (1) unimodal encoding, (2) hypergraph con-
struction, (3) hypergraph convolution, (4) hypergraph contrastive
learning, and (5) classifier. The unimodal encoding module is
designed to generate modality-independent representations. For
the hypergraph construction module, it firstly forms an initial
fully connected hypergraph structure. Then, a variational hyper-
graph autoencoder (VHGAE)-based approach is introduced to real-
ize adaptive adjustment of the hypergraph. In this paper, we develop
VHGAE to map the hypergraph to the latent space to obtain node
and hyperedge by sampling from space, and then learn new con-
nections via Gumbel-Softmax [16]. The aforementioned procedures
exhibit a degree of randomness. To minimize the influence of ran-
dom factors, two parameter-sharing paths are established through
the utilization of contrastive learning techniques: Two VHGAEs
reconstruct the hypergraph, and the reconstructed hypergraphs
are utilized in the subsequent hypergraph convolution module
to learn the embeddings along with contextual information. Then,
point-to-point hypergraph contrastive learning module is ap-
plied to the obtained two hypergraphs, where nodes corresponding
to each other in different hypergraphs are considered positive sam-
ple pairs to ensure model stability. Conversely, other nodes are
treated as negative sample pairs to enhance the learning of more
distinctive embeddings. Finally, the learned embeddings are fed
into the classifier module for emotion category prediction.

The main contributions of this paper are summarized as follows:

• We propose a joint learning framework based on hyper-
graphs, which achieved synergistic optimization of hyper-
graph reconstruction, contrastive learning, and emotion recog-
nition, leading to globally optimal performance. Specifically,
VHGAE is integrated into MERC to adaptively adjust the
hypergraph, while Gumbel-Softmax is devised to mitigate
data overflow.
• We utilize contrastive learning to mitigate the impact of
uncertainty in the sampling process and the Gumbel-softmax
learning process of VHGAE, enhancing the robustness and
stability of the model.
• Extensive experiments conducted on two mainstream MERC
datasets, IEMOCAP and MELD, validate the effectiveness of
our work. The results showed that our proposal performed

Figure 1: An illustration showcasing the differences between
hypergraphs (left) and standard graphs (right).

superiorly compared to the state-of-the-art methods in accu-
racy and weighted F1 score.

2 RELATEDWORK

2.1 Multimodal Emotion Recognition
Regarding the non-graph learning methods, BC-LSTM captures
contextual information from surrounding utterances in three dif-
ferent modalities by using three independent bidirectional LSTM
networks, and the output utterance representations are used for
label classification [25]. However, this method lacks the usage of
speaker information and thus is not applicable to multi-person
conversation scenarios. DialogueRNN utilizes three gate recurrent
units (GRUs) to track the global context, speaker state, and emotion
state throughout the entire dialogue, which effectively integrates
speaker modeling, contextual modeling, and emotion modeling [24].
To mimic the human reasoning process, DialogueCRN introduces
reasoning modules to integrate the factors that make emotions
happen [13].

The standard graph-based methods, such as DialogueGCN [9],
represent textual information in utterances as nodes and capture
contextual relationships through different types of edges connect-
ing nodes within a given window size. The multimodal graph con-
volutional network (MMGCN) develops DialogueGCN by further
incorporating audio and video modalities into the model [14]. To
address the challenge of cross-modal interaction in information
fusion within ERC, MIMMN introduces a multi-view network that
leverages complementary information from all modalities. It dy-
namically balances the relationships between all modalities during
the fusion process [32]. MM-DFN [12] uses a dynamic fusionmecha-
nism to fully understand the context relationship between multiple
modalities and reduce the redundancy between modalities. COG-
MEN [17] utilizes graph neural network (GNN) to leverage both
local and global information in a conversation. GraphMFT [21]
not only designs a multimodal fusion method based on graphs but
also utilizes multiple graph attention networks (GATs) to capture
the intra-modal contextual details and inter-modal complementary
information. M3NET [3] introduces the hypergraph into the field
of MERC. Through simple fully connected structures and randomly
initialized edgeweights, significant improvement in prediction accu-
racy and time efficiency has been achieved by multiple hypergraph
convolutions.
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Figure 2: An overview of our proposed framework HAUCL.

