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A Additional Details of Agent Architecture

Inspired by the recent success of the SLAM-based approaches , we adopt an architecture
that 1) plans a sequence of subgoal actions from a natural language instruction, 2) maintains the
agent’s memory in the form of a semantic spatial map built by an observation history with depth and
masks predicted by pretrained perception models [1], , and 3) uses a deterministic algorithm
over the semantic spatial map for effective obstacle-free path planning.

Semantic spatial map. During exploration, the agent takes as input the current egocentric RGB
observation, v, for each time step, ¢, and predicts its semantic information (e.g., object masks,
{mi}ﬁvzo, a depth map, dy, a spatial semantic map, Z;, etc). Using {mi}ﬁvzo, the agent obtains the
cropped images of objects, {v¢}2 , from v;. Here, N denotes the number of all detected objects in
vt, and v{ an object’s image crop with the masked-out background. Z; denotes a 2D top-down map
predicted by merging three inputs and is generated by the semantic map generator, G, as follows:

Zy = G(de, {imi} N o, Zi—1). (1)

G transforms each pixel of d; and {m;}}, into a 3D point with its semantic label. These points
are then summed along the gravitational axis to generate the current top-down semantic spatial map
containing only current information. Finally, G accumulate the obtained top-down map on Z;_,
resulting in an updated semantic spatial map, Z;.

Navigation policy. To interact with an object, an agent must first reach the object in its close
vicinity. For this, previous approaches often use behavior cloning [2] to let the agent mimic
the navigational behavior of a vision-language navigation expert. However, such behavior cloning
requires a large number of training trajectories and natural language annotations for satisfactory
performance, but collecting these may not be trivial due to high computational costs and time.

To address this issue, recent approaches instead incorporate deterministic algorithms
(e.g., A¥*, FMM , etc) to plan obstacle-free paths and observe significant improvement of
navigational performance while alleviating the data collection burden. Inspired by this improvement,
we also adopt a deterministic policy to plan navigation routes.

B Additional Details of RED

We provide more details of RED. We further detail how we revise an action plan using large language
models (LLMs) based on perceived environmental feedback, illustrated in Figure 1.

Additionally, we explain the ‘Appearance Detector Module’ of OHV, which takes egocentric views
in different views as input and predicts the class of the picked-up object; the ‘Attribute Detector
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Module’ of APM, which takes the cropped image as input and predicts the object’s attributes; and the
‘Relationship Detector Module’ of ASR, which takes the predicted masks as input and predicts the
relationship between the target object and where it can be placed.

B.1 Revising Actions by Environmental Feedback with LLMs

Subgoal planning. Given a natural language instruction, X', such as dialogs or directives, a large
language model, £, predicts the task-relevant contexts, £, such as task type, target object, its expected
location, efc. Then, they are integrated into an LLM-generated high-level action plan, 7T, for the
corresponding task type through the integration process, ‘Intg.’

Here, T is created to satisfy the desired states of the task type. For example, if the task type is
"CLEAN ALL X" and X is an object, the desired state is defined as object = {clean}. To create the
plan, we assume that the initial state is the opposite of the desired one, such as object = {dirty}, and
then create a plan to clean the object.

Integration of 7 and £ resembles context-aware planning , but we use an unfine-tuned LLM for
context prediction instead of a trained model with benchmark data. Specific information obtained
from the instruction can be incorporated into the action plan. For example, if the instruction indicates
the mug is inside the fridge, an action to open the fridge is added before picking up the mug.

The generated action plan consisting of high-level actions, {a/} 2[;1, in a triplet format is systemati-
cally converted to the executable action plan with low-level actions, {afl}ﬁll, in a tuple format by a

rule-based function, f., following the prior work . This process is expressed as in Equation 2:
N N N
€=L(X), Aay, }ni =Ing(T,€), {an}n'sy = fel{ag, })=r)- @)

Revising actions. While performing the task, the agent may encounter unexpected environmental
discrepancies (see Section 3.1). Once we obtain environmental feedback (i.e., environmental discrep-
ancies) based on visual and language input, we build a prompt, P with this feedback to query £ for
plan revision. Specifically, we build the prompt with 1) a system prompt, P, 2) the original plan (i.e.,

current action plan in Figure 1), {a, }_; ({a?}2", or {al }\)), and 3) the feedback prompt, P;.

