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Abstract

We develop a simple and unified framework for nonlinear variable importance
estimation that incorporates uncertainty in the prediction function and is compatible
with a wide range of machine learning models (e.g., tree ensembles, kernel methods,
neural networks, etc). In particular, for a learned nonlinear model f(x), we consider
quantifying the importance of an input variable xj using the integrated partial
derivative Ψj = ∥ ∂

∂xj f(x)∥2PX
. We then (1) provide a principled approach for

quantifying uncertainty in variable importance by deriving its posterior distribution,
and (2) show that the approach is generalizable even to non-differentiable models
such as tree ensembles. Rigorous Bayesian nonparametric theorems are derived
to guarantee the posterior consistency and asymptotic uncertainty of the proposed
approach. Extensive simulations and experiments on healthcare benchmark datasets
confirm that the proposed algorithm outperforms existing classical and recent
variable selection methods. Supplementary material is at the end of this document.

1 Introduction
Variable selection is often of fundamental interest in many data science applications, providing
benefits in prediction error, interpretability, and computation by excluding unnecessary variables.
As datasets grow in complexity and size, it is crucial that variable importance estimation methods
can account for complex dependencies among variables while remaining computationally feasible.
Furthermore, as the number of approaches to model such datasets has increased, it is crucial that the
importance of each variable can be compared across model classes and extended to new ones as they
are developed.

While there are established approaches for quantifying variable importance in linear models (e.g.,
LASSO regression Hastie et al. [2015]), there is little consensus as to the preferred methodology
or theory for variable importance in nonlinear models. Generalized additive models Hastie and
Tibshirani [1990] use similar methods as their linear counterparts Wang et al. [2014], but the
additivity assumption for nonlinear functions of the variables is too restrictive in many applications.
Random Forests (RF) Breiman [2001] measure variable importance using an impurity measure, which
is based on the average reduction of the loss function were a given variable removed from the model.
Friedman [2001] extended this method to boosting, where the definition of variable importance is
generalized by considering the average over all of the decision trees. Deep neural networks (DNNs)
are widely-used for many artificial intelligence applications, and a substantial effort has been invested
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into developing DNNs with variable selection capabilities. Typically, this class of models involves
manipulating the input layer, for example by imposing an L1 penalty Castellano and Fanelli [2000],
Feng and Simon [2019], using backward selection Castellano and Fanelli [2000], or knockoffs Lu
et al. [2018]. Unfortunately, each model class based on DNNs requires a tailored procedure, which
limits comparability across different model formulations.

Bayesian variable selection methods provide principled uncertainty quantification in variable im-
portance estimates as well as a complete characterization of their dependency structure. These
methods allow the variable importance estimation procedure to tailor its decision rule with respect
to the correlation structure Liu [2021]. Yet, as in frequentist models, each method has a different
definition of a variable’s importance. For example, in Bayesian additive regression trees (BART), a
variable’s importance can be measured by the proportion of trees that use it Chipman et al. [2010],
while in Gaussian process (GP) models, a variable’s importance can be measured by the frequency
of the fluctuations of the estimated outcome-predictor function (e.g., the length-scale parameter as
controlled by the automatic relevance determination) in the direction of the variable Neal [1996],
Wipf and Nagarajan [2007]. Recently, a closely-related line of work uses the norm of the kernel
gradient to quantify variable importance under classical GP models [He et al., 2021] or deep Bayesian
neural networks [Liu, 2021]. However, these work either do not incorporate uncertainty, or are
restricted to a particular model class (see Appendix J). Furthermore, the traditional Bayesian model-
ing procedures tend to be computationally burdensome, making them less feasible for large-scale
applications [Andrieu et al., 2003].

Our work starts with the observation that many machine learning models can be written as kernel
methods by constructing a corresponding feature map. For example, random forests can be written
as kernel methods by partitions Davies and Ghahramani [2014], and deep neural networks can be
written as kernel methods by using the last hidden layer as the feature map Snoek et al. [2015], Hinton
and Salakhutdinov [2007], Calandra et al. [2016]. Each of these feature maps can be constructed
before Bayesian learning of the GP (e.g., by pre-training on the same or a separate dataset), providing
additional modeling expressiveness and representational capacity. Then, the GP learning is equivalent
to performing Bayesian inference with respect to the (linear) weighting parameters of the feature-map
basis functions and the posterior inference proceeds analogously to that of a Bayesian linear regression
(see Section 2.1 for details). The ability of a GP model to incorporate these adaptive feature maps
becomes especially important in high-dimensional applications, where effective dimension reduction
is necessary to circumvent the curse of dimensionality and ensure good finite-sample performance
[Bach, 2016].

Contributions. We propose a unified variable importance estimation framework that is compatible
with a wide range of machine learning models and can be defined by, or be closely approximated
by, a differentiable feature map. Notable members include neural networks and random forests
(Appendix B). Our approach defines variable importance as the norm of the function’s partial
derivative, as was previously studied in the context of frequentist nonparametric regression Rosasco
et al. [2013]. We extend it to a much wider class of models than previously considered (Section 2),
propose a principled Bayesian approach to quantify the variable importance uncertainty in finite
data (Section 3.1), and derive rigorous Bayesian nonparametric theorems to guarantee the method’s
consistency and asymptotic optimality (Section 3.2). To incorporate powerful non-differentiable
models into our framework, we also show how to apply this approach to partition-based methods (e.g.,
decision trees) by leveraging their (soft) feature representation (Appendix F.1). This leads to the first
derivative-based Bayesian variable importance estimation approach for tree-type models that is both
theoretically grounded and empirically powerful. This method strongly outperforms other variable
importance estimation approaches tailor-designed for random forests (e.g., impurity or random-forest
knockoff [Breiman et al., 1984, Candes et al., 2017]). We conduct extensive empirical validation of
our approach and compare its performance to that of many existing methods across a wide range of
data generation scenarios. The results show a clear advantage of the proposed approach, especially in
complex scenarios or when the input is a mixture of discrete and continuous features (Section 4).

2 Preliminaries
Problem Setup. We consider the classical nonparametric regression setting with d-dimensional
features x = (x1, . . . ,xd) ∈ X = Rd and a continuous response y ∈ R. The features x are allowed
to have a flexible nonlinear effect on y, such that:

y = f0(x) + ei, where ei
i.i.d.∼ N (0, σ2), (1)
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with homoscedastic noise level σ2. The data dimension d is allowed to be large but assumed to be
constant and does not grow with the sample size n. Here the data-generating function f0 is a flexible
nonlinear function that resides in an reproducing kernel Hilbert space (RKHS) H0 induced by a
certain positive definite kernel function k0, and the input space X0 of the true function spans only a
small subset of the input features (x1, . . . ,xd), i.e., X0 ⊂ X .

To this end, the goal of global variable importance estimation is to produce a variable importance
score ψj for each of the input features (x1, . . . ,xd) such that it can be used as a classification signal
for whether xj ∈ X0. As a result, the variable selection decision can be made by threhsolding
ψj > s with a pre-defined threshold s. The quality of a variable selection signal ψj can be evaluated
comprehensively using a standard metric such as the area under the receiver operating characteristic
(AUROC), which measures the Type-I and Type-II errors of variable selection decision I(ψj > s)
over a range of thresholds s.

