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Note: Orange denotes reference to the main paper.1

A Additional Details of Agent Architecture (L104)2

Inspired by the recent success of the SLAM-based approaches [37, 39, 18], we adopt an architecture3

that 1) plans a sequence of subgoal actions from a natural language instruction, 2) maintains the4

agent’s memory in the form of a semantic spatial map built by an observation history with depth and5

masks predicted by pretrained perception models [1], [39], and 3) uses a deterministic algorithm [38]6

over the semantic spatial map for effective obstacle-free path planning.7

Semantic spatial map. During exploration, the agent takes as input the current egocentric RGB8

observation, vt, for each time step, t, and predicts its semantic information (e.g., object masks,9

{mi}Ni=0, a depth map, dt, a spatial semantic map, Zt, etc). Using {mi}Ni=0, the agent obtains the10

cropped images of objects, {vci }Ni=0, from vt. Here, N denotes the number of all detected objects in11

vt, and vci an object’s image crop with the masked-out background. Zt denotes a 2D top-down map12

predicted by merging three inputs and is generated by the semantic map generator, G, as follows:13

Zt = G(dt, {mi}Ni=0, Zt−1). (1)

G transforms each pixel of dt and {mi}Ni=0 into a 3D point with its semantic label. These points14

are then summed along the gravitational axis to generate the current top-down semantic spatial map15

containing only current information. Finally, G accumulate the obtained top-down map on Zt−1,16

resulting in an updated semantic spatial map, Zt.17

Navigation policy. To interact with an object, an agent must first reach the object in its close18

vicinity. For this, previous approaches [35] often use behavior cloning [2] to let the agent mimic19

the navigational behavior of a vision-language navigation expert. However, such behavior cloning20

requires a large number of training trajectories and natural language annotations for satisfactory21

performance, but collecting these may not be trivial due to high computational costs and time.22

To address this issue, recent approaches [36, 37, 26, 30] instead incorporate deterministic algorithms23

(e.g., A*, FMM [38], etc) to plan obstacle-free paths and observe significant improvement of24

navigational performance while alleviating the data collection burden. Inspired by this improvement,25

we also adopt a deterministic policy [38] to plan navigation routes.26

B Additional Details of RED27

We provide more details of RED. We further detail how we revise an action plan using large language28

models (LLMs) based on perceived environmental feedback, illustrated in Figure 1.29

Additionally, we explain the ‘Appearance Detector Module’ of OHV, which takes egocentric views30

in different views as input and predicts the class of the picked-up object; the ‘Attribute Detector31
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Module’ of APM, which takes the cropped image as input and predicts the object’s attributes; and the32

‘Relationship Detector Module’ of ASR, which takes the predicted masks as input and predicts the33

relationship between the target object and where it can be placed.34

B.1 Revising Actions by Environmental Feedback with LLMs (L116)35

Subgoal planning. Given a natural language instruction, X , such as dialogs or directives, a large36

language model, L, predicts the task-relevant contexts, E , such as task type, target object, its expected37

location, etc. Then, they are integrated into an LLM-generated high-level action plan, T , for the38

corresponding task type through the integration process, ‘Intg.’39

Here, T is created to satisfy the desired states of the task type. For example, if the task type is40

"CLEAN ALL X" and X is an object, the desired state is defined as object = {clean}. To create the41

plan, we assume that the initial state is the opposite of the desired one, such as object = {dirty}, and42

then create a plan to clean the object.43

Integration of T and E resembles context-aware planning [18], but we use an unfine-tuned LLM for44

context prediction instead of a trained model with benchmark data. Specific information obtained45

from the instruction can be incorporated into the action plan. For example, if the instruction indicates46

the mug is inside the fridge, an action to open the fridge is added before picking up the mug.47

The generated action plan consisting of high-level actions, {ahn}
Nh
n=1, in a triplet format is systemati-48

cally converted to the executable action plan with low-level actions, {aln}
Nl
n=1, in a tuple format by a49

rule-based function, fc, following the prior work [18]. This process is expressed as in Equation 2:50