2.2 Hypergraph Learning

A hypergraph acts as an extended version of the standard graph
learning, specifically designed to extract high-order correlations
within the data [1]. The examples of hypergraphs are shown on the
left side of Figure 1, with the corresponding standard graphs shown
on the right side. The circular dots represent five nodes, i.e., from𝑉1
to 𝑉5. Curves with the same color form a hyperedge, and there are
three hyperedges 𝑒1, 𝑒2, 𝑒3 in total. In a hypergraph, connections
are not limited to pairwise relationships as in a standard graph.
Hyperedges can link multiple nodes together, and a single node
can be linked by multiple hyperedges simultaneously. Meanwhile a
hypergraph can include multiple types of hyperedges, represent-
ing multiple meanings. In this paper, we create a hypergraph in
which all utterances linked to the same speaker are grouped to-
gether on a hyperedge, while also connecting similar modality into
another hyperedge. This structure closely resembles the physical
structure of certain models, capturing higher-order correlations
and minimizing information loss during the modeling process. The
effectiveness of hypergraph learning in solving the association
problem of multimodal data has already been verified in various
applications, such as including recommendation system [33], video
segmentation [34], sleep stage classification [23], and drug-target
interaction prediction [28].

Regarding hypergraph convolutions, the learning process in-
volves aggregating node information onto connected hyperedges
with varying weights, followed by sending messages from the hy-
peredges back to the connected nodes. This process is not con-
strained by distance, thereby mitigating the limitations of message
transmission during the process [7]. These benefits are particularly

pronounced in long-distance transmissions [8]. Therefore, the hy-
pergraph learning process is anticipated to be effective in the MERC
task, as speakers frequently discuss topics that are distant from the
current conversation, utilizing long-distance cues.

3 METHODOLOGY
In this paper, we model the MERC task as follows: a conversation
contains a sequence of utterances𝑢𝑖 (𝑖 = 1, ..., 𝑁 ).𝑁 is the number of
utterances. Each utterance𝑢𝑖 consists of textual, acoustic, and visual
modality, represented as 𝑢𝑖 = {𝑢𝑡𝑖 , 𝑢

𝑎
𝑖
, 𝑢𝑣

𝑖
}, respectively. Meanwhile,

each 𝑢𝑖 is spoken by a corresponding person 𝑠𝑖 . By integrating the
speaker information, an utterance can be denoted as 𝑣𝑖 = (𝑢𝑖 , 𝑠𝑖 ).
The goal of a MERC task is to predict the emotion label for each
utterance 𝑣𝑖 based on the givenmultimodal information. The overall
framework of our proposed HAUCL is illustrated in Figure 2. It
includes unimodal encoding, hypergraph construction, convolution,
contrastive learning and classifier.

3.1 Preprocess and Unimodal Encoding
This module involves extracting essential information from raw
visual, textual, and acoustic modalities data. Following the approach
outlined inM3NET [3], features from visual modalities are extracted
using DenseNet [15] or 3D-CNN [36], depending on the adopted
dataset. Features from acoustic and textual modalities are extracted
using the OpenSmile toolkit [5] and the RoBERTa large model [22]
respectively.

As mentioned above, incorporating contextual information is
crucial for emotion category prediction in conversations. To en-
hance discourse feature representation, we employ various encod-
ing methods tailored to the characteristics of different modalities.



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Specifically, we utilize GRU network [4] to encode context informa-
tion for the textual modality, while acoustic and visual information
is encoded using two fully connectedmultilayer perceptrons (MLPs).
To facilitate the information fusion across modalities, we normalize
the encoded dimension to a unified 𝑑 dimension as below:

𝑈 𝑎
𝑖 =𝑊𝑎𝑢

𝑎
𝑖 + 𝑏

𝑎
𝑖 (1a)

𝑈 𝑣
𝑖 =𝑊𝑣𝑢

𝑣
𝑖 + 𝑏

𝑣
𝑖 (1b)

𝑈 𝑡
𝑖 =𝑊𝑡

(←−→
𝐺𝑅𝑈 (𝑈 𝑡

𝑖−1, 𝑢
𝑡
𝑖 , 𝑢

𝑡
𝑖+1)

)
+𝑏𝑡𝑖 (1c)

where 𝑢𝑖 is the input of unimodal encoding.𝑈𝑖 is the output of the
model with the dimension 𝑑 . 𝑎, 𝑣, 𝑡 stands for visual, acoustic, and
textual modalities respectively.𝑊 and 𝑏 are trainable parameters.

Speaker information is a critical factor that affects the perfor-
mance of the MERC task. We firstly encode the speaker information
into vectors 𝑠𝑖 in one-hot form as:

𝑆𝑖 =𝑊𝑠𝑠𝑖 + 𝑏𝑠𝑖 (2)

Next, we integrate them into the modality information by:

𝑉 𝑥
𝑖 = 𝑆𝑖 +𝑈 𝑥

𝑖 , 𝑥 ∈ {𝑡, 𝑎, 𝑣} (3)

The output of this module is 𝑉𝑖 , which is the feature embed-
dings with modality-independent context awareness and speaker
information.

3.2 Hypergraph Construction
This module is composed of three stages: structure initialization,
VHGAE, and hypergraph reconstruction.