The format of the current action plan, {a,})_,, can be the sequence of the actions either in an
executable tuple (low-level action), aﬁn, or a triplet (high-level action), aﬁh. A triplet action is
predefined and consists of a unit of action that includes several executable actions. For example,
(‘Move’, ‘Target’, ‘Parent’) signifies the combination of (‘Target’, ‘PickupObject’) and (‘Parent’,
‘PutObject’). We operate with both types of action plans simultaneously. For instance, the action
plan is input in triplet form if the actions can be revised at the triplet level, while in tuple form if
the revision is required at the detailed executable action level. If the output is in triplet form, it is
systematically translated into executable tuple form by f.. This revision process continues whenever
the environmental discrepancy is detected until the agent successfully completes the task.

‘P for L varies according to the type of discrepancy and given action plan consisting of various objects
and actions. We provide several examples of the P including P;, a current action plan, Py, and the
corresponding output of the £ in Listing 1 to 5. We provide the prompt to extract £ in Listing 6 and
one to generate a revised action plan in Listing 7.

B.2 Appearance Detector Module

To verify that the picked-up object is the intended one, we compare two predicted classes, cg and ¢;,
from the target object, o . Here, cy is the predicted class of o from the i viewpoint at the time of
interaction, and ¢; is that of o from the i*" viewpoint when the agent picks up the object and views it
from the front. To predict co and c;, the agent takes egocentric images at the i® and i viewpoints.
Then, it predicts the class of the object in the center of the image through mask prediction.

The ¥ viewpoint is usually a head-lowered view to simultaneously prevent collisions with obstacles
on the floor during exploration and find the object. However, this behavior may cause the agent to see
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Instruction ‘ Task-Relevant Contexts System Prompt Revised Action Plan
! | commander : H H
i | Go to table : @ Task type: Water Plant : | Role: H
Driver | i LM “|“Bowl”: {“location”: “Table"} : | You need to determine H ° 7
i There is a bowl on the table. i [©PT4 : | whether to revise the : o {FoggleOn,Faucet}
i | Commander ; ; : | action plan ... H « {FoggleOffFaucet)
| Pickup bowl and fill with water. Retrieve LLM-Generated H P i g
H Driver | Action Plan and Integrate H i o {PickupBew)
H Next? | Task-Relevant Contexts : Guide: !
! | commander ; into it i | Our purpose is to perform + (Pour, HousePlant)
i | Water the plant. : v : | the task efficiently
; Driver | ¢ Initial Action Plan H
Sure, | see the plant on the table! :
; . Completed : i
RGB Image : o (Pickup, Bowl) «— Action H Cunentiictionipian T
« (Put, SinkBasin) «—current .  [oPT-4)
Acti H t] .
- (Toggleon, Faucet) " i+ (Put, SinkBasin) + Action | | Task is completed!

« (ToggleOff, Faucet)
« (Pickup, Bowl)
« (Pour, HousePlant)

(ToggleOn, Faucet)
(ToggleOff, Faucet)
: |« (Pickup, Bowl)

« (Pour, HousePlant)

Update Expected States

Environmental Feedback
A Attribut
Semantic Data Diifca;i’;icy Discr’;p:necy
] 00
Depth H g:)l'; H ?::; ‘ D\Zrccrsccpg(r:wf:y D\Scrcp:ncy
Figure 1: Overall Process of Revising Actions by LLMs. We first extract task-relevant contexts from the dialog
using an LLM. These contexts are integrated into a retrieved action plan generated by the LLM to form an initial
action plan. Using semantic data from an RGB image and expected states from the initial plan, RED verifies
discrepancies as environmental feedback. The prompt including the system prompt explaining the role and guide

for the LLM, the current action, and the feedback information is given to the LLM to generate a revised action
plan. The bottom right image shows the task is completed along with the efficiently revised plan.

Feedback Information

‘ [
(Pour, HousePlant) &

The bowl is already filled.

‘ Mask

the object from a top-down view, resulting in a partial view of only the upper part of the object. To
address this issue, the i*" viewpoint is defined such that the agent views the object at a horizontal
angle of 0° after picking it up. This allows the agent to clearly see the entire shape of the object
without occlusion. By comparing the predicted classes, ¢y and ¢;, from these two viewpoints, the
agent can detect differences in appearance. Furthermore, if there is a difference, (cy # ¢;), the agent
can adjust its actions accordingly.