E = L(X ), {ahnh
}Nh
nh=1 = Intg(T , E), {alnl

}Nl
nl=1 = fc({ahnh

}Nh
nh=1). (2)

Revising actions. While performing the task, the agent may encounter unexpected environmental51

discrepancies (see Section 3.1). Once we obtain environmental feedback (i.e., environmental discrep-52

ancies) based on visual and language input, we build a prompt, P with this feedback to query L for53

plan revision. Specifically, we build the prompt with 1) a system prompt, Ps, 2) the original plan (i.e.,54

current action plan in Figure 1), {an}Nn=1 ({ahn}
Nh
n=1 or {aln}

Nl
n=1), and 3) the feedback prompt, Pf .55

The format of the current action plan, {an}Nn=1, can be the sequence of the actions either in an56

executable tuple (low-level action), alnl
, or a triplet (high-level action), ahnh

. A triplet action is57

predefined and consists of a unit of action that includes several executable actions. For example,58

(‘Move’, ‘Target’, ‘Parent’) signifies the combination of (‘Target’, ‘PickupObject’) and (‘Parent’,59

‘PutObject’). We operate with both types of action plans simultaneously. For instance, the action60

plan is input in triplet form if the actions can be revised at the triplet level, while in tuple form if61

the revision is required at the detailed executable action level. If the output is in triplet form, it is62

systematically translated into executable tuple form by fc. This revision process continues whenever63

the environmental discrepancy is detected until the agent successfully completes the task.64

P for L varies according to the type of discrepancy and given action plan consisting of various objects65

and actions. We provide several examples of the P including Ps, a current action plan, Pf , and the66

corresponding output of the L in Listing 1 to 5. We provide the prompt to extract E in Listing 6 and67

one to generate a revised action plan in Listing 7.68

B.2 Appearance Detector Module (L149)69

To verify that the picked-up object is the intended one, we compare two predicted classes, c0 and ci,70

from the target object, o . Here, c0 is the predicted class of o from the i0 viewpoint at the time of71

interaction, and ci is that of o from the ith viewpoint when the agent picks up the object and views it72

from the front. To predict c0 and ci, the agent takes egocentric images at the i0 and ith viewpoints.73

Then, it predicts the class of the object in the center of the image through mask prediction.74

The i0 viewpoint is usually a head-lowered view to simultaneously prevent collisions with obstacles75

on the floor during exploration and find the object. However, this behavior may cause the agent to see76
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Figure 1: Overall Process of Revising Actions by LLMs. We first extract task-relevant contexts from the dialog
using an LLM. These contexts are integrated into a retrieved action plan generated by the LLM to form an initial
action plan. Using semantic data from an RGB image and expected states from the initial plan, RED verifies
discrepancies as environmental feedback. The prompt including the system prompt explaining the role and guide
for the LLM, the current action, and the feedback information is given to the LLM to generate a revised action
plan. The bottom right image shows the task is completed along with the efficiently revised plan.

the object from a top-down view, resulting in a partial view of only the upper part of the object. To77

address this issue, the ith viewpoint is defined such that the agent views the object at a horizontal78

angle of 0◦ after picking it up. This allows the agent to clearly see the entire shape of the object79

without occlusion. By comparing the predicted classes, c0 and ci, from these two viewpoints, the80

agent can detect differences in appearance. Furthermore, if there is a difference, (c0 ̸= ci), the agent81

can adjust its actions accordingly.82

B.3 Attribute Detector Module (L169)83

We consider attributes related to the desired state to determine the success of the task. Furthermore,84

the expected attribute is one of the initial states related to the attribute, and the initial states are defined85

as the opposite of the desired state (detailed in Section B.1).86

We take a retrieval-based approach to predict the attribute, ϕ̂o, of a detected target object, o. This87

approach is preferred over training a model because it requires neither extensive training nor large88

datasets. Additionally, if a new attribute is added, a training-based model must be retrained or89

fine-tuned, whereas the retrieval-based approach only needs to add new options for comparison.90