3.2.1 Structure Initialization. We represent a conversation with
continuous utterances through hypergraph G = (V, E), where
each node 𝑣 ∈ 𝑉 represents a unimodal utterance and each hyper-
edge ℎ ∈ 𝐻 captures multimodal dependencies. Each utterance’s
modality is represented by a node in a hypergraph, i.e., 𝑉 𝑡

𝑖
for the

textual modality,𝑉𝑎
𝑖
for the acoustic modality, and𝑉 𝑣

𝑖
for the visual

modality.
We design two distinct types of hyperedges in this paper: the

first one involves connecting every node in a modality to form
a hyperedge , i.e., it includes {𝑉 𝑣

1 ,𝑉
𝑣
2 , ...,𝑉

𝑣
𝑁
}, {𝑉 𝑡

1 ,𝑉
𝑡
2 , ...,𝑉

𝑡
𝑁
}, and

{𝑉𝑎
1 ,𝑉

𝑎
2 , ..,𝑉

𝑎
𝑁
}. The second type of hypergraph creates a hyperedge

{𝑉𝑎
𝑖
,𝑉 𝑡

𝑣 ,𝑉
𝑡
𝑖
} by joining the three modalities of an utterance.

Similar to the standard graphs, the incidence matrix for hyper-
graphs can also be defined asH ∈ R3𝑁×𝑀 , where 𝑁 and𝑀 is the
number of nodes and hyperedges, respectively. We define 𝐻𝑖, 𝑗 to
determine the presence of node 𝑖 in hyperedge 𝑗 as:

𝐻𝑖, 𝑗 =

{
1, node 𝑖 is included in hyperedge 𝑗

0, otherwise (4)

3.2.2 VHGAE. The fully connected hypergraph generated in the
structure initialization stage may lead to redundancy in the sub-
sequent update process, impeding the classification of subtle dif-
ferences. To mitigate this challenge, we introduce VHGAE to re-
construct the hypergraph, aiming to identify the most appropriate
hypergraph structure. VHGAE comprises of three processes: en-
coder, sampler, and decoder. The structure of VHGAE is illustrated
in Figure 3.

Encoder: It aims to project the hypergraph into a representation
consisting of sets of nodes and hyperedges. This projection can

Figure 3: The structure of VHGAE.

facilitate the subsequent decoding process of the non-Euclidean
structure, as highlighted in the original paper that proposed varia-
tional graph auto-encoders (VGAE) [20].

In our proposed method, we follow the VHGAE framework and
utilize a hypergraph neural network (HyperGNN) to perform hy-
pergraph convolution on the original hypergraph. This convolution
operation produces embeddings for both the nodes 𝑣 and the hy-
peredges 𝜖 as:

𝑣, 𝜖 = HyperGNN(G) (5)
We utilize the obtained embeddings to encode the mean 𝜇 and

variance 𝜎 vectors for each type 𝑘 ∈ (𝑣, 𝜖). This encoding process
involves applying linear transformations and activation functions,
as described by the following equations:

𝜇𝑘 =𝑊 𝑘
1

(
𝜎 (𝑊 𝑘

𝜇 (𝑘) + 𝑏𝑘𝜇 )
)
+𝑏𝑘1 (6a)

𝜎𝑘 = 𝜎1
(
𝑊 𝑘

2 (𝜎 (𝑊
𝑘
𝜎 (𝑘) + 𝑏𝑘𝜎 )) + 𝑏𝑘2

)
(6b)

where𝑊 𝑘 and 𝑏𝑘 are learnable parameters specific to the type
𝑘 . The activation functions 𝜎 and 𝜎1 correspond to the ReLU and
Softplus functions, respectively.

Through encoding the mean and variance vectors with node and
hyperedge embeddings, we can effectively capture and represent
the crucial information regarding the hypergraph’s structure within
a latent space. These encoded vectors will play a pivotal role in
the subsequent stages, enabling the generation of meaningful and
relevant outputs.

Sample: To incorporate the reparametrization trick, we utilize
sampling in the latent space to obtain new nodes and hyperedge
embeddings. The sampling process introduces stochasticity while
ensuring differentiable computations during the training phase.

To generate the new embeddings, we use the mean 𝜇𝑘 and vari-
ance 𝜎𝑘 vectors obtained from the encoder process by Equations 6a
and 6b. The reparametrization trick involves sampling from a stan-
dard normal distribution 𝛿 ∼ 𝑁 (0, 1) and scaling it by the standard
deviation 𝜎𝑘 . The obtained sample is then added element-wise to
the mean vector 𝜇𝑘 to obtain the new embedding𝑚𝑘 by:

𝑚𝑘 = 𝜇𝑘 + 𝜎𝑘 ⊙ 𝛿 (7)

where ⊙ represents the element-wise product between 𝜎𝑘 and 𝛿 . By
incorporating the sampled noise 𝛿 into the latent space represen-
tation, we introduce randomness to the model, while maintaining
differentiability for efficient optimization.