B.3 Attribute Detector Module (1.169)

We consider attributes related to the desired state to determine the success of the task. Furthermore,
the expected attribute is one of the initial states related to the attribute, and the initial states are defined
as the opposite of the desired state (detailed in Section B.1).

We take a retrieval-based approach to predict the attribute, quO, of a detected target object, o. This
approach is preferred over training a model because it requires neither extensive training nor large
datasets. Additionally, if a new attribute is added, a training-based model must be retrained or
fine-tuned, whereas the retrieval-based approach only needs to add new options for comparison.

To predict éo, we retrieve the most similar image and assign the attribute of the object in the retrieved
image to the detected target. To compare images focusing only on the object and excluding the
background, we use the cropped image of the target object, v¢, and the cropped images, {vS! iI\LO’
from the training dataset. We compare these cropped images through cosine similarity, ‘Cos’, after
extracting features processed by a ViT-B/32 model [3], pre-trained with CLIP weights [4], as:

argmax Cos (v}, i)y i=0,1,...,N, 3)

K3
?

where v/¢ and vgct are the features of v; and vft, respectively. Then, we consider qﬁo as the attribute
of the object in v/°* having the highest cosine similarity score.
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B.4 Relationship Detector Module

To determine the relationship between the target object, o, and the object it is placed on, o, we need
to find the most ‘adjust’ mask, m;, of o, to the target object’s mask in all detected masks, {mi}fvzo,
in the current egocentric view. Here, the mask at 7 = 0 is defined as the mask of the target object,
myg, of 0. To find m;, we dilate {mi}i]\io and calculate the intersection over union (IoU) between the
enlarged mask of the target object, m{,, and the enlarged masks of other objects, {m/}~ , as follows:

argmax IoU(mg, m;); i=1,2,...,N. 4)
We define m/ as the mask with the largest IoU score with m(, considering it the ‘adjust’ mask. The
object represented by m/ is referred to as the object o,, that the target object is placed on.

C Benchmark and Baseline Details

We validate RED in two challenging benchmarks: TEACh , for dialog instruction following,
and ALFRED , which provides declarative instructions, to assess generalization in different task
setup. We provide details for each benchmark and baselines used below.

C.1 TEACh

Benchmark. The TEACh benchmark aims to allow agents to navigate and interact with objects
based on instructions, with task completion achieved by meeting specified conditions, such as cleaning
at least one mug for the instruction “clean a mug”.

The instruction is a dialog in natural language, which is comprised of two components: the COM-
MANDER that provides task-relevant information based on oracle information about the task and the
FOLLOWER that performs the task through the dialog. Upon receiving instructions, the FOLLOWER
translates the natural language instructions and egocentric visual observations into executable actions.
The executable actions are expected to succeed in the task.

The agent can take 16 different actions. Eight actions (FORWARD, BACKWARD, TURN LEFT, TURN
RIGHT, LOOK UP, LOOK DOWN, STRAFE LEFT, STRAFE RIGHT) are designated for navigation,
and the other eight actions (PICKUP, PLACE, OPEN, CLOSE, TOGGLEON, TOGGLEOFF, SLICE,
AND POUR) are for interaction. Navigation actions are discrete: head movements adjust by 30°, turns
are by 90°, and movements are in 0.25m increments. During interaction, the agent selects the object
at coordinate (X, y) in its egocentric view.

Additionally, the TEACh benchmark focus on Execution from Dialogue History (EDH) and Trajectory
from Dialogue (TfD). This benchmark is divided into train, validation, and test splits. Evaluation
metrics encompass success rate (SR), goal-condition success rate (GC), and path-length-weighted
(PLW) scores.