To predict ϕ̂o, we retrieve the most similar image and assign the attribute of the object in the retrieved91

image to the detected target. To compare images focusing only on the object and excluding the92

background, we use the cropped image of the target object, vco, and the cropped images, {vcti }Ni=0,93

from the training dataset. We compare these cropped images through cosine similarity, ‘Cos’, after94

extracting features processed by a ViT-B/32 model [3], pre-trained with CLIP weights [4], as:95

argmax
i

Cos(v′co , v
′ct
i ) i = 0, 1, . . . , N, (3)

where v′co and v′cti are the features of vco and vcti , respectively. Then, we consider ϕ̂o as the attribute96

of the object in v′cti having the highest cosine similarity score.97
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B.4 Relationship Detector Module (L189)98

To determine the relationship between the target object, o, and the object it is placed on, op, we need99

to find the most ‘adjust’ mask, mi, of op to the target object’s mask in all detected masks, {mi}Ni=0,100

in the current egocentric view. Here, the mask at i = 0 is defined as the mask of the target object,101

m0, of o. To find mi, we dilate {mi}Ni=0 and calculate the intersection over union (IoU) between the102

enlarged mask of the target object, m′
0, and the enlarged masks of other objects, {m′

i}Ni=1 as follows:103

argmax
i

IoU(m′
0,m

′
i); i = 1, 2, . . . , N. (4)

We define m′
i as the mask with the largest IoU score with m′

0, considering it the ‘adjust’ mask. The104

object represented by m′
i is referred to as the object op that the target object is placed on.105

C Benchmark and Baseline Details (L194)106

We validate RED in two challenging benchmarks: TEACh [13], for dialog instruction following,107

and ALFRED [12], which provides declarative instructions, to assess generalization in different task108

setup. We provide details for each benchmark and baselines used below.109

C.1 TEACh110

Benchmark. The TEACh benchmark aims to allow agents to navigate and interact with objects111

based on instructions, with task completion achieved by meeting specified conditions, such as cleaning112

at least one mug for the instruction “clean a mug”.113

The instruction is a dialog in natural language, which is comprised of two components: the COM-114

MANDER that provides task-relevant information based on oracle information about the task and the115

FOLLOWER that performs the task through the dialog. Upon receiving instructions, the FOLLOWER116

translates the natural language instructions and egocentric visual observations into executable actions.117

The executable actions are expected to succeed in the task.118

The agent can take 16 different actions. Eight actions (FORWARD, BACKWARD, TURN LEFT, TURN119

RIGHT, LOOK UP, LOOK DOWN, STRAFE LEFT, STRAFE RIGHT) are designated for navigation,120

and the other eight actions (PICKUP, PLACE, OPEN, CLOSE, TOGGLEON, TOGGLEOFF, SLICE,121

AND POUR) are for interaction. Navigation actions are discrete: head movements adjust by 30◦, turns122

are by 90◦, and movements are in 0.25m increments. During interaction, the agent selects the object123

at coordinate (x, y) in its egocentric view.124

Additionally, the TEACh benchmark focus on Execution from Dialogue History (EDH) and Trajectory125

from Dialogue (TfD). This benchmark is divided into train, validation, and test splits. Evaluation126

metrics encompass success rate (SR), goal-condition success rate (GC), and path-length-weighted127

(PLW) scores.128

State-of-the-art baseline models. We compare our RED with the recently proposed state-of-the-129

art methods: E.T. [35], JARVIS [36], FILM [37], DANLI [26], and HELPER [30]. E.T. learns a130

direct mapping from a natural language dialog and an egocentric observation to a corresponding131

action and the position of an object to be interacted with. JARVIS employs an LLM trained on132

the TEACh dialog dataset to produce high-level subgoals, replicating the ones executed by human133

demonstrators. It utilizes a semantic map alongside the E.T. to locate objects. FILM enhances an134

LLM through fine-tuning to generate parameterized plan. Mirroring Jarvis, it leverages a semantic135

map to execute subgoals and employs a semantic policy for object search. DANLI fine-tunes an LLM136

for high-level subgoal prediction and employs symbolic planning with an object state and spatial map137

for execution plan formulation. It incorporates an object search module and manual error correction138

mechanisms. HELPER utilizes a Large Language Model (LLM) to generate initial high-level actions139

with additional data. When a failure occurs, it predicts the error reasons through a pretrained vision140

and language model, and revises the action using the LLM.141
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Table 1: Alternative TEACh EDH evaluation split. The path-length-weighted (PLW) metrics are given in the
parentheses for each value. The highest and second highest values per fold and metric are shown in bold and
underline, respectively.