2.1 Quantifying Model Uncertainty via Featurized GP
In the nonlinear regression scenario given by Equation (1), a classical approach to uncertainty-aware
model learning is the Gaussian process (GP). Specifically, assuming that f0 can be described by a
flexible RKHS Hk governed by the kernel function k, the GP model imposes a Gaussian process prior
f ∼ GP(0, k), such that the function evaluated at any collection of examples follows a multivariate
normal (MVN ) distribution

f ≡ (f(x1), . . . , f(xn))
⊤ ∼ MVN (mn×1,Kn×n),

with mean mi = m(xi) and covariance matrix Ki,j = k(xi,xj). The choice of the prior mean m
and kernel k enables prior specification directly in the function space. For example, the Matérn kernel
with parameter ν places a prior over ⌈ν⌉ − 1 times differentiable functions, with length-scale l2 and
amplitude variance σ2. As ν → ∞, this reduces to the common radial basis function (RBF) kernel
k(xi,xj) = σ2 exp(∥xi − xj∥22/l2).
Under the above construction, the posterior predictive distribution of f evaluated at new observations
x∗
1, . . . ,x

∗
n∗ is also a multivariate normal,

f∗|{xi yi}ni=1 ∼ MVN (E[f∗],Cov[f∗]), where (2)

E[f∗] = m∗ +K∗(K+ σ2In)
−1(y −m); Cov[f∗] = K∗∗ −K∗(K+ σ2In)

−1K∗⊤,

with m∗
i = m(x∗

i ), K
∗
ij = k(x∗

i ,xj), and K∗∗
ij = k(x∗

i ,x
∗
j ). Equation (2) is known as the kernel-

based representation (or dual representation) of a GP Rasmussen and Williams [2005]. Although
mathematically elegant, the posterior (2) is expensive to compute due to the need to invert the n× n
matrix (K+ σ2I).

Feature-based Representation of A GP. Alternatively, Mercer’s theorem Cristianini and Shawe-
Taylor [2000] states that as long as the kernel function k(·, ·) can be written as the inner product of
a set of basis functions ϕ(x) = {ϕk(x)}Dk=1, such that k(x,x′) = ϕ(x)⊤ϕ(x′), then elements of
the RKHS f ∈ Hk can be written in terms of a linear expansion of basis functions Rasmussen and
Williams [2005]:

f(x) =

D∑
k=1

βkϕk(x) = ϕ(x)⊤β, where β ∼ MVN (µ, ID). (3)

This is known as the feature-based representation (or primal representation) of a GP. Notice that
(3) is not an approximation method but an exact reparametrization of the GP model whose kernel
function is induced by feature representation ϕ(x). Also note that under this featurized representation
(3), the predictive model f is linear in terms of the model parameters β = {βk}Dk=1. However, this
“linearity” in the model parameters does not restrict the expressiveness of f , since the GP model is
essentially learning to use the weights {βk}Dk=1 to flexibly combine the nonlinear basis functions
{ϕk}Dk=1 to best fit the outcome. Furthermore, the basis functions {ϕk(x)}Dk=1 can be updated as
part of the learning process, which we discuss in the sequel.

Scalable Posterior Computation via Minibatch Updates. The above feature-based representation
is powerful in that it reduces the GP posterior inference into a Bayesian linear regression problem for
β. This brings two concrete benefits. First, the posterior of β in Equation (3) adopts a closed form:

β ∼ MVN (E[β],Cov[β]), where (4)

E[β] = µ+ΣβΦ
⊤(y − Φµ)/σ2; Cov[β] = Σβ = (Φ⊤Φ/σ2 + I)−1,
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where Φ = (ϕ(x1)
⊤, . . . , ϕ(xn)

⊤)⊤ ∈ Rn×D is the feature matrix evaluated on the training data
Rasmussen and Williams [2005]. For large-scale applications, Equation (4) enables us to compute
the exact posterior of β in a mini-batch fashion. For example, the posterior matrix Cov[β] = Σβ can
be updated using the Woodbury identity:

Σβ,t+1 = Σβ,t − Σβ,tΦ
⊤
m(σ2I+ΦmΣβ,tΦ

⊤
m)−1ΦmΣβ,t, (5)

where Φm is the D-dimension batch-specific feature matrix evaluated on the mini-batch. Similarly,
the posterior mean E[β] can be computed by accumulating the D × 1 vector Φ⊤(y − Φµ) =∑

m Φ⊤
m(ym − Φmµ), and computing the posterior mean according to Equation (4) at the end.

The posterior distribution of β induces a GP posterior for the prediction function f∗ = Φ∗β, where Φ∗

is the feature map evaluated on the test data, with mean E[f∗] = Φ∗µ+Φ∗ΣβΦ
⊤(y − Φµ)/σ2 and

covariance Cov[f∗] = Φ∗ΣβΦ
∗⊤. This distribution is equivalent to the kernel-based representation

(2) but reduces the computational complexity from cubic time O(n3) to linear time O(n) and is
minibatch compatible (i.e., Equation (5)). Algorithm 1 and 3 provides a summary of the learning
algorithm. Finally, we note that the basis functions ϕ = {ϕk}Dk=1 can also be updated as part of
the learning procedure (e.g., via maximum a posteriori (MAP) inference), which we discuss in
Appendix A.4.

Incorporating Modern ML Model Classes. The second key advantage of the feature-based
representation (3) is its generality: a wide range of machine learning models can be written in the
feature-based form f(x) = ϕ(x)⊤β Rahimi and Recht [2007], Davies and Ghahramani [2014], Lee
et al. [2017], making the GP a unified framework for quantifying model uncertainty for a wide array
of modern ML models. Appendix B summarizes important examples including GAMs, decision trees,
random-feature models, deep neural networks and their ensembles. Appendix B.1 summarizes a list
of general conditions the model should satisfy for it to be compatible with the proposed framework
(i.e., weak differentiability, Lipschitz condition, and growth rate of model complexity). Furthermore,
when a deterministically-trained β̂ is available (e.g., via a sophisticated adaptive shrinkage procedure
that is not available in a Bayesian context), we can incorporate this as prior knowledge into GP
modeling by setting µ = β̂ (Equation (3)).
2.2 Bayesian Nonparametric Guarantees for Probabilistic Learning
The quality of a Bayesian learning procedure is commonly measured by the learning rate of its
posterior distribution Πn = Π(· | {xi, yi}ni=1). Intuitively, the rate of this convergence is measured
by the size of the smallest shrinking balls around f0 that contains most of the posterior probability.
Specifically, we consider the size of the set An = {g | ∥g − f0∥2n ≤Mϵn} such that Πn(An) → 1
[Ghosal and Vaart, 2007, Polson and Rockova, 2018]. The concentration rate ϵn here indicates how
fast the small ball An concentrates towards f0 as the sample size increases. Below we state the formal
definition of posterior convergence Ghosal and Vaart [2007].
Definition 1 (Posterior Convergence). For f0 : X → R where X = Rd, let H0 denote the true
RKHS induced by a kernel function k0, and let Hϕ denote the RKHS induced by the feature function
ϕ : X → RD. Let f0 ∈ H0 be the true function, and let E0 denote the expectation with respect to
the true data-generation distribution. Assuming Hϕ is dense in H0, then, the posterior distribution
Πn(f) concentrates around f0 at the rate ϵn if there exists an ϵn → 0 such that, for any Mn → ∞,

E0Πn(f : ∥f − f0∥2n ≥Mnϵn) → 0. (6)

Notice that we allow the model space Hϕ and the true function space H0 to be different, but Hϕ

must be dense in H0 for the convergence to happen. Fortunately, this condition is shown to hold for a
wide variety of ML models, including random features, random forests, and neural networks [Biau,
2012, Hornik et al., 1989, Rahimi and Recht, 2008, Schmidt-Hieber, 2020, Ročková and van der Pas,
2020]. The notion of posterior convergence can also be used to discuss the learning quality of other
probabilistic estimates (e.g., variable importance ψj). In that case, we can simply replace (f, f0) in
(6) by their variable importance counterparts. This is the focus of Section 3.2.