The obtained embeddings𝑚𝑘 serve as the updated representa-
tions for the output nodes or hyperedges, capturing the variability
and uncertainty within the hypergraph structure.
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Decoder: This process aims to reconstruct the hypergraph from
the latent space representation. By leveraging the updated em-
beddings obtained from the encoder process, we can recover the
connection structure of the new hypergraph through a series of
operations.

First, we calculate the matrix ℎ𝑖 by taking the dot product be-
tween the transpose of𝑚𝜖 and𝑚𝜎 by:

ℎ𝑖 =𝑚𝑇
𝜖𝑚𝜎 (8)

where𝑚𝑇
𝜎 represents the inverse of𝑚𝜎 .

Next, we apply the Gumbel-Softmax function to the matrix ℎ
with a temperature coefficient 𝜏 to introduce stochasticity:

ℎ = softmax
(
Gumbel_Softmax(ℎ𝑖 , 𝜏) + 𝑝

)
(9)

In the above equation, Gumbel_Softmax is a function that ap-
plies the Gumbel-Softmax relaxation. To prevent data overflow, we
incorporate the addition of a constant 𝑝 to the Gumbel-Softmax
operation and subsequently apply the softmax function.

After conducting the softmax operation, The obtained matrix
ℎ has two columns, representing a distribution over the hyper-
graph connections. We extract the first column of matrix ℎ, which
corresponds to the incidence matrix of the new hypergraph G0 =
(V, E0).

By obtaining the connection structure of the new hypergraph
through the decoder, we can reconstruct the relationships and con-
nections between nodes and hyperedges. This reconstructed hyper-
graph can then be further utilized for various downstream tasks.

Loss function: The loss function in VHGAE consists of primary
components designed to produce a reconstructed hypergraph that
closely resembles the original one. Specifically, the first compo-
nent measures the Kullback-Leibler (KL) divergence between the
distributions of the latent variables (nodes and hyperedges) and
their corresponding prior distributions. The second component
quantifies the difference in connection structure between the newly
generated hypergraph and the original hypergraph. The VHGAE’s
loss function L𝑔 is defined as follows:

L𝑔 = KL(𝑚𝜎 , 𝜎) + KL(𝑚𝜖 , 𝜖) + CE(ℎ0, ℎ) (10)

where KL(𝑚𝜎 , 𝜎) measures the KL divergence between the distri-
bution of the sampled latent variables𝑚𝜎 and the prior distribution
𝜎 . Similarly, KL(𝑚𝜖 , 𝜖) represents the KL divergence between the
distribution of the sampled hyperedge embeddings𝑚𝜖 and the prior
distribution 𝜖 . The third term CE(ℎ0, ℎ) denotes the cross-entropy
loss function, quantifying the connection structure difference be-
tween the original hypergraph ℎ0 and the generated hypergraph
ℎ. This component ensures that the generated hypergraph closely
matches the original hypergraph regarding the distribution of con-
nections.

By minimizing this loss function, VHGAE aims to learn an effec-
tive latent space representation that captures the essential character-
istics of the hypergraph while preserving its connection structure.

3.3 Hypergraph Convolution
With the new hypergraph G0 = (V, E0), we first perform node
convolution by aggregating node features to update the hyperedge
embeddings. The aggregation stage facilitates the integration of

information from neighboring nodes into the hyperedge represen-
tation. Following the update of the hyperedge embeddings, we
proceed to the hyperedge convolution stage, where hyperedge mes-
sages are disseminated to the nodes. This operation enables the
information propagation from hyperedges to their incident nodes.
For each hyperedge 𝜖 ∈ E0, we aggregate the embeddings of its
incident nodes 𝑣 according to a predefined aggregation function
by:

𝑛𝜖 = Agg
(
{𝑛𝑣}𝑣∈𝜖

)
(11)

where 𝑛𝜖 represents the updated embedding for the hyperedge
𝜖 and 𝑛𝑣 denotes the embedding of the node 𝑣 . The aggregation
function Agg combines the embeddings of the incident nodes to
generate the new hyperedge embedding. For each node 𝑣 ∈ V ,
we aggregate the messages from its incident hyperedges 𝜖 using a
predefined aggregation function similar to Equation 11.

By performing the node and hyperedge convolutions, we can
effectively propagate information and update the embeddings in
the hypergraph G1 = (V0, E0). This reformulated solution enables
the capture of the relationships and interactions between nodes
and hyperedges, facilitating a more comprehensive understanding
of the hypergraph structure.