State-of-the-art baseline models. We compare our RED with the recently proposed state-of-the-
art methods: E.T. , JARVIS , FILM , DANLI , and HELPER . E.T. learns a
direct mapping from a natural language dialog and an egocentric observation to a corresponding
action and the position of an object to be interacted with. JARVIS employs an LLM trained on
the TEACh dialog dataset to produce high-level subgoals, replicating the ones executed by human
demonstrators. It utilizes a semantic map alongside the E.T. to locate objects. FILM enhances an
LLM through fine-tuning to generate parameterized plan. Mirroring Jarvis, it leverages a semantic
map to execute subgoals and employs a semantic policy for object search. DANLI fine-tunes an LLM
for high-level subgoal prediction and employs symbolic planning with an object state and spatial map
for execution plan formulation. It incorporates an object search module and manual error correction
mechanisms. HELPER utilizes a Large Language Model (LLM) to generate initial high-level actions
with additional data. When a failure occurs, it predicts the error reasons through a pretrained vision
and language model, and revises the action using the LLM.
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Table 1: Alternative TEACh EDH evaluation split. The path-length-weighted (PLW) metrics are given in the
parentheses for each value. The highest and second highest values per fold and metric are shown in bold and
underline, respectively.

Model Validation Test
Unseen Seen Unseen Seen
ET 8.35 (0.86) 6.34 (3.69) 8.28 (1.13) 8.72 (3.82) 7.38 (0.97) 6.06 (3.17) 8.82 (0.29) 9.46 (3.03)
DANLI 17.25 (7.16) 23.88 (19.38) 16.89 (9.12) 25.10 (22.56) 16.71(7.33) 23.00 (20.55) 18.63 (9.41) 24.77 (21.90)

HELPER 17.25(3.22) 25.24 (8.12) 19.21 (4.72) 33.54 (10.95) 17.55(2.59) 26.49 (7.67) 17.97 (3.44) 30.81 (8.93)
RED (Ours)  21.52(4.64) 26.88(7.25) 23.84(4.20) 33.79(10.64) 22.04(4.24) 26.77(7.67) 19.61(4.96) 31.86(10.19)

C.2 ALFRED

Benchmark. The ALFRED benchmark requires agents to complete a long-horizon task by un-
derstanding declarative natural language instructions with egocentric observations. The declarative
instructions comprise two types of instruction: one is a high-level description that provides a single
sentence to complete the task and the other is a step-by-step instruction that details the process of
performing a task. By following the instructions, the agent executes the two types of predefined
actions. The navigation actions include MOVEAHEAD, ROTATERIGHT, ROTATELEFT, LOOKUP,
and LOOKDOWN. The interaction actions include PICKUPOBJECT, PUTOBJECT, OPENOBJECT,
CLOSEOBIJECT, TOGGLEOBJECTON, TOGGLEOBJECTOFF, and SLICEOBJECT.

State-of-the-art baseline models. We compare our RED with the recently proposed state-of-the-art
methods: HLSM , FILM , and CAPEAM . HLSM employs a hierarchical controller to
translate natural language instructions into actions the agent can execute. The high-level controller
identifies the next subgoal based on the given instructions and map, while the low-level controller
generates a sequence of actions to accomplish this subgoal. FILM uses a pre-constructed template as
a high-level action plan. It employs two BERT [6] classifier submodules to identify the instruction
type and determine the template arguments. It applies a deterministic algorithm to plan a path
without obstacles. CAPEAM employs context-aware planning to devise a sequence of subgoals and
execute each subgoal using the appropriate detailed planners. It also utilizes extra memory to avoid
interacting with unsuitable objects.

D Additional Experiment

We conduct an additional experiment, exclusively done by DANLI for fair comparison, in
the TEACh benchmark . In this benchmark, we investigate the performance of our RED in
different splits provided on the TEACh GitHub and in . The leaderboard for EDH of the TEACh
benchmark is unavailable, preventing the evaluation on its true test set. Thus, we leveraged the
original validation splits for seen and unseen scenarios, aligning with the approach taken in most
prior studies

In Table 1, we present the alternative validation and test splits. We observe that our method outper-
forms others in the new split of EDH, achieving improvements with notable margins in SR and GC,
similar to its performance in the original split. In the seen environment, the agent encounters fewer
misperceptions and navigation errors than in the unseen environment, making our RED less effective.

E Qualitative Analysis

DTA. First, Figure 2a describes two different scenarios: RED without (top) and with (bottom) DTA
in Section . An agent generates an initial plan considering the information mentioned in the
instruction (“mug, potentially in a cabinet”) so that it predicts that the mug is in the cabinet and has a
plan of opening the cabinet first, instead of picking up the mug. Thus, in the upper scenario (w/o
DTA), the agent keeps its original plan to open the cabinet even if the usable mug is observed in its
sight. On the contrary, the agent with DTA changes the plan to skip the action with the cabinet and to
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pick up the mug right away after perceiving the mug. As a result, it can finish the task efficiently as it
adapts to the discrepancy of the target object’s presence in the environment.