3 Methods
3.1 Quantifying Variable Importance under Uncertainty

In this work, we consider quantifying the global importance of a variable based on the norm of
the corresponding partial derivative. This is motivated by the observation that, if a function f is
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differentiable, the relative importance of a variable xj at a point x can be captured by the magnitude
of the partial derivative function, | ∂

∂xj f(x)| Rosasco et al. [2013]. This quantity requires the
consideration of two issues. First, instead of quantifying the relevance of a variable on a single
input point, we need to define a proper global notion of variable importance. Therefore, it is
natural to integrate this partial derivative over the input space x ∈ X : Ψj(f) = ∥ ∂

∂xj f∥2PX
=∫

x∈X | ∂
∂xj f(x)|2 dPX (x). Second, since PX (x) is not known from the training observations, Ψj(f)

can be approximated by its empirical counterpart,

ψj(f) = ∥ ∂

∂xj
f∥2n =

1

n

n∑
i=1

| ∂
∂xj

f(xi)|2. (7)

Notice that ψj(f) is an estimator that is derived from the prediction function f estimated using finite
data. Consequently, to make a proper decision regarding the importance of an input variable xj ,
it is important to take into account uncertainty in f . To this end, by leveraging the featurized GP
representation introduced in Section 3.1, we show that this can be done easily for a wide range of ML
models f(x) = ϕ(x)⊤β by studying the posterior distribution of ψj .

Posterior Distribution of Variable Importance. After we obtain the posterior distribution of β (4),
the posterior distribution of variable importance can be derived according to Equation (7):

ψj(f) =
1

n
| ∂
∂xj

f(X)|⊤| ∂
∂xj

f(X)| = 1

n
β⊤ ∂Φ

∂xj

∂Φ⊤

∂xj
β, (8)

where ∂Φ
∂xj ∈ RD×n is the derivative of the feature map with respect to xj , across n training samples.

The posterior distribution of ψj(f) adopts a closed form as a generalized chi-squared distribution
(see Appendix A.2 for derivation). In practice, we can sample ψj conveniently from its posterior
distribution by computing ∂

∂xj f(X) =
(

∂Φ
∂xj

)⊤
β(s), where β(s) are Monte Carlo samples from the

closed-form posterior (4).

There are two ways in which uncertainty aids the variable importance estimation process. First,
the posterior survival function P (ψj(f) > s) of the variable importance utilizes the full posterior
distribution of ψj(f) to identify the probability that the variable xj exceeds a given threshold s.
By increasing s ∈ (0,∞), P (ψj > s) provides an intuitive sense of how a model’s belief about
the importance of variable xj changes as the criteria s becomes more stringent, similar to the
regularization path used by LASSO methods [Friedman et al., 2010] but with the incorporation
of posterior uncertainty about the variable importance. See Appendix I for an application to a
Bangladesh birth cohort study. Second, by integrating the survival function over the threshold, i.e.,∫
s>0

P (ψj(f) > s) ds, we obtain the posterior mean of ψj(f), and this too incorporates uncertainty
in f . To see this, notice that by using the “trace trick” we can write

E[ψj(f)] = E
[

tr
(
β⊤ ∂Φ

∂xj

∂Φ⊤

∂xj
β

)]
= E[β]T

∂Φ

∂xj

∂Φ⊤

∂xj
E[β] + tr

(
∂Φ

∂xj

∂Φ⊤

∂xj
Cov[β]

)
, (9)

where all expectations are taken with respect to the posterior. Therefore, the posterior mean of ψj(f)
depends on the covariance structure of β, and how it interacts with the eigenspace of the partial
derivative functions (encoded by ∂Φ

∂xj
∂Φ⊤

∂xj ). In Section 4 we provide an extensive investigation of
AUROC scores using the posterior mean of ψj(f) for quantifying variable importance.

In Appendix A.3, we summarize the algorithms for computing the posterior distributions of the
featurized Gaussian process (Equation (4)) and for the posterior distributions of variable importance
(Equation (8)), and discuss their space and time complexity.

3.2 Theoretical Guarantees

From a theoretical perspective, the variable importance measure ψj introduced in (7) can be under-
stood as a quadratic functional of the GP model f Efromovich and Low [1996]. To this end, rigorous
Bayesian nonparametric guarantees can be obtained for ψj’s ability in learning the true variable
importance in finite samples (i.e., posterior convergence, Theorem 1) and its statistical optimality
from a frequentist perspective, in providing a low-variance estimator that attains the Cramér-Rao
bound (i.e., Bernstein von-Mises phenomenon, Theorem 2). Note that for a given general model
f(x) = ϕ(x)⊤β, it only need to satisfy three mild regularity conditions to be fully compatible with
the proposed framework (i.e., weak differentiability, Lipschitz condition, and growth rate of model
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complexity). We summarize these conditions in Appendix B.1 and explain them in detail in the
sequel.

Posterior Convergence. We first show that, for an ML model f that can learn the true function f0
with rate ϵn (in the sense of Definition 1), the entire posterior distribution of the variable importance
measure ψj(f) converges consistently to a point mass at the true Ψj(f0) at a speed that is equal or
faster than ϵn.

Theorem 1 (Posterior Convergence of Variable Importance ψj). Suppose yi = f0(xi) + ei, ei
i.i.d.∼

N (0, σ2), and denote as E0 the expectation with respect to the true data-generation distribution
centered around f0. For the RKHS Hϕ induced by the feature function ϕ : X → RD and f ∈ Hϕ, if:

(1) The posterior distribution Πn(f) converges toward f0 at a rate of ϵn;

(2) The differentiation operator Dj : f → ∂
∂xj f is bounded: ∥Dj∥2op = inf{C ≥ 0 :

∥Djf∥22 ≤ C∥f∥22, for all f ∈ Hϕ};

Then the posterior distribution for ψj(f) = ∥ ∂
∂xj f∥2n contracts toward Ψj(f0) = ∥ ∂

∂xj f0∥2PX
at a

rate not slower than ϵn. That is, for any Mn → ∞,

E0Πn

[
sup

j∈{1,...,d}
|ψj(f)−Ψj(f0)| ≥Mnϵn

]
→ 0.

The proof is in Appendix C. Theorem 1 is a generalization of the classical result of quadratic
functional convergence under linear models and sparse neural networks to a much wider range
of ML models in the context of Bayesian variable importance estimation [Efromovich and Low,
1996, Liu, 2021, Wang and Rocková, 2020]. It confirms the important fact that, for an ML model
f that can accurately learn the true function f0 under finite data, we can consistently recover the
true variable importance at a fast rate by using the proposed variable importance estimate ψj(f),
despite the potential lack of identifiablity in the model parameters (e.g., weights in a neural network).
Importantly, although our main setting assumes fixed data dimension d (see Problem Setup), the
posterior concentration result Theorem 1 does not rely on this assumption in its proof, and is in fact
compatible with the high-dimensional setting where d is allowed to grow with sample size at a rate of
o(n). See Appendix C (in particular, Remark 4) for further discussion.