Model Validation Test
Unseen Seen Unseen Seen

E.T. [35] 8.35 (0.86) 6.34 (3.69) 8.28 (1.13) 8.72 (3.82) 7.38 (0.97) 6.06 (3.17) 8.82 (0.29) 9.46 (3.03)
DANLI [26] 17.25 (7.16) 23.88 (19.38) 16.89 (9.12) 25.10 (22.56) 16.71 (7.33) 23.00 (20.55) 18.63 (9.41) 24.77 (21.90)
HELPER [30] 17.25 (3.22) 25.24 (8.12) 19.21 (4.72) 33.54 (10.95) 17.55 (2.59) 26.49 (7.67) 17.97 (3.44) 30.81 (8.93)
RED (Ours) 21.52(4.64) 26.88(7.25) 23.84(4.20) 33.79(10.64) 22.04(4.24) 26.77(7.67) 19.61(4.96) 31.86(10.19)

C.2 ALFRED142

Benchmark. The ALFRED benchmark requires agents to complete a long-horizon task by un-143

derstanding declarative natural language instructions with egocentric observations. The declarative144

instructions comprise two types of instruction: one is a high-level description that provides a single145

sentence to complete the task and the other is a step-by-step instruction that details the process of146

performing a task. By following the instructions, the agent executes the two types of predefined147

actions. The navigation actions include MOVEAHEAD, ROTATERIGHT, ROTATELEFT, LOOKUP,148

and LOOKDOWN. The interaction actions include PICKUPOBJECT, PUTOBJECT, OPENOBJECT,149

CLOSEOBJECT, TOGGLEOBJECTON, TOGGLEOBJECTOFF, and SLICEOBJECT.150

State-of-the-art baseline models. We compare our RED with the recently proposed state-of-the-art151

methods: HLSM [39], FILM [52], and CAPEAM [18]. HLSM employs a hierarchical controller to152

translate natural language instructions into actions the agent can execute. The high-level controller153

identifies the next subgoal based on the given instructions and map, while the low-level controller154

generates a sequence of actions to accomplish this subgoal. FILM uses a pre-constructed template as155

a high-level action plan. It employs two BERT [6] classifier submodules to identify the instruction156

type and determine the template arguments. It applies a deterministic algorithm [38] to plan a path157

without obstacles. CAPEAM employs context-aware planning to devise a sequence of subgoals and158

execute each subgoal using the appropriate detailed planners. It also utilizes extra memory to avoid159

interacting with unsuitable objects.160

D Additional Experiment (L212)161

We conduct an additional experiment, exclusively done by DANLI [26] for fair comparison, in162

the TEACh benchmark [13]. In this benchmark, we investigate the performance of our RED in163

different splits provided on the TEACh GitHub and in [26]. The leaderboard for EDH of the TEACh164

benchmark is unavailable, preventing the evaluation on its true test set. Thus, we leveraged the165

original validation splits for seen and unseen scenarios, aligning with the approach taken in most166

prior studies [30, 36, 37].167

In Table 1, we present the alternative validation and test splits. We observe that our method outper-168

forms others in the new split of EDH, achieving improvements with notable margins in SR and GC,169

similar to its performance in the original split. In the seen environment, the agent encounters fewer170

misperceptions and navigation errors than in the unseen environment, making our RED less effective.171

E Qualitative Analysis (L291)172

DTA. First, Figure 2a describes two different scenarios: RED without (top) and with (bottom) DTA173

in Section 3.1.1. An agent generates an initial plan considering the information mentioned in the174

instruction (“mug, potentially in a cabinet”) so that it predicts that the mug is in the cabinet and has a175

plan of opening the cabinet first, instead of picking up the mug. Thus, in the upper scenario (w/o176