OHYV. Figure 2b describes the difference in the existence of OHV in Section . The first
image shows the agent needing to pick up a ‘Mug’ but mistakenly picking up a ‘Cup’ instead by
misperception. The agents without OHV will not try to correct the wrong action since they do not
consider the appearance discrepancy after the action is done. In contrast, our agent with OHV verifies
whether the interacted object aligns with the desired one by examining its appearance from multiple
angles. If it detects the discrepancy, the agent rectifies its mistake by revising actions. As a result,
OHYV helps the agent to prevent the failure that comes from the interaction with the wrong object.

APM. Next, we investigate the benefit of APM (in Section ) depicted in Figure 2¢ with the
scenarios where agents want to open a microwave. The agent without APM attempts to open it as it
supposes that the microwave is not operating, leading to an interaction failure. In contrast, the agent
with APM considers the attribute discrepancy coming from the difference in the microwave’s state.
With this, it adds actions that toggle it off first to future actions, enabling successful interaction.

ASR. Finally, we elucidate the advantage of ASR in Section . Figure 2d describes the benefit of
considering relationship discrepancy. We refer to the relationship corresponding to the goal condition
in the instruction as the goal relationship. An agent without ASR may pick up a remote and put it
down with a higher confidence score, even though it already satisfies the goal relationship, resulting
in only one remote on the table. If this were the second interaction (picking it up and putting it
down on the table), the agent would think that it completed the task since it completed interactions
twice. However, the task would fail since there are no two remotes on the table. In contrast, the agent
with ASR considers relationship discrepancy and interacts with a remote not in the goal relationship
instead of the one already in a goal relationship.



Goal : Find a mug, potentially in a cabinet, and clean it. Goal : Make coffee in amug.

Time

RED w/o DTA

Time

RED w/o OHV

Still progressing
the task

Detect another Mug A Open a Cabinet

but pass it through Leaciicleieabnet to find a Mug

Pick up a “Cup” Do not examine it and Interact with a Cup
detected as a “Mug” just hold a Cup (should be a Mug)

Another available Mu

< >
I
& 5
= =
2 3
a a
w w
x [
Success
Detect a Mug and Put a Mug in a Sink Washing the Mug Pick up a “Cup” i Examine a picked mug
intermediately pick it up and clean it is done! detected as a “Mug” and put it down and keep it
Objects mentioned in the goal == Object unmentioned in the goal — Task irrelevant action Undesired Object = Desired Object
(a) Dynamic Target Adaptation (DTA) (b) Object Heterogeneity Verification (OHV)
Goal : Put a plate in a microwave. Goal: Put two remotes on the table.
Time Time

RED w/o APM

RED w/ APM

Remote
72%
Object: Microwave

\

i
o

RED w/o ASR

Fail
Detect a Microwave Attempt to open an Attempt to open a Pick up the Remote with

A . 4 . A q Only one Remote is
without attributes operating Microwave | operating Microwave (DI e S highest confidence score on the Table

Remote; Remote
on TV Stand on TV Stand
o
(7}
<
Oh, | should turn off -
before opening 2
a
w
o
Success
Detect a Microwave Attempt to turn off an Attempt to open an Detect Remotes with Pick up the Remote Two Remotes are
with its attributes p ing Mi i ivati i relationships on the TV stand on the Table
‘' Detected object ‘.. : Detected object with Attribute ‘1., Considered Obj Objects Notin Objects in
to relationship Goal Relationship Goal Relationship
(c) Attribute-Driven Plan Modification (APM) (d) Action Skipping by Relationship (ASR)

Figure 2: Qualitative analysis of benefit of DTA, OHV, APM, and ASR.
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### INPUT
# System Prompt

You need to determine whether to revise the action sequence to solve
the task considering ‘INFO’ and then write down the final sequence

of actions if needed.

This action sequence is made for solving household task. Each action’s

format is tuple.

The possible action spaces are as follows.