From a practical point of view, Theorem 1 reveals that the finite-sample performance of variable
importance ψj(f) depends on two factors: (1) the finite-sample generalization performance of the
prediction function f , and (2) the mathematical property of f in terms of its Lipschitz condition.
Therefore, to ensure effective variable importance estimation in practice, the practitioner should take
care to select a model class f that has a theoretical guarantee in capturing the target function f0,
empirically delivers strong generalization performance under finite data, and is well-conditioned in
terms of the behavior of its partial derivatives. To this end, we note that, under the featurized Gaussian
process f = ϕ(x)⊤β discussed in this work, users are free to choose a performant model class (e.g.,
random forest, random-feature or DNN) whose feature representation spans an RKHS Hϕ that is
dense in the infinite-dimensional function space (therefore f enjoys a convergence guanrantee, see
Remark 3 in Appendix C for further discussion) [Biau, 2012, Hornik et al., 1989, Rahimi and Recht,
2008, Schmidt-Hieber, 2020, Ročková and van der Pas, 2020], and is empirically more effective than
the GP methods based on classical kernels such as RBF. We discuss the Lipschitz condition of these
models in Appendix E.1. Indeed, as we will verify in experiments (Section 4), there does not exist
an “optimal" model class that performs universally well across all data settings (i.e., no free lunch
theorem [Wolpert and Macready, 1997]). This highlights the importance of having a general-purpose
framework for variable importance estimation that can flexibly incorporate the most effective model
for the task at hand. Finally, we notice that although Theorem 1 is stated as an asymptotic result,
when a finite-sample error bound ϵn for the model class is available (i.e., Condition (1) in Theorem 1),
it is trivial to obtain a finite-sample error bound for variable importance ψj(f) by extending the proof
of Theorem 1. Appendix C.1 provides an example of such a bound based on the Bernstein inequality.

Statistical Efficiency & Uncertainty Quantification. Next, we verify the uncertainty quantification
ability of the variable importance measure ψj(f) under a featurized GP by showing that it exhibits
the Bernstein-von Mises (BvM) phenomenon. That is, its posterior measure Πn(ψj(f)) converges
towards a Gaussian distribution that is centered around the truth Ψj(f0), so that its (1− α)% level
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credible intervals achieve the nominal coverage probability for the true variable importance. More
importantly, the BvM theorem verifies that the posterior distribution of ψj(f) is statistically optimal,
in the sense that its asymptotic variance attains the Cramér-Rao bound (CRB) that cannot be improved
upon [Bickel and Kleijn, 2012].
Theorem 2 (Bernstein-von Mises Theorem for Variable Importance ψj). Suppose yi = f0(xi) +

ei, ei
i.i.d.∼ N (0, σ2), i = 1, . . . , n. Denote Dj : f → ∂

∂xj f the differentiation operator and
Hj = D⊤

j Dj the inner product of Dj , such that:

ψj(f) = ∥Dj(f)∥2n =
1

n
⟨Djf,Djf⟩ =

1

n
f⊤Hjf. (10)

Assuming conditions (1)-(2) in Theorem 1 hold, and additionally:

(3) f0 is square-integrable over the support X and ∥f0∥2 = 1;

(4) rank(Hj) = op(
√
n);

Then √
n(ψj(f)− ψj(f0))

d→ N (0, 4σ2∥Hjf0∥2n).

The proof is in Appendix D. Theorem 2 provides a rigorous theoretical justification for ψj(f)’s
ability to quantify its uncertainty about the variable importance. More importantly, it verifies that
ψj(f) has the good frequentist property that it quickly converges to a minimum-variance estimator
at a fast speed, which is important for obtaining good variable importance estimation performance
in practice. Compared to the previous BvM results that tend to focus on a specific Bayesian ML
model, Theorem 2 is considerably more general (i.e., applicable to a much wider range of models)
and comes with a simpler set of conditions [Rockova, 2020, Wang and Rocková, 2020, Liu, 2021].
Specifically, (3) is a standard assumption in nonparametric analysis. It ensures the true function f0
does not diverge towards infinity and makes learning possible [Castillo and Rousseau, 2015]. The
unit norm assumption ∥f0∥2 = 1 is only needed to simplify the exposition of the proof, and the
theorem can be trivially extended to ∥f0∥2 = C for any C > 0. The most interesting condition
is (4). Let us denote Hj as the space of partial derivatives functions ∂

∂xj f of the model functions
f ∈ Hϕ. Then, intuitively, (4) says that to attain the BvM phenomenon, the effective dimension
of the derivative function space Hj (as measured by rank(Hj) = rank(Dj)) cannot be too large.
Since the effective dimension of the derivative space is bounded above by that of the original RKHS
f ∈ Hϕ, (4) essentially states that the effective dimension of the model space Hϕ cannot grow too fast
with data size (i.e., op(

√
n)). Fortunately, this condition is satisfied by a wide range of ML models

including trees and deep networks [Rockova, 2020, Wang and Rocková, 2020]. See Appendix E.2 for
further discussion.

4 Experiment Analysis
In this section, we investigate the finite-sample performance of the derivative norm metric ψj for
variable importance estimation (7) under a wide variety of ML methods. We illustrate the breath of
our framework by applying it to tree ensembles (Appendix F.1), where a principled and gradient-based
uncertainty-aware variable importance estimation approach has been previously unavailable. We
also apply it to linear models and (approximate) kernel machines, which are standard approaches
to variable selection in data science practice [Tibshirani, 1996, Bobb et al., 2015]. Over a wide
range of complex and realistic data scenarios (e.g., discrete features, interactions, between-feature
correlations) derived from socioeconomic and healthcare datasets, we investigate the method’s
statistical performance in accurately recovering the ground-truth features (in terms of the Type I and
Type II errors), and compare it to other well-established approaches in each of the model classes
(Table 1). Our main observations are:
O1: Importance of generality. There does not exist a model class that performs universally well
across all data scenarios (i.e., no free lunch theorem [Wolpert and Macready, 1997], Figures 1, 6-15).
This highlights the importance of an unified framework for variable importance that incorporates a
wide range of models, so that practitioners have the freedom of choosing the most suitable model
class for the task at hand.
O2: Good prediction translates to effective variable importance estimation. Comparing between
different model classes, the ranking of models’ predictive accuracy is generally consistent with the

7



ranking of their variable importance estimation performance under ψj (i.e., better prediction translates
to better variable importance estimation, as suggested in Theorem 1).
O3: Statistical efficiency of ψj . Comparing within each model class, the derivative norm metric ψj

generally outperforms other measures of variable importance. The advantage is especially pronounced
in small samples and for correlated features. This empirically verifies that ψj has good finite-sample
statistical efficiency even under complex data scenarios (as suggested in Theorem 2).