DTA), the agent keeps its original plan to open the cabinet even if the usable mug is observed in its177

sight. On the contrary, the agent with DTA changes the plan to skip the action with the cabinet and to178
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pick up the mug right away after perceiving the mug. As a result, it can finish the task efficiently as it179

adapts to the discrepancy of the target object’s presence in the environment.180

OHV. Figure 2b describes the difference in the existence of OHV in Section 3.1.2. The first181

image shows the agent needing to pick up a ‘Mug’ but mistakenly picking up a ‘Cup’ instead by182

misperception. The agents without OHV will not try to correct the wrong action since they do not183

consider the appearance discrepancy after the action is done. In contrast, our agent with OHV verifies184

whether the interacted object aligns with the desired one by examining its appearance from multiple185

angles. If it detects the discrepancy, the agent rectifies its mistake by revising actions. As a result,186

OHV helps the agent to prevent the failure that comes from the interaction with the wrong object.187

APM. Next, we investigate the benefit of APM (in Section 3.1.3) depicted in Figure 2c with the188

scenarios where agents want to open a microwave. The agent without APM attempts to open it as it189

supposes that the microwave is not operating, leading to an interaction failure. In contrast, the agent190

with APM considers the attribute discrepancy coming from the difference in the microwave’s state.191

With this, it adds actions that toggle it off first to future actions, enabling successful interaction.192

ASR. Finally, we elucidate the advantage of ASR in Section 3.1.4. Figure 2d describes the benefit of193

considering relationship discrepancy. We refer to the relationship corresponding to the goal condition194

in the instruction as the goal relationship. An agent without ASR may pick up a remote and put it195

down with a higher confidence score, even though it already satisfies the goal relationship, resulting196

in only one remote on the table. If this were the second interaction (picking it up and putting it197

down on the table), the agent would think that it completed the task since it completed interactions198

twice. However, the task would fail since there are no two remotes on the table. In contrast, the agent199

with ASR considers relationship discrepancy and interacts with a remote not in the goal relationship200

instead of the one already in a goal relationship.201
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202
### INPUT203

204

# System Prompt205

206

You need to determine whether to revise the action sequence to solve207

the task considering ‘INFO ’ and then write down the final sequence208

of actions if needed.209

This action sequence is made for solving household task. Each action ’s210

format is tuple.211

The possible action spaces are as follows.212

[‘Target ’, ‘PickupObject ’], [‘Target ’, ‘PutObject ’], [‘Target ’, ‘213

OpenObject ’], [‘Target ’, ‘CloseObject ’], [‘Target ’, ‘214

ToggleObjectOn ’], [‘Target ’, ‘ToggleObjectOff ’], [‘Target ’, ‘215

PourObject ’], [‘Target ’, ‘SliceObject ’]216

For example , [‘Target ’, ‘PickupObject ’] is a command to pick up the217

target.218

Modify the action sequence by adding or subtracting action to suit the219

situation if needed. If it is not needed to be revised , just220

write down given action sequence.221

In this context , ’action ’ refers to each element in tuple format in222

the list(action sequence).223

You can add or subtract an action at the very first part of the action224

sequence if needed. Do not modify the actions that follow , and225

write them down as originally provided.226

Do not add additional explannation. Just write the final action227

sequence in the right format (tuples in list).228

229

GUIDE: When you want to pick up an object , it sometimes is located in230

receptacles that should be opened to pick up the object.231

In this case , action sequence contains the sequence of open , pickup(or232

slice), close.233

Your objective is just picking up(or slicing) the object.234

235

# Current Action Plan236

237

[238

"Recep",239

"OpenObject"240

],241

[242

"Target",243

"PickupObject"244

],245

[246

"Recep",247

"CloseObject"248

],249

[250

"Apple",251

"SliceObject"252

],253

[254

"CounterTop",255

"PutObject"256

]257

258

# Feedback Information259

260

After checking , the object is found in another place not in the261

receptacles that should be opened.262

263

### OUTPUT264

265

[266
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"Target",267

"PickupObject"268

],269

[270

"Apple",271

"SliceObject"272

],273

[274

"CounterTop",275

"PutObject"276

]277278

Listing 1: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of LLM. This
example describes the result where DTA is applied. Compared to the current action plan, the action plan is
revised to skip the actions (i.e., open and close the receptacle) to make a plan efficient. Target and Recep will be
replaced with each corresponding object based on the context.
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279
### INPUT280