[‘Target’, ‘PickupObject’], [‘Target’, ‘PutObject’], [‘Target’, ¢
OpenObject’], [‘Target’, ‘CloseObject’], [‘Target’, ¢
ToggleObjectOn’], [‘Target’, ‘ToggleObjectO0ff’], [‘Target’, ¢
PourObject’], [‘Target’, ‘SliceObject’]

For example, [‘Target’, ‘PickupObject’] is a command to pick up the
target.

Modify the action sequence by adding or subtracting action to suit the

situation if needed. If it is not needed to be revised, just
write down given action sequence.

In this context, ’action’ refers to each element in tuple format in
the list(action sequence).

You can add or subtract an action at the very first part of the action

sequence if needed. Do not modify the actions that follow, and
write them down as originally provided.

Do not add additional explannation. Just write the final action
sequence in the right format (tuples in list).

GUIDE: When you want to pick up an object, it sometimes is located in
receptacles that should be opened to pick up the object.
In this case, action sequence contains the sequence of open, pickup(or
slice), close.
Your objective is just picking up(or slicing) the object.

# Current Action Plan

L
"Recep" s
"OpenObject"
],
L
"Target",
"PickupObject"
],
L
"Recep" s
"CloseObject"
]’
[
llApplell s
"SliceObject"
]’
[
"CounterTop",
"PutObject"
]

# Feedback Information

After checking, the object is found in another place not in the
receptacles that should be opened.

### OUTPUT




267 "Target",

268 "PickupObject"
269 1,

270 [

271 "Apple",

272 "SliceObject"
273 1,

274 [

275 "CounterTop",
276 "PutObject"
3% ]

Listing 1: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of LLM. This
example describes the result where DTA is applied. Compared to the current action plan, the action plan is
revised to skip the actions (i.e., open and close the receptacle) to make a plan efficient. Target and Recep will be
replaced with each corresponding object based on the context.
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### INPUT
# System Prompt

You need to determine whether to revise the action sequence to solve
the task considering ‘INFO’ and then write down the final sequence

of actions if needed.

This action sequence is made for solving household task. Each action’s

format is tuple.

The possible action spaces are as follows.

[‘Target’, ‘PickupObject’], [‘Target’, ‘PutObject’], [‘Target’, ¢
OpenObject’], [‘Target’, ‘CloseObject’], [‘Target’, ¢
ToggleObjectOn’], [‘Target’, ‘ToggleObjectO0ff’], [‘Target’, ¢
PourObject’], [‘Target’, ‘SliceObject’]

For example, [‘Target’, ‘PickupObject’] is a command to pick up the
target.

Modify the action sequence by adding or subtracting action to suit the

situation if needed. If it is not needed to be revised, just
write down given action sequence.

In this context, ’action’ refers to each element in tuple format in
the list(action sequence).

You can add or subtract an action at the very first part of the action

sequence if needed. Do not modify the actions that follow, and
write them down as originally provided.

Do not add additional explannation. Just write the final action
sequence in the right format (tuples in list).

GUIDE: When picking up an object, it may not always be the intended
object.

But you can only handle one object in your hand which means you have
to put the object and repick the object if you want to pick
another object.

When you are not sure where to put the object, just use ’Parent’ as
the place you put it on. (In the action, [’A’, ’PutObject’], A’
should be the location to place the object on, not the object that

you are holding.)

Let’s assume that you have done the first action.

In this case, do not revise the first action, but if you think some
actions should be added, do it right after the first action.

# Current Action Plan

[
"Target",
"PickupObject"
]’
[
"Bed" s
"PutObject"
]

# Feedback Information

After checking after the first action (pickup), it turns out that the
object picked up is not the object that was intended to be picked

up .
### Output
[
"Target",
"PickupObject"
]’
[

10




344 "Parent",
345 "PutObject"
346 ],

347 [

348 "Target",
349 "PickupObject"
350 1,

351 [

352 "Bed",

353 "PutObject"
384 ]

Listing 2: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of LLM. This
example describes the result where OHV is applied. Compared to the current action plan, the actions (i.e., put
the target on the parent and pick up the target again) are inserted to put down the wrong object and pick up an
appropriate one. Target and Parent will be replaced with each corresponding object based on the context.

11
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### INPUT
# System Prompt

You need to determine whether to revise the action sequence to solve
the task considering ‘INFO’ and then write down the final sequence

of actions if needed.