Model Class (Ours) Baselines
Tree Ensembles RF-FDT RF-Impurity, RF-Knockoff, BART

Kernel Methods & NNs RFF, NN BKMR, BAKR
Linear Models GAM BRR, BL

Table 1: Summary of methods considered in the experiments.
Models & Methods. We consider three main classes of models (Table 1): (I) Random Forests (RF).
Given a trained forest, we quantify variable importance using ψj by translating it to an ensemble
of featurized decision trees (FDT) (Appendix F.1), and compare it to three baselines: impurity
(RF-impurity) [Breiman et al., 1984], RF-based kernel knockoff (RF-knockoff) [Candes et al.,
2017], and Bayesian Additive Regression Trees (BART). (II) (Approximate) Kernel Methods &
Neural Networks. We apply ψj to a random-feature model that approximates a GP with an RBF
kernel Rahimi and Recht [2007], and set the number of features to

√
n log(n) to ensure proper

approximation of the exact RBF-GP Rudi and Rosasco [2018], which is termed Random Fourier
Feature model (RFF). We also apply ψj to Neural Networks (NN) based on wide ReLU neural
network with 512 hidden units and LASSO regularization in the hidden layer weights [Lemhadri
et al., 2021]. We compare them to Bayesian Kernel Machine Regression (BKMR) Bobb et al. [2015]
based on a GP with an exact RBF kernel and a spike-and-slab prior, and Bayesian Approximate Kernel
Regression (BAKR) based on random-feature model with a projection-based feature importance
measure and an adaptive shrinkage prior [Crawford et al., 2018]. (III) Linear Models. We apply ψj

to a featurized GP representation of the Generalized Additive Model (GAM), with the prior center
µ set at the frequentist estimate of the original GAM model obtained from a sophisticated REML
procedure [Wood, 2006]. We compare it to two baselines: Bayesian Ridge Regression (BRR) Hoerl
and Kennard [1970] and Bayesian LASSO (BL) Park and Casella [2008]. Appendix G provides
further detail. Previously, [Liu, 2021] studied the specialization of our framework to the deep neural
networks (DNNs), so we do not repeat that work here as DNN is not yet a standard data science
model for tabular data.
To quantify variable importance while accounting for posterior uncertainty of the variable importance
ψj(f), we examine its posterior survival function

∫
s>0

P (ψj(f) > s) ds (i.e., the posterior likelihood
of ψj(f) being greater than the threshold s integrated over the full range of thresholds s). For other
methods, we use their default metrics to quantify variable importance (e.g., variable inclusion
probabilities in BART and BKMR. See Appendix G).

Datasets and Tasks. We consider two synthetic benchmark datasets and three real-world socio-
economic and healthcare datasets, encapsulating challenging phenomena such as between-feature
correlations and interaction effects. For the synthetic benchmark datasets, we generate data under the
Gaussian noise model y ∼ N (f0, 0.01) for four types of outcome-generation functions f0 (linear,
rbf, matern32 and complex, see Appendix G.2 for a full description) with the number of causal
variables set at d⋆ = 5. We consider two types of feature distribution: (1) synthetic-continuous:
all features follow xj ∼ Unif(−2, 2); (2) synthetic-mixture: two of the causal features and two
of the non-causal features are distributed as Bern(0.5) and the rest are distributed as Unif(−2, 2).
Features in both distributions are independent. We vary sample size n ∈ {100, 200, 500, 1000} and
data dimension d ∈ {25, 50, 100, 200}, leading to 128 total scenarios.

For real-world data, we consider (1) adult: 1994 U.S. census data of 48842 adults with eight
categorical and six continuous features Kohavi; (2) heart: a coronary artery disease dataset of 303
patients from Cleveland clinic database with seven categorical and six continuous features Detrano
et al. [1989]; and (3) mi: disease records of myocardial infarction (MI) of 1700 patients from
Krasnoyarsk interdistrict clinical hospital during 1992-1995, with 113 categorical and 11 continuous
features Golovenkin et al. [2020]. All datasets exhibit non-trival correlation structure among features
(Appendix Figures 3-5). Since the ground-truth causal features on these datasets are not known, in
order to rigorously evaluate variable importance estimation performance, we follow the standard
practice in causal ML to simulate the outcome based on causal features selected from data [Yao
et al., 2021]. We use the four outcome-generating functions as described previously and evaluate
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over the same data size × dimension combinations, leading to 192 total scenarios2. We repeat the
simulation 20 times for each scenario, and use AUROC to measure the variable importance estimation
performance (in terms of Type I and Type II errors) of each method.

In Appendix I, we further evaluate the method on a well-studied environmental health dataset
(Bangladesh birth cohort study [Kile et al., 2014]) with respect to the real outcome (infant development
scores). We visualize the "Bayesian" regularization path as introduced earlier. The selected variables
correspond well with the established toxicology pathways in the literature [Gleason et al., 2014].

method
RF−FDT (Ours)
NN (Ours)
GAM (Ours)
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Figure 1: Method performance in variable importance estimation (measured by AUROC, row 1) and prediction
(measured by test MSE, row 2) under matern32 data-generation function and with input dimension 100 (five
causal features). Therefore, the variable importance scores of the five causal features are expected to be
higher than the other 95 variable importance estimations. The x-axis represents the training sample sizes
n ∈ {100, 200, 500, 1000}. GAM does not produce valid results for case of n ≤ d so the results from this
model in these cases are not shown. The ranking of FDT (solid purple) outperforms other methods in most
of the data settings, and GAM outperforms in the setting of large data size and high percentage of categorical
features (adult and mi). The rankings of performance are roughly consistent between prediction and variable
importance estimation.
4.1 Results
Figure 1 shows the methods’ performance in variable importance estimation (Row 1) and prediction
(Row 2)3 in an exemplary setting, where the true function f0 is matern32 with an input dimension
d = 100. It represents the tabular data setting that we are the most interested in: nonlinear feature-
response relationship with interaction effects and high input dimension. This is because f0 is sampled
from an RKHS induced by Mátern 3

2 kernel, which contains a large space of continuous and at least
once differentiable functions [Rasmussen and Williams, 2005]. We delay complete visualizations for
all 320 scenarios to Appendix H. Recalling the three observations introduced earlier:

O1 ("No free lunch"): No method performs universally well. For example, BAKR performs
robustly in correlated datasets (heart and mi), but poorly otherwise. Kernel approaches (RFF and
BKMR) perform competitively in low dimension, but their performances deteriorate quickly as
dimension d increases (Figure 1 and Figure 6-7). This is likely due to the classical kernel method’s
well-known inability to learn an adaptive feature representation, which consequently leads to suffering
from the curse of dimensionality and unstable and suboptimal variable importance performance in
high dimensions [Bach, 2017]. FDT is generally the strongest method in small samples and high
dimensions, but can be outperformed by GAM in large samples and data with a high percentage
of categorical features (adult and mi). Notably, they often outperform NN, which is traditionally
regarded as the go-to model for high-dimensional nonlinear settings. This highlights the importance
of a unified framework that allows users to select the most appropriate model for variable importance
estimation depending on the data setting.

2In the setting where required data dimension is higher than that of the real data, we generate additional
synthetic features from Unif(−2, 2). We use n ∈ {50, 100, 150, 257} for heart due to data size restrictions.

3For the prediction plots, a method will not be visualized if they share the model fit with another method
(RF-impurity and RF-knockoff), or if it does not produce valid results due to small sample size (GAM).
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O2 ("Good prediction implies effective variable importance estimation"): Fixing the variable
importance ψj and comparing the variable importance estimation performance of each model class
(i.e., FDT, GAM, NN and RFF, which are solid lines in Figure 1), we see that their rankings in
prediction (row 2) are largely consistent with the corresponding rankings in variable importance
estimation. It is worth noting that this pattern is occasionally violated (e.g., GAM in adult, n = 500
and heart, n = 250), but that does not contradict our conclusion (Theorem 1) since the convergence
rate of the prediction function only forms an upper bound for the convergence rate ofψj . Finally, when
models have comparable generalization performance, we observe that the Lipschitz condition plays a
role in variance importance performance (which is consistent with our theoretical observations in
Theorem 1). For example, in Figure 1, NN and FDT are largely comparable in predictive performance
among the real datasets (adult, heart and mi). However, tree-based FDT are known to have well-
conditioned Lipschitz behavior when compared to NN (Appendix E.1), which is consequently
translated to improved finite-sample performance in variable importance estimation.