281

# System Prompt282

283

You need to determine whether to revise the action sequence to solve284

the task considering ‘INFO ’ and then write down the final sequence285

of actions if needed.286

This action sequence is made for solving household task. Each action ’s287

format is tuple.288

The possible action spaces are as follows.289

[‘Target ’, ‘PickupObject ’], [‘Target ’, ‘PutObject ’], [‘Target ’, ‘290

OpenObject ’], [‘Target ’, ‘CloseObject ’], [‘Target ’, ‘291

ToggleObjectOn ’], [‘Target ’, ‘ToggleObjectOff ’], [‘Target ’, ‘292

PourObject ’], [‘Target ’, ‘SliceObject ’]293

For example , [‘Target ’, ‘PickupObject ’] is a command to pick up the294

target.295

Modify the action sequence by adding or subtracting action to suit the296

situation if needed. If it is not needed to be revised , just297

write down given action sequence.298

In this context , ’action ’ refers to each element in tuple format in299

the list(action sequence).300

You can add or subtract an action at the very first part of the action301

sequence if needed. Do not modify the actions that follow , and302

write them down as originally provided.303

Do not add additional explannation. Just write the final action304

sequence in the right format (tuples in list).305

306

GUIDE: When picking up an object , it may not always be the intended307

object.308

But you can only handle one object in your hand which means you have309

to put the object and repick the object if you want to pick310

another object.311

When you are not sure where to put the object , just use ’Parent ’ as312

the place you put it on. (In the action , [’A’, ’PutObject ’], ’A’313

should be the location to place the object on , not the object that314

you are holding .)315

Let ’s assume that you have done the first action.316

In this case , do not revise the first action , but if you think some317

actions should be added , do it right after the first action.318

319

# Current Action Plan320

321

[322

"Target",323

"PickupObject"324

],325

[326

"Bed",327

"PutObject"328

]329

330

# Feedback Information331

332

After checking after the first action (pickup), it turns out that the333

object picked up is not the object that was intended to be picked334

up.335

336

### Output337

338

[339

"Target",340

"PickupObject"341

],342

[343
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"Parent",344

"PutObject"345

],346

[347

"Target",348

"PickupObject"349

],350

[351

"Bed",352

"PutObject"353

]354355

Listing 2: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of LLM. This
example describes the result where OHV is applied. Compared to the current action plan, the actions (i.e., put
the target on the parent and pick up the target again) are inserted to put down the wrong object and pick up an
appropriate one. Target and Parent will be replaced with each corresponding object based on the context.
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356
### INPUT357