This action sequence is made for solving household task. Each action’s

format is tuple.

The possible action spaces are as follows.

[‘Target’, ‘PickupObject’], [‘Target’, ‘PutObject’], [‘Target’, ¢
OpenObject’], [‘Target’, ‘CloseObject’], [‘Target’, ¢
ToggleObjectOn’], [‘Target’, ‘ToggleObjectO0ff’], [‘Target’, ¢
PourObject’], [‘Target’, ‘SliceObject’]

For example, [‘Target’, ‘PickupObject’] is a command to pick up the
target.

Modify the action sequence by adding or subtracting action to suit the

situation if needed. If it is not needed to be revised, just
write down given action sequence.

In this context, ‘action’ refers to each element in tuple format in
the list(action sequence).

You can add or subtract an action at the very first part of the action

sequence if needed. Do not modify the actions that follow, and
write them down as originally provided.

Do not add additional explannation. Just write the final action
sequence in the right format (tuples in list).

GUIDE: Microwave cannot be opened if the microwave is toggled on.

# Current Action Plan

[
"Microwave",
"OpenObject"
:I,
[
llMugll’
"PickupObject"
],
[
"Microwave",
"CloseObject"
],
[
"SinkBasin",
"PutObject"
]’
[
"Faucet",
"ToggleObjectOn"
]’
[
"Faucet",
"ToggleObjectOff"
]

# Feedback Information
As a result of checking at this point, the microwave oven is already

turned on.

### OUTPUT
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421 [

422 "Microwave",

423 "ToggleObjectOff"
424 1,

425 [

426 "Microwave",

427 "OpenObject"

428 1,

429 [

430 "Mug",

431 "PickupObject"
432 1,

433 [

434 "Microwave",

435 "CloseObject"

436 1,

437 [

438 "SinkBasin",

439 "PutObject"

440 1,

441 [

442 "Faucet",

443 "ToggleObjectOn"
444 ],

445 [

446 "Faucet",

447 "ToggleObjectOff"
448 ]

Listing 3: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of the LLM. This
example describes the result where APM is applied. Compared to the current action plan, the action (i.e., toggle
off the microwave) is added in the revised action plan to avoid interaction failure.
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### INPUT

# System Prompt

You need to determine whether to revise the action sequence to solve
the task considering ‘GUIDE’ and then write down the final
sequence of actions if needed.

This action sequence is made for solving household task. Each action’s

format is a triplet.

There are two options.

First, if you think that the first action is not needed, remove that
action(triplet) and write down the actions after that.

You can only revise the first action; do not modify the actions (from
the second actions) that follow, and write them down as originally
provided.

In this context, ‘action’ refers to each element in triplet format in
the list(action sequence).

Second, if you still think the first action is necessary, write it
down exactly as received.

Do not add additional explanation. Just write the final action
sequence in the right format (triplets in the 1list).

GUIDE: Our purpose is to perform the task efficiently.

# Current Action Plan

[
"Clean",
"Target",
llNoDell

]’

[
"Move",
"Bread",
"Toaster"

:I,

[
”Move",
"Bread",
"Toaster"

]’

[
"ToggleOn",
"Toaster",
llNonell

] bl

[
llMovell .
"Bread",
"Plate"

]’

[
"Move",
"Bread",
"Plate"

1

# Feedback Information
After checking, it appears that the target has already been cleaned.

### OUTPUT

"MOVQ",
"Bread",
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515 "Toaster"
516 1,

517 [

518 "Move",
519 "Bread",
520 "Toaster"
521 1,

522 [

523 "ToggleOn",
524 "Toaster",
525 "None"

526 1,

527 [

528 "Move",
529 "Bread",
530 "Plate"
531 1,

532 [

533 "Move",
534 "Bread",
535 "Plate"
5% ]

Listing 4: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of LLM. This
example describes the result where APM is applied. Compared to the current action plan, the action (i.e., clean
the target) is deleted to skip an unnecessary action. A Target will be replaced with the corresponding object
based on the context.
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### INPUT

# System Prompt

You need to determine whether to revise the action sequence to solve
the task considering ‘GUIDE’ and then write down the final
sequence of actions if needed.

This action sequence is made for solving household task. Each action’s

format is a triplet.