O3 (Statistical efficiency of ψj): When comparing among variable importance estimation methods
from the same class (especially for tree models, i.e., FDT v.s. RF-impurity / RF-knockoff /
BART), we see that FDT is competitive or strongly outperforms its baselines in variable importance
estimation, despite being based on exactly the same fitted model (RF-impurity / RF-knockoff), or
not accounting for the uncertainty in the tree growing process (BART). This pattern is consistent
in most data settings, and the advantage is especially pronounced in high dimensions, small data
sizes, and correlated datasets (Appendix H, Figure 6-10). This provides strong empirical evidence for
the fact that ψj is a statistically efficient estimator for variable importance with good finite-sample
behavior (as suggested in Theorem 2), and can deliver strong performance for tabular data when
combined with a performant ML model like random forests. Appendix H contains further discussion.

5 Discussion and Future Directions
The modern data analysis pipeline typically involves fitting multiple models, comparing their perfor-
mance, and iterating as necessary. When variable selection is involved, the practitioner may ask are
the variable importance scores across models measuring the same behavior? And, what if the most
suitable model does not have a satisfactory variable importance estimation procedure? By framing
model choice as the specification of a kernel — which includes kernels corresponding machine
learning methods like neural networks and random forests in addition to the long list of traditional
kernels — we propose a unified variable importance estimation procedure that is compatible across
models and prove strong guarantees for this procedure.

Limitations. We do not consider uncertainty in the feature map itself. For example, the kernel
induced by the featurized decision tree studied here does not consider uncertainty in the tree’s
partitioning process. Meanwhile, the fact that the full posterior inference is performed only with
respect to β indeed places a limitation on the model’s ability in uncertainty quantification, as the
uncertainty in the model hyperparameters is not accounted for. Yet, this does not seem to be a
significant limitation in the method’s empirical performance (e.g., FDT outperforms BART in
our experiments), although this point still merits further investigation in the future. On the other
hand, in the future, it would be worth expanding this framework to other model classes (e.g., MARS
Friedman [1991]) and estimating the importance of interaction effects and higher-order terms (see
Appendix K for details).

Societal Impacts. We expect the method proposed to provide a set of powerful tools for practitioners
to understand the importance of input variables in their ML models with limited data, which is
especially important for scientific investigations in the fields of epidemiology and computational
biology. However, we recognize that this approach can potentially be utilized by bad actors to probe
the input-variable uncertainty of an existing ML system, and use it to engineer more targeted white-
box adversarial attacks. To this end, we recommend system developers to incorporate this approach
into the formal verification procedure of an ML system, so as to monitor and understand the model
uncertainty with respect to input variables, and devise proper improvement and prevention strategies
(e.g., data augmentation or randomized smoothing targeted at specific variables) accordingly.
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A Additional Background and Technical Derivations

A.1 Neural Network Representation of Decision Tree

For each node in a learned decision tree, we know the feature the node is splitting on and its
corresponding threshold. Karthikeyan et al. [2021] provides a neural network representation of a
decision tree:

f(x|W,b,β) =

D∑
l=0

ϕl(x|W,b)βl, where

ϕl(x|W,b) = σstep

( h−1∑
i=0

σstep

(
(x⊤wi,I(i,l) + bi,I(i,l))S(i, l)

)
− h

)
. (11)

In the above equations, βl ∈ R is the prediction given by the lth leaf node, h is the height of the tree
and D is the number of leaf nodes. I(i, l) denotes the index of the lth leaf’s predecessor in the ith

level of the tree. wij ∈ Rd indicates the feature the node is splitting on using one hot encoding, with
only one element being 1 or −1 and the rest being 0. bij ∈ R is the corresponding threshold (or the
threshold multiplied by −1). The −1 is to guarantee that x⊤wi,j + bi,j > 0 so that when multiplied
by

S(i, l) =

{−1 if lth leaf ∈ left subtree of node I(i, l),
+1 otherwise,

the direction of (x⊤wi,I(i,l) + bi,I(i,l))S(i, l) can be kept. σstep(·) is the step function,

σstep(a) = 1, if a ≥ 0, and σstep(a) = 0, if a < 0.

Therefore, the model space can be regarded as a three-layer neural network with σstep as activation
function, with W as hidden weights and b as hidden bias.

A.2 Derivation of Posterior Distribution of Variable Importance

Recall from Equation 4 that the posterior distribution of β is MVN (E[β],Cov[β]), which can be
computed in closed form. This induces a distribution over the variable importance ψj(f):

ψj(f) =
1

n
| ∂
∂xj

f(X)|⊤| ∂
∂xj

f(X)|

=
1

n
β⊤( ∂

∂xj
ϕ(X)

)( ∂

∂xj
ϕ(X)

)⊤
β

=
1

n
β⊤QΛQ⊤β (Eigen-decomposition on

(
∂

∂xj ϕ(X)
)(

∂
∂xj ϕ(X)

)⊤
)

=
1

n

D∑
i=1

λi(q
⊤
i β)

2 (λi is eigenvalue, qi is eigenvector)

=
1

n

D∑
i=1

(λiVi) · Zi, (Vi = q⊤
i Cov(β)qi)

where Zi := (q⊤
i β)

2/Vi ∼ χ2
1(µi) are independent random variables that follows a noncentral χ2

distribution with 1 degree of freedom and parameter µi = (q⊤
i E[β])2. The values {λi · Vi}Di=1 are

scalar constants weighting each noncentral χ2 random variable Zi. As a result, the full distribution is
a well-known distribution of a linear combination of non-central χ2 distributions [Harville, 1971].
This distribution has mean

∑D
i=1(λiVi) · (1 + µi), variance 2

n

∑D
i=1(λiVi)

2 · (1 + 2µi), and it can
be sampled efficiently from by using the linear combination representation as introduced above.
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A.3 Algorithm Summary

Given a fixed4 feature function ϕ : X → RD, we present algorithm summaries for (1) Computing
the posterior distribution of β in the feature-based representation of a Gaussian process, and (2)
Computing the posterior distribution of the integrated partial derivative metric.

First consider (1), it involves computing two closed-form updates (for posterior mean and variance)
over the training data in mini-batches for one epoch. The algorithm has a linear complexity with
respect to data size.

Algorithm 1 Posterior Computation, Feature-based Representation of Gaussian Process

1: Input: Training data mini-batches {(Xm,ym)}Mm=1. Fixed feature function ϕ : X → RD.
2: Output: Posterior mean and variance E[β]D×1, Cov[β]D×D.
3: Initialize: Feature-label product matrix P = 0D×1, covariance matrix Σ = 0D×D

4: for m = 1 to M do
5: Compute minibatch feature representation Φm = [ϕ(x1), . . . , ϕ(xnm

)]nm×D

6: Update P = P+Φ⊤
m(ym − Φmµ)/σ

2

7: Update Σ = Σ−ΣΦ⊤
m(σ2I+ΦmΣΦ⊤

m)−1ΦmΣ ▷ Equation (5)
8: end for
9: Compute Cov[β] = Σβ = Σ ▷ Equation (4)

10: Compute E[β] = µ+ΣβP ▷ Equation (4)

As shown, during mini-batch computation, the algorithm computes the posterior mean and precision
matrix by linearly accumulating the statistic Φ⊤

m(ym − Φmµ), and performs one computation in
the end to obtain the E[β]. As a result, the space complexity of the algorithm is O(D2) (for the
covariance matrix) and time complexity of the algorithm is O(nD3) for the matrix inversion. In
large-scale applications, the model dimension D is usually fixed and is significantly smaller than the
data size n, leading to a linear-time algorithm. Notice that in actual implementation, this algorithm
can be made much more efficient (i.e., O(nD2)) by changing how covariance matrix is computed.
We introduce this improved algorithm at the end of this section in Algorithm 3.