3.4 Hypergraph Contrastive Learning
In order to mitigate the instability inherent in the sampling and
decoding processes, we devise a dual-path schemewithin our model.
The primary objective is to minimize the dissimilarity between
corresponding points in two hypergraphs G (1)1 = (V (1)0 , E0) and
G (2)1 = (V (2)0 , E0), which are obtained through the progression of
VHGAE and convolution. Concurrently, we aim to maximize the
distance between each point and other points within the embedding
space.

Within the context of the two hypergraph views, pairs of ver-
tices that correspond to one another are regarded as positive pairs,
whereas the remaining vertex pairs are considered negative pairs.
The embedding of the 𝑖-th vertex in the two views is denoted as
𝑣
(1)
𝑖
∈ V (1)0 and 𝑣

(2)
𝑖
∈ V (2)0 . The contrastive loss L𝑐𝑙 between

V (1)0 andV (2)0 is:

L𝑐𝑙 =
1

2|V0 |

|V0 |∑︁
𝑖=1

(
𝑓 (𝑣 (1)

𝑖
, 𝑣
(2)
𝑖
) + 𝑓 (𝑣 (2)

𝑖
, 𝑣
(1)
𝑖
)
)

(12)

Here,V0 denotes the set of vertices and |V0 | signifies the cardi-
nality ofV0. The term 𝑓 (𝑣 (1)

𝑖
, 𝑣
(2)
𝑖
) is calculated as:

𝑓 (𝑣 (1)
𝑖

, 𝑣
(2)
𝑖
) = − log

(
𝑞 (𝑣 (1)

𝑖
, 𝑣
(2)
𝑖
)

𝑞 (𝑣 (1)
𝑖

, 𝑣
(2)
𝑖
) +

∑︁
𝑖≠𝑗

𝑞 (𝑣 (1)
𝑖

, 𝑣
(2)
𝑗
) +

∑︁
𝑖≠𝑗

𝑞 (𝑣 (1)
𝑖

, 𝑣
(1)
𝑗
)

)
(13)

where

𝑞(𝑥,𝑦) = 𝑒
𝑔 (𝑥,𝑦)

𝜏 (14)

Here, 𝜏 is a temperature parameter and 𝑔(, ) denotes the cosine
similarity function. Considering that the function 𝑔(, ) is not sym-
metric, we average the positive and negative aspects. Specifically,∑
𝑖≠𝑗 𝑞(𝑣

(1)
𝑖

, 𝑣
(2)
𝑗
) and ∑

𝑖≠𝑗 𝑞(𝑣
(1)
𝑖

, 𝑣
(1)
𝑗
) denote the negative pairs
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in the other graph and the same graph, respectively. Meanwhile,
𝑞(𝑣 (1)

𝑖
, 𝑣
(2)
𝑖
) represents a positive pair in the other graph.

By minimizing the combined loss function L𝑐𝑙 , the similarity
between corresponding points is expected to increase while en-
hancing the distance between each point and other points within
the embedding space. This approach promotes alignment and dis-
crimination of the embeddings, thereby yielding more stable and
meaningful representations of the hypergraph structure.

3.5 Emotion Classifier
After acquiring contextual knowledge, we perform a fusion process
on the node embeddings of the two hypergraphs G (1)1 and G (2)1 to
obtain G2 = (V2, E2). This process aims to integrate the informa-
tion from the two hypergraphs into a unified representation.

Following that, we concatenate the node embeddings of the
three modalities that belong to the same utterance, resulting in
a comprehensive representation. Specifically, let {𝑣𝑡

𝑖
, 𝑣𝑎
𝑖
, 𝑣𝑣
𝑖
} ∈ V2

denote the node embeddings of the hypergraphs corresponding
to the textual, acoustic, and visual modalities, respectively. We
concatenate these embeddings to obtain a fused representation by:

𝑣𝑖 = Concatenate(𝑣𝑡𝑖 , 𝑣
𝑎
𝑖 , 𝑣

𝑣
𝑖 ) (15)

The Concatenate function combines the embeddings of the three
modalities into a unified vector, allowing for the integration of
multiple sources of information. The fused representation 𝑣𝑖 en-
compasses a broader range of information, enhancing subsequent
analysis and prediction tasks by providing a more comprehensive
input.