358

# System Prompt359

360

You need to determine whether to revise the action sequence to solve361

the task considering ‘INFO ’ and then write down the final sequence362

of actions if needed.363

This action sequence is made for solving household task. Each action ’s364

format is tuple.365

The possible action spaces are as follows.366

[‘Target ’, ‘PickupObject ’], [‘Target ’, ‘PutObject ’], [‘Target ’, ‘367

OpenObject ’], [‘Target ’, ‘CloseObject ’], [‘Target ’, ‘368

ToggleObjectOn ’], [‘Target ’, ‘ToggleObjectOff ’], [‘Target ’, ‘369

PourObject ’], [‘Target ’, ‘SliceObject ’]370

For example , [‘Target ’, ‘PickupObject ’] is a command to pick up the371

target.372

Modify the action sequence by adding or subtracting action to suit the373

situation if needed. If it is not needed to be revised , just374

write down given action sequence.375

In this context , ‘action ’ refers to each element in tuple format in376

the list(action sequence).377

You can add or subtract an action at the very first part of the action378

sequence if needed. Do not modify the actions that follow , and379

write them down as originally provided.380

Do not add additional explannation. Just write the final action381

sequence in the right format (tuples in list).382

383

GUIDE: Microwave cannot be opened if the microwave is toggled on.384

385

# Current Action Plan386

387

[388

"Microwave",389

"OpenObject"390

],391

[392

"Mug",393

"PickupObject"394

],395

[396

"Microwave",397

"CloseObject"398

],399

[400

"SinkBasin",401

"PutObject"402

],403

[404

"Faucet",405

"ToggleObjectOn"406

],407

[408

"Faucet",409

"ToggleObjectOff"410

]411

412

# Feedback Information413

414

As a result of checking at this point , the microwave oven is already415

turned on.416

417

418

### OUTPUT419

420
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[421

"Microwave",422

"ToggleObjectOff"423

],424

[425

"Microwave",426

"OpenObject"427

],428

[429

"Mug",430

"PickupObject"431

],432

[433

"Microwave",434

"CloseObject"435

],436

[437

"SinkBasin",438

"PutObject"439

],440

[441

"Faucet",442

"ToggleObjectOn"443

],444

[445

"Faucet",446

"ToggleObjectOff"447

]448449

Listing 3: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of the LLM. This
example describes the result where APM is applied. Compared to the current action plan, the action (i.e., toggle
off the microwave) is added in the revised action plan to avoid interaction failure.
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450
### INPUT451

452

# System Prompt453

You need to determine whether to revise the action sequence to solve454

the task considering ‘GUIDE ’ and then write down the final455

sequence of actions if needed.456

This action sequence is made for solving household task. Each action ’s457

format is a triplet.458

There are two options.459

First , if you think that the first action is not needed , remove that460

action(triplet) and write down the actions after that.461

You can only revise the first action; do not modify the actions (from462

the second actions) that follow , and write them down as originally463

provided.464

In this context , ‘action ’ refers to each element in triplet format in465

the list(action sequence).466

Second , if you still think the first action is necessary , write it467

down exactly as received.468

Do not add additional explanation. Just write the final action469

sequence in the right format (triplets in the list).470

471

GUIDE: Our purpose is to perform the task efficiently.472

473

# Current Action Plan474

475

[476

"Clean",477

"Target",478

"None"479

],480

[481

"Move",482

"Bread",483

"Toaster"484

],485

[486

"Move",487

"Bread",488

"Toaster"489

],490

[491

"ToggleOn",492

"Toaster",493

"None"494

],495

[496

"Move",497

"Bread",498

"Plate"499

],500

[501

"Move",502

"Bread",503

"Plate"504

]505

506

# Feedback Information507

After checking , it appears that the target has already been cleaned.508

509

### OUTPUT510

511

[512

"Move",513

"Bread",514
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"Toaster"515

],516

[517

"Move",518

"Bread",519

"Toaster"520

],521

[522

"ToggleOn",523

"Toaster",524

"None"525

],526

[527

"Move",528

"Bread",529

"Plate"530

],531

[532

"Move",533

"Bread",534

"Plate"535

]536537

Listing 4: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of LLM. This
example describes the result where APM is applied. Compared to the current action plan, the action (i.e., clean
the target) is deleted to skip an unnecessary action. A Target will be replaced with the corresponding object
based on the context.
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538
### INPUT539