Now consider (2). Given the posterior of β from Algorithm 1, the posterior distribution of the inte-
grated partial derivative metric ψj(f) = ∥ ∂

∂xj f∥2n = 1
nβ

⊤ ∂Φ

∂xj
i

∂Φ⊤

∂xj
i

β can be computed conveniently
by sampling β from its posterior.

Algorithm 2 Posterior Computation, Integrated Partial Derivative Metric

1: Input: Data X∗ with size n∗. Posterior distribution MVN (E[β]D×1,Cov[β]D×D).
2: Output: Posterior samples of ψj(f) of size K: {ψj(f)k}Kk=1

3: Sample {βk}Kk=1 ∼ MVN (E[β],Cov[β])
4: Compute partial derivative feature matrix [ ∂Φ∂xj ]D×N∗ = [∂ϕ(x1)

⊤, . . . , ∂ϕ(xN∗)⊤]⊤

5: Compute Gj,D×D = ∂Φ
∂xj

∂Φ⊤

∂xj

6: Compute ψj(f)k = 1
N∗β

⊤
k Gjβk for k = 1, . . . ,K ▷ Equation (8)

When the data size is large, the Gj matrices can usually be computed as part of Algorithm 1 by

accumulating gradient partial derivative matrices Gj = Gj +
∂Φm

∂xj

∂Φ⊤
m

∂xj . The time complexity of the
algorithm is O(D2n∗) which is again a linear-time algorithm with respect to data size n∗. When the
data size is extremely large, one can consider reduce computational burden by subsampling from X∗,
which is equivalent to performing a Monte Carlo approximation to the integration over the empirical
measure (Equation (7)).

Finally, we present a more efficient implementation of Algorithm 1, which improved the run time from
O(nD3) toO(nD2) by changing how covariance matrix is computed during minibatch accumulation:

4Namely, the feature function ϕ(x) is either fixed by construction like random feature models or kernel
machine using classical kernels (RBF, Matérn, etc). Or ϕ(x) is already learned elsewhere (i.e., pre-trained on
the same or a separate dataset) like random forests or neural networks.
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Algorithm 3 Posterior Computation, Feature-based Representation of Gaussian Process (Version 2)

1: Input: Training data mini-batches {(Xm,ym)}Mm=1. Fixed feature function ϕ : X → RD.
2: Output: Posterior mean and variance E[β]D×1, Cov[β]D×D.
3: Initialize: Feature-label product matrix P = 0D×1, precision matrix S = ID×D

4: for m = 1 to M do
5: Compute minibatch feature representation Φm = [ϕ(x1), . . . , ϕ(xnm)]nm×D

6: Update P = P+Φ⊤
m(ym − Φmµ)/σ

2

7: Update S = S+Φ⊤
mΦm/σ

2

8: end for
9: Compute Cov[β] = Σβ = S−1 ▷ Equation (4)

10: Compute E[β] = µ+ΣβP ▷ Equation (4)

As shown, during mini-batch computation, the algorithm computes the posterior mean and precision
matrix by linearly accumulating two statistics Φ⊤

m(ym − Φmµ) and Φ⊤
mΦm/σ

2, and performs one
matrix inversion in the end to obtain the covariance matrix Σβ (hence even more efficient than the
Woodbury update formula introduced in Algorithm 1, which requires an inversion for every single
update step). As a result, the space complexity of the algorithm is O(D2) (for the covariance matrix)
and time complexity of the algorithm is O(nD2 +D3). Since in practice, the model dimension D is
usually fixed and much smaller than n, the time complexity is in fact O(nD2).

A.4 Additional Algorithm Summary: Joint Learning of Basis Functions and Featurized GP

Notice that given a fixed set of feature functions ϕ = {ϕk}Dk=1, the GP posterior can be learned
scalably and in closed-form via Algorithm 1 (or Algorithm 3). Therefore, when the feature functions
ϕθ are indexed by hyper-parameters θ (e.g., the bandwidth parameter of an RBF kernel, or the hidden
weights of a deep neural network kernel), we can combine Algorithm 1 (or Algorithm 3) with a
pre-existing learning method for the hyperparamters to form a coherent procedure that jointly learns
the feature functions and the GP posterior.

Concretely, for example, given a hyperparameter learning procedure update_hyper that relies on
model prediction (E[β],Cov[β]), we can consider the below meta-algorithm for alternative inference:

Algorithm 4 Joint learning of feature functions and the GP posterior. Alternative Inference.

1: Input: Training data mini-batches {(Xm,ym)}Mm=1. Fixed feature function ϕθ : X → RD.
2: Output: Learned hyperparameter θ̂. Posterior mean and variance E[β|θ̂]D×1, Cov[β|θ̂]D×D.
3: Initialize: Hyperparameter θ0.
4: for iterations t = 1 to T do
5: Update GP posterior based on θt−1: E[β|θt−1], Cov[β|θt−1]. (using Algorithm 1 or 3)
6: Update hyperparameter θt−1 → θt based on GP estimate. (using update_hyper)
7: end for
8: Set θ̂ = θT .
9: Compute E[β|θ̂], Cov[β|θ̂] (using Algorithm 1 or 3).

This is essentially the idea behind many classical GP kernel learning algorithm. For example, for
RBF kernel, θ can be the kernel bandwidth parameter, and update_hyper is the gradient-based
update procedure with respect to marginalized likelihood or leave-one-out cross-validation error (see
[Rasmussen and Williams, 2005], Chapter 5.4, where both of these quantities are generally computed
by integrating over the model’s predictive posterior). Or, Algorithm 4 can be a MCMC procedure for
the joint inference of θ and GP posterior, where update_hyper is essentially a Metropolis-Hasting
or Hamiltonian Monte Carlo step with respect to the model likelihood5.

Alternatively, the hyperparameters can be learned using a procedure that does not rely on model
posterior (E[β],Cov[β]). In this case, we can simply first learn the hyperparameter θ̂ (e.g., for neural
network kernel, we can learn the hidden weights of the neural networks using SGD with respect to a

5In this latter case, the algorithm can be modified to return the full samples of {θt}Tt=1 and their corresponding
conditional posterior samples {E[β|θt],Cov[β|θt]}Tt=1.
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target loss) and then perform posterior inference using Algorithm 1 or 3. Denoting such procedure as
pretrain_hyper, this leads to the below "pre-training"-style meta-algorithm for joint inference:

Algorithm 5 Joint learning of feature functions and the GP posterior. Pretraining.

1: Input: Training data mini-batches {(Xm,ym)}Mm=1. Fixed feature function ϕθ : X → RD.
2: Output: Learned hyperparameter θ̂. Posterior mean and variance E[β|θ̂]D×1, Cov[β|θ̂]D×D.
3: Compute hyperparameter θ̂ using pretrain_hyper.
4: Compute E[β|θ̂], Cov[β|θ̂] (using Algorithm 1 or 3).