There are two options.

First, if you think that the first action is not needed, remove that
action(triplet) and write down the actions after that.

You can only revise the first action; do not modify the actions (from
the second actions) that follow, and write them down as originally
provided.

In this context, ‘action’ refers to each element in triplet format in
the list(action sequence).

Second, if you still think the first action is necessary, write it
down exactly as received.

Do not add additional explanation. Just write the final action
sequence in the right format (triplets in the 1list).

GUIDE: There can be some objects that are already located in the
desired destination.

If you think executing the following action should be avoided as it is
no longer needed, add a Pass action in triplet form (same as
given action) with Pass for action, None for Target and Parent,
before the given action (including given action) without further
explanation. If you think the following actions are still needed,

repeat the given actions.

# Current Action Plan

[
”Move",
"Target",
"Parent"
]

# Feedback Information
After checking the object and its location, it is observed that the
object (Target) is already in the desired location(Recep).

### OUTPUT

[
"Pass",
"None",
llNone n

]’

[
"Move",
"Target",
"Parent"

]

Listing 5: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of LLM. This
example describes the result where ASR is applied. Given the current action plan (i.e., move a target to a recep),
LLM adds ‘Pass’ action in triplet which leads to skipping the ongoing interaction before the given action. Then
the agent will not interact with the target since it is already located in the desired place as explained in the
GUIDE. Target and Parent will be replaced with each corresponding object based on the context.
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Driver tries to solve the task. Commander gives information helpful to
solve the task. You have to get information through the dialog.
Find the initial states of the objects and summarize them into a
dictionary. If you cannot find proper information in the dialog,
you should answer ‘X°’.

Just write a dictionary without giving an additional explanation. In a
dictionary, fix the keys same with the example answers. Each of
the keys has properties(keys) e.g., "location" which contains the

initial location of the object. In some tasks, the driver may be
asked to find multiple objects of one kind. In those cases, if an
object is on Cabinet and another object is on CounterTop, you
should output [‘Cabinet’, ‘CounterTop’]. (If you cannot know where
the potato is initially, answer ‘X’.), "receptacle" which is the
place that the object should be placed on or in ultimately. "
quantity" which represents the number of the objects, "
quantity_of_slices" which represents the number of the object’s
slices. Some objects (e.g., plate, mug) have a key i.e., "Cleaned"
which represents whether the object should be cleaned (then write
"T") or not (then write "F"). If you cannot find the proper
information, just write ‘X’.

Dialog: {DIALOG}
Answer:

Listing 6: Prompt for Extracting Task-Relevant Contexts from the Dialog. {} denotes the section in the
prompt that is replaced to each corresponding data. This prompt is designed to extract the useful information
from the dialog to use it when making an initial action plan.
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# System Prompt

You need to determine whether to revise the action sequence to solve
the task considering ‘INFO’ and then write down the final sequence

of actions if needed.

This action sequence is made for solving household task. Each action’s

format is tuple.

The possible action spaces are as follows.

[¢Target’, ‘PickupObject’], [‘Target’, ‘PutObject’], [‘Target’, ¢
OpenObject’], [‘Target’, ‘CloseObject’], [‘Target’, ¢
ToggleObjectOn’], [‘Target’, ‘ToggleObjectO0ff’], [‘Target’, ¢
PourObject’], [‘Target’, ‘SliceObject’]

For example, [‘Target’, ‘PickupObject’] is a command to pick up the
target.

Modify the action sequence by adding or subtracting action to suit the

situation if needed. If it is not needed to be revised, just
write down given action sequence.

In this context, ‘action’ refers to each element in tuple format in
the list(action sequence).

You can add or subtract an action at the very first part of the action

sequence if needed. Do not modify the actions that follow, and
write them down as originally provided.

Do not add additional explannation. Just write the final action
sequence in the right format (tuples in list).

{GUIDE}

# Current Action Plan
{CURRENTACTIONPLAN}

# Feedback Information
{FEEDBACK}

Listing 7: Prompt for Revising Action Plan. {} denotes the sections in the prompt that are replaced to each
corresponding data. The prompt is designed to envelope the system prompt which gives the overall guideline for
the LLM’s task, the current action plan which is the source plan, and the feedback information which contains
the feedback from the environmental discrepancy.
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