540

# System Prompt541

You need to determine whether to revise the action sequence to solve542

the task considering ‘GUIDE ’ and then write down the final543

sequence of actions if needed.544

This action sequence is made for solving household task. Each action ’s545

format is a triplet.546

There are two options.547

First , if you think that the first action is not needed , remove that548

action(triplet) and write down the actions after that.549

You can only revise the first action; do not modify the actions (from550

the second actions) that follow , and write them down as originally551

provided.552

In this context , ‘action ’ refers to each element in triplet format in553

the list(action sequence).554

Second , if you still think the first action is necessary , write it555

down exactly as received.556

Do not add additional explanation. Just write the final action557

sequence in the right format (triplets in the list).558

559

GUIDE: There can be some objects that are already located in the560

desired destination.561

If you think executing the following action should be avoided as it is562

no longer needed , add a Pass action in triplet form (same as563

given action) with Pass for action , None for Target and Parent ,564

before the given action (including given action) without further565

explanation. If you think the following actions are still needed ,566

repeat the given actions.567

568

569

# Current Action Plan570

571

[572

"Move",573

"Target",574

"Parent"575

]576

577

# Feedback Information578

After checking the object and its location , it is observed that the579

object(Target) is already in the desired location(Recep).580

581

### OUTPUT582

583

[584

"Pass",585

"None",586

"None"587

],588

[589

"Move",590

"Target",591

"Parent"592

]593594

Listing 5: Example of the input(i.e., Prompt) and the output (i.e., Revised Action Plan) of LLM. This
example describes the result where ASR is applied. Given the current action plan (i.e., move a target to a recep),
LLM adds ‘Pass’ action in triplet which leads to skipping the ongoing interaction before the given action. Then
the agent will not interact with the target since it is already located in the desired place as explained in the
GUIDE. Target and Parent will be replaced with each corresponding object based on the context.
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595
Driver tries to solve the task. Commander gives information helpful to596

solve the task. You have to get information through the dialog.597

Find the initial states of the objects and summarize them into a598

dictionary. If you cannot find proper information in the dialog ,599

you should answer ‘X’.600

601

Just write a dictionary without giving an additional explanation. In a602

dictionary , fix the keys same with the example answers. Each of603

the keys has properties(keys) e.g., "location" which contains the604

initial location of the object. In some tasks , the driver may be605

asked to find multiple objects of one kind. In those cases , if an606

object is on Cabinet and another object is on CounterTop , you607

should output [‘Cabinet ’, ‘CounterTop ’]. (If you cannot know where608

the potato is initially , answer ‘X’.), "receptacle" which is the609

place that the object should be placed on or in ultimately. "610

quantity" which represents the number of the objects , "611

quantity_of_slices" which represents the number of the object ’s612

slices. Some objects (e.g., plate , mug) have a key i.e., "Cleaned"613

which represents whether the object should be cleaned (then write614

"T") or not (then write "F"). If you cannot find the proper615

information , just write ‘X’.616

617

Dialog: {DIALOG}618

Answer:619620

Listing 6: Prompt for Extracting Task-Relevant Contexts from the Dialog. {} denotes the section in the
prompt that is replaced to each corresponding data. This prompt is designed to extract the useful information
from the dialog to use it when making an initial action plan.
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621
# System Prompt622

You need to determine whether to revise the action sequence to solve623

the task considering ‘INFO ’ and then write down the final sequence624

of actions if needed.625

This action sequence is made for solving household task. Each action ’s626

format is tuple.627

The possible action spaces are as follows.628

[‘Target ’, ‘PickupObject ’], [‘Target ’, ‘PutObject ’], [‘Target ’, ‘629

OpenObject ’], [‘Target ’, ‘CloseObject ’], [‘Target ’, ‘630

ToggleObjectOn ’], [‘Target ’, ‘ToggleObjectOff ’], [‘Target ’, ‘631

PourObject ’], [‘Target ’, ‘SliceObject ’]632

For example , [‘Target ’, ‘PickupObject ’] is a command to pick up the633

target.634

Modify the action sequence by adding or subtracting action to suit the635

situation if needed. If it is not needed to be revised , just636

write down given action sequence.637

In this context , ‘action ’ refers to each element in tuple format in638

the list(action sequence).639

You can add or subtract an action at the very first part of the action640

sequence if needed. Do not modify the actions that follow , and641

write them down as originally provided.642

Do not add additional explannation. Just write the final action643

sequence in the right format (tuples in list).644

645

{GUIDE}646

647

# Current Action Plan648

{CURRENTACTIONPLAN}649

650

# Feedback Information651

{FEEDBACK}652653

Listing 7: Prompt for Revising Action Plan. {} denotes the sections in the prompt that are replaced to each
corresponding data. The prompt is designed to envelope the system prompt which gives the overall guideline for
the LLM’s task, the current action plan which is the source plan, and the feedback information which contains
the feedback from the environmental discrepancy.
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