This is essentially the core idea behind some of the classical or state-of-the-art neural Gaussian
process algorithms (e.g., [Hinton and Salakhutdinov, 2007] or [Liu et al., 2020]), where a Gaussian
process model is fit on top of the basis functions (i.e., the hidden features) of a neural network. There,
the hidden weights of the neural network can be first learned via regular SGD-based inference with
respect to the MAP objective. Then, in the final epoch, the GP posterior is computed conditional on
the learned parameters using Algorithm 1 (see, e.g., Algorithm 1 of [Liu et al., 2020]). The similiar
idea can be applied to the tree-based models. For example, the partition rules in a decision-tree
kernel can be first learned via a conventional tree-learning procedure [Geurts et al., 2006]. Then, a
Gaussian process posterior can be fitted to the decision tree by leveraging its featurized representation
(Equation (11)).
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B Featurized Representation of ML Models

The second key advantage of the feature-based representation (3) is its generality: a wide range of
machine learning models can be written in term of the feature-based form f(x) = ϕ(x)⊤β Rahimi
and Recht [2007], Davies and Ghahramani [2014], Lee et al. [2017], making the Gaussian process a
unified framework for quantifying model uncertainty with a wide array of modern machine learning
models. This section enumerates a few important examples:

Generalized Additive Models (GAM). For a regression task with d input features, a generalized
additive model (GAM) has the form f(x) = β0 +

∑d
j=1 βjhj(x

j), where h′js are flexible functions
(e.g., splines) with bounded norm Hastie et al. [2009]. GAM induces a d-dimensional feature
representation ([Hastie et al., 2009], Chapter 9):

ϕ(x)d×1 = [1, h1(x
1), . . . , hd(x

d)],

where h′js are usually spline functions that are differentiable. In the special case where all h′js are
identity functions, GAM reduces to a linear model, and the corresponding f = ϕ(x)⊤β becomes a
GP with linear kernel.

Decision Trees. By partitioning the whole feature space into D cells X = ∪D
j=1Xj , a decision tree

model essentially induces a one-hot feature map, e.g.,

ϕ(x)D×1 = [0, . . . , 1, . . . , 0],

where each element is a indicator function 1(x ∈ Xj) for whether the data point x falls into the jth
cell (Figure 2). This connection is crucial for extending Gaussian process treatment to tree models.
Appendix F.1 introduce this formulation in more detail. Following the same construction, the features
learned by the majority of partition-based learning methods (e.g., CART, PRIM, etc.) can be used to
construct Gaussian process kernels.

Random Feature Models. The random-feature model takes the form:

ϕ(x)D×1 =
√
2σ(W⊤x+ b),

where Wd×D and bD×1 are frozen weights initialized from i.i.d. samples from certain fixed distribu-
tions, and σ is an activation function. For example, in the case of classical random Fourier features
whose inner product approximates the RBF kernel, we have σ(·) = cos(·),W iid∼ N(0, 1),b

iid∼
Unif(0, 2π) Liu et al. [2021]. Although first introduced as a scalable approximation to GP models
equipped with certain kernels (e.g., radial basis function (RBF)), the modern literature treats it as a
standalone class of models with its own unique set of theoretic guarantees [Mei and Montanari, 2019,
Jacot et al., 2020, Rahimi and Recht, 2009].

(Deep) Neural Networks. For a trained L-layer neural network of the from f(x) = β⊤gL ·gL−1 · · · ·
g0(x) with gl(x) = σl(W

⊤
l x+ bl), the last-layer representation function

ϕ(x) = gL · gL−1 · · · · g1(x)
can be understood as the feature map. Then, the feature map can be used to construct the Gaussian
process kernel k(x,x′) = ϕ(x)⊤ϕ(x′). This approach was studied extensively in prior literature,
due to a neural network’s appealing ability in learning an effective representation for the task at hand
[Hinton and Salakhutdinov, 2007, Calandra et al., 2016]. Works like [Wilson et al., 2016a,b, Liu
et al., 2020] further extended this in the context of modern deep learning.

Ensembles. An ensemble model of linear models, trees, or neural networks can be written as a mixture
of Gaussian processes. Specifically, an ensemble model can be written as f(x) =

∑M
m=1 αmhm(x),

where h′ms are weak learners such as linear models, trees, or neural networks, and αm are model
weights that are either learned or set to uniform 1

M . This formulation covers well-known examples
such as AdaBoost, boosted trees, and random forests Hastie et al. [2009]. As introduced above, since
many classical weak learners hm = ϕm(x)⊤βm induces a Gaussian process with kernel km via their
feature representation km(x,x′) = ϕm(x′)⊤ϕm(x), the full ensemble model induces a mixture of
Gaussian processes with fixed mixing weights dictated by the ensemble weights {α}Mm=1. That is,
the ensemble induces a Bayesian model f ′(x) =

∑M
m=1 αmh

′(x) where αm’s are fixed constants
and h′m(x)’s are Gaussian process models with prior GP(0, km). In the actual implementation, we
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fit each of the individual GP model h′m(x) following exactly how it is done in the original ensemble
model. For example, for random forest models, we fit each h′m(x) models independently with respect
to the original label y. While not a focus of this work, for gradient boosting models, we fit h′m’s
recursively with respect to the residual y −∑

l<m αlh
′
l(x) [Sigrist, 2020].

B.1 Summary of model assumptions

This section introduces the theoretical conditions on the featurized model f(x) = ϕ(x)⊤β that is
required by the proposed framework (i.e., for satisfying Theorems 1 and 2). The intention of this
section is to provide a centralized place for readers to verify whether a general model would fit into
the framework, and provide pointers to more detailed discussions (e.g., the interpretation of these
conditions for important model classes).

First recall that our measure of variable importance ψj(f) = ||Djf ||2n relies on the differentiation
operator Dj . For continuous features xj ∈ R, the differentiation operator is defined as the conven-
tional partial derivative: Dj : f → ∂

∂xj f , while for discrete features xj ∈ {0, 1}, we overload the
derivative operator as the discrete difference ∂

∂xj f(x) = f(xj = 1,x−j)− f(xj = 0,x−j). In such
way, the differentiation operator is well-defined for both types of features.

Under the above-defined notion of differentiation operator Dj , the proposed framework imposes
below three assumptions on the fitted model f(x) = ϕ(x)⊤β̂ with β̂ ∈ RD:

1. Weak differentiability. For the set of causal features j∗ ∈ A∗, the partial derivative Dj∗f(x)’s
exist almost everywhere for x ∈ X , so that ||Dj∗f(x)||22 > δ for a small positive δ > 0 with non-zero
probability ∀j∗ ∈ A∗.

This is a basic condition to ensures the model f ’s partial derivative is well-defined and can capture the
true variable importance Φj∗(f0) = || ∂

∂xj∗ f0||22. This condition is weaker than full differentiability,
and allows model to have non-differentiable or discontinuous points at discrete locations (e.g., a
ReLU network whose gradient is not well-defined at 0). However, we do note that the fully non-
differentiable models (e.g., decision trees) can still be incorporated into our framework by applying
differentiable approximations (see Appendix F). Remark 2 in Appendix C) provides additional
relevant discussion of this condition.

2. Lipschitz condition. The model f should be Lipschitz with a bounded Lipschitz constant
C < ∞, so that |f(x1)−f(x2)|

||x1−x2||2 ≤ C for all pairs (x1,x2) ∈ X × X . Here ||x1 − x2||2 is the L2

metric in X .

The Lipschitz condition is a mild requirement indicating that the model gradient is well-behaved (i.e.,
bounded away from infinity). It is essential for the posterior concentration of the