Given the fused representation 𝑣𝑖 for an utterance, the formulas
for predicting the emotion label are as follows:

�̂�𝑖 = 𝑅𝑒𝐿𝑈 (𝑊2𝑣𝑖 + 𝑏2) (16a)

𝑃𝑖 = softmax(𝑊3�̂�𝑖 + 𝑏3) (16b)

𝑦𝑖 = argmax(𝑃𝑖 [𝜏]) (16c)
In these formulas,𝑊2 and𝑊3 are weight matrices, 𝑏2 and 𝑏3

are bias vectors, �̂�𝑖 is the processed output of 𝑣𝑖 using the ReLU
activation function, 𝑃𝑖 is the probability distribution over the emo-
tion labels, and 𝑦𝑖 is the predicted emotion label. 𝜏 represents the
dimension corresponding to the emotion labels. By applying these
formulas, we can predict the emotion label for each utterance based
on the fused representation 𝑣𝑖 and the learned parameters𝑊2,𝑊3,
𝑏2, and 𝑏3.

3.6 Training Objectives
We use categorical cross-entropy loss with 𝐿2 regularization term
to define the error loss between the predicted emotion category
and the true label during the training process as below:

L𝑐𝑒 = − 1∑𝑁
𝑠=1 𝑐 (𝑠)

𝑁∑︁
𝑖=1

𝑐 (𝑖 )∑︁
𝑗=1

log 𝑃𝑖, 𝑗 [𝑦𝑖, 𝑗 ] + 𝜆 ∥𝜃 ∥2 (17)

where 𝑁 represents the number of dialogues in a dataset. 𝑐 (𝑠)
represents the number of utterances in dialogue 𝑠 . It is worth noting
that each dialogue can have a different number of utterances. 𝑃𝑖, 𝑗
denotes the predicted probability distribution of emotion labels for
utterance 𝑗 in dialogue 𝑖 , while 𝑦𝑖, 𝑗 represents the expected class

Table 1: Main hyperparameters for HAUCL.

Dataset Batch size Learning rate 𝜆𝑔 𝜆𝑐𝑙 Epoch Dropout
MELD 12 0.0001 0.5 1 15 0.4
IEMOCAP 12 0.0001 0.8 0.1 45 0.3

label. The regularization weight 𝜆 controls the importance of the
regularization term relative to the cross-entropy loss.

By combining Equations 17, 10 and 12, we define the final loss
function as:

L = L𝑐𝑒 + 𝜆𝑔L𝑔 + 𝜆𝑐𝑙L𝑐𝑙 (18)
where the hyperparameter weights 𝜆𝑔 and 𝜆𝑐𝑙 control the impor-
tance of the generalized adversarial loss and the contrastive loss,
respectively.

4 EXPERIMENT
4.1 Datasets
In this paper, we conduct experiments on two popular multimodal
datasets in the field of MERC: the interactive emotional dyadic
motion capture database (IEMOCAP) [2] and multimodal emotion-
lines dataset (MELD) [26].
• IEMOCAP: It contains videos of two-way conversations with
10 actors (5 male and 5 female). IEMOCAP records the tone
and power of speech, facial expressions, torso posture, head
position, gestures, transcripts, and gaze in a duo session. In
this paper, we use facial expressions, the tone and power
of speech and transcripts. The emotions in this dataset are
artificially classified into six categories: happy, sad, neutral,
angry, excited, and frustrated. We use 120 dialogues contain-
ing 5,810 utterances for training and validation, while the
remaining 31 dialogues with 1623 utterances for testing.
• MELD: It is a multimodal dataset for emotion recognition
in multi-party conversations, containing textual, acoustic
and visual modalities for ERC, selected from Friends TV se-
ries. This dataset includes seven emotions: neutral, surprise,
fear, sadness, happiness, disgust, and anger. We use 1,153
dialogues with 11,098 utterances for training and validation,
while the rest 280 dialogues with 2610 utterances for testing.

It is worth noting that IEMOCAP dataset features a fixed set of
two speakers engaging in multiple rounds of conversation, whereas
MELD dataset may involve multiple speakers but with fewer ut-
terances per conversation. Meanwhile, the emotion distribution
within MELD dataset is imbalanced, with a significantly higher
proportion of "neutral" emotions compared to other emotional cat-
egories, comprising nearly half of the dataset. These characteristics
pose significant challenges to the model’s stability.

4.2 Experimental Settings and Baselines
We perform all experiments on an NVIDIA GTX 1050Ti with Win11
operating system. The versions of Pytorch and cuda are 2.1.2 and
11.8, respectively. Adam optimizer is used for training. We set the
batch size as 12 and the learning rate as 0.0001 on both datasets.
The hyperparameter 𝜏 of Gumbel-softmax in Equation 9 is 0.1 . The
number of hypergraph convolutions is 1. More details regarding
the main parameters can be found in Table 1
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Table 2: Performance of various methods (Bold font indicates the best performance).

Method
IEMOCAP MELD

Emotion Categories (F1) Overall Overall
Happy Sad Neutral Angry Excited Frustrated Acc. WF1 Acc. WF1

bc-LSTM [25] 32.62 70.34 51.14 63.44 67.91 61.06 59.58 59.10 59.62 56.80
DialogueRNN [24] 33.18 78.80 59.21 65.28 71.86 58.91 63.40 62.75 60.31 57.66
DialogueCRN [13] 51.59 74.54 62.38 67.25 73.96 59.97 65.31 65.34 59.66 56.76
DialogueGCN [9] 47.10 80.88 58.71 66.08 70.97 61.21 65.54 65.04 58.62 56.36
MMGCN [14] 45.45 77.53 61.99 66.67 72.04 64.12 65.56 68.71 59.31 57.82
DIMMN [32] 30.2 74.2 59.0 62.7 72.5 66.6 64.7 64.1 60.6 58.6
MM-DFN [12] 42.22 78.98 66.42 69.77 75.56 66.33 68.21 68.18 62.49 59.46
COGMEN [17] 51.91 81.72 68.61 66.02 75.31 58.23 68.26 67.63 62.53 61.77
GraphMFT [21] 45.99 83.12 63.08 70.30 76.92 63.84 67.90 68.07 61.30 58.37
M3NET [3] 57.96 81.56 68.30 65.59 74.91 63.19 69.01 69.12 67.62 66.15

HAUCL (ours) 53.57 82.04 68.61 66.44 75.60 68.23 70.30 70.27 68.05 66.72

(a) Effect of 𝜆𝑔 (b) Effect of 𝜆𝑐𝑙 (c) Effect of Hypergraph layers (d) Effect of batch size

Figure 4: Sensitive analysis of HAUCL on MELD dataset. All experiments test the results while fixing all other parameters with
the best performance.

In order to validate the performance of the proposed method
HAUCL in the MERC task, we introduce the ten state-of-the-art
methods for comparison: (1) non-graph learning: LSTM [25], Dia-
logueRNN [24], and DialogueCRN [13]; (2) standard graph learn-
ing: DialogueGCN [9], MMGCN [14], DIMMN [32], MMDFN [12],
COGMEN [17] and GraphMFT [21]; and (3) hypergraph learning:
M3NET [3]. More details regarding the baseline methods can be
found in Section 2.

For validation, we adopt the most mainstream evaluation metrics
in this field: accuracy (Acc.) and weighted F1 score (WF1).

4.3 Performance Comparison
Table 2 summaizes the performance of different methods tested on
IEMOCAP and MELD datasets. The results show that our proposed
HAUCL achieves superior performance in terms of the overall ac-
curacy and weighted F1 score. In detail, compared with M3NET,
which achieves the second-best performance, HAUCL enhances
the accuracy and WF1 by 0.43% and 0.57% respectively on MELD
dataset and by 1.29% and 1.15% on IEMOCAP dataset. The ability
of HAUCL to dynamically modify the connection structure of the
hypergraph helps in reducing information redundancy, particularly
in IEMOCAP dataset with a high average utterance per conversa-
tion. Additionally, the use of hypergraphs helps prevent excessive
smoothing, reducing the risk of excessive smoothing occurring in

standard graph-based methods. Compared with non-graph learn-
ing methods, our proposed HAUCL can demonstrate significant
enhancement in long-distance information transmission and multi-
modal information fusion, resulting in satisfactory accuracy and
weighted F1 score performance.

4.4 Sensitivity Analysis
We select the following four main parameters in HAUCL for sensi-
tivity analysis tested on MELD dataset. Figures 4a and 4b show the
ratio of hypergraph reconstruction loss and contrastive learning
loss to the total loss, respectively. Figure 4c represents the num-
ber of convolution layers passed by the new hypergraph obtained
by reconstruction to learn the contextual information. Figure 4d
shows the effect of batch size. Similar trends are also observed on
IEMOCAP data.

The weight of the hypergraph reconstruction loss 𝜆𝑔: It
reflects the deviation from the original graph over the total loss (See
Equation 18). Higher values of 𝜆𝑔 indicate that the reconstructed
hypergraph closely resembles the original graph. As shown in Fig-
ure 4a, when 𝜆𝑔 is set to 0.5, our method demonstrates optimal
performance in accuracy. Meanwhile, deviating from this optimal
value, either towards larger or smaller values, results in a decline
in the overall performance.

The weight of contrastive learning loss 𝜆𝑐𝑙 : Similar with 𝜆𝑔 ,
as the value of 𝜆𝑐𝑙 increases, the method will increasingly focus
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Table 3: Performance of HAUCL for ablation study.

Method IEMOCAP MELD
w/o SE 69.19 67.24
w/o GCL 69.52 67.62
w/o CL 69.32 67.47

HAUCL (ours) 70.30 68.05

on the differences between the two hypergraphs derived from the
two paths. Conversely, when the dissimilarity between the two
hypergraphs diminishes, our proposal’s capability to withstand
interference strengthens. However, when this value is excessively
large, it will impact the loss of emotion recognition, i.e., when
𝜆𝑐𝑙 exceeds 1.1, there is a degradation in accuracy performance as
plotted in Figure 4b.

Hypergraph layer 𝐿: Figure 4c demonstrates that increasing
the number of covolutional layers in a hypergraph does not nec-
essarily lead to enhanced accuracy performance. A large value of
𝐿 not only amplifies the model’s complexity and runtime, but also
risks oversmoothing, potentially complicating the differentiation of
emotions with similar characteristics. When 𝐿 is 5, there is a sharp
decrease in accuracy performance, indicating an over-smoothing
phenomenon.

Batch size: The selection of batch size is a crucial factor that
impacts the performance of recognition [11, 18]. Given the non-
uniform distribution of MELD dataset, employing a batch size that
is too small can render the model susceptible to the interference
of small samples, leading to significant gradient fluctuations and
convergence challenges. Conversely, an excessively large batch size
may prompt the model to overly generalize, potentially compro-
mising accuracy. As depicted in Figure 4d, the best performance is
attained with a batch size of 12.

4.5 Ablation Study
For a more comprehensive analysis of the effectiveness of our pro-
posedmethod HAUCL, we conduct ablation experiments from three
different aspects: the impact of (1) speaker embedding, (2) VHGAE
and contrastive learning, and (3) contrastive learning in terms of
accuracy performance. The results are summarized in Table 3.

Impact of Speaker Embedding: Speaker embedding can distin-
guish the input features from different speakers. Existing research
has shown that incorporating speaker information can enhance
the accuracy of emotion recognition tasks [14]. The exclusion of
speaker embedding ("w/o SE" in Table 3) results in a decrease in
accuracy, with a degradation of 1.11% and 0.81% observed on IEMO-
CAP and MELD datasets, respectively. These findings indicate that
incorporating person modeling can enhance the model’s perfor-
mance in the MERC domain.

Impact of VHGAE and Contrastive Learning: We utilize
VHGAE for dynamic hyperedge selection to minimize redundancy
and employ contrastive learning to mitigate random errors. In
Table 3, "w/o GCL" indicates the direct fusion of two hypergraph
convolutions without the inclusion of VHGAE and contrastive
learning module. The results demonstrate the effectiveness of our
proposed HAUCL: It can improve the accuracy performance by
0.78% and 0.43% on IEMOCAP and MELD datasets respectively.

(a) HAUCL (ours) (b) M3NET

Figure 5: Visualization of our proposed HAUCL and M3NET
on MELD dataset.

Impact of Contrastive Learning: "w/o CL" in Table 3 refers
to the model that incorporates hypergraph and VHGAE without
the integration of contrastive learning. The experimental results
indicate a 0.98% enhancement in accuracy on IEMOCAP dataset and
a 0.58% improvement on MELD dataset. These results verify that
the contrastive learning module effectively controls the random
fluctuations of VHGAE, enhancing model accuracy while reducing
information redundancy.

4.6 Visualization
In order to demonstrate the discriminability of nodes, we present
the node representations acquired through our proposed method
HAUCL and the M3Net (the second-best method in Table 2) on
MELD dataset. To visualize these representations in a more compre-
hensive manner, we employ t-SNE [30] method for dimensionality
reduction, transforming the obtained nodes into three dimensions.
Furthermore, we assign distinct colors to indicate the true labels of
the nodes. By comparing the two figures in Figure 5, it is evident
that the data points depicted in Figure 5a (our method) exhibit
greater separation, resulting in a more discriminative segmentation.
As aforementioned, the representations derived from the proposed
HAUCL exhibit reduced redundancy and enhanced discriminability,
thereby enabling the attainment of superior outcomes.

5 CONCLUSION
In this paper, we propose a joint learning framework based on
hypergraph learning to improve the performance of MERC. This
framework aims to address the issue of excessive redundancy stem-
ming from the fully connected structure of graphs or hypergraphs.
The proposed method HAUCL effectively integrates hypergraph
adaptive reconstruction and contrastive learning, which reduces in-
formation redundancy and enhances accuracy. Experimental results
verify the superiority of our proposed method against state-of-the-
art ones. In the future, we expect to integrate external knowledge,
such as large language models (LLM), into our framework. By fo-
cusing on linear labels such as valence-arousal-dominance (VAD)
in dimensional emotion space, we aim to substitute classification
labels with the goal of enhancing machines’ comprehension of
human behavior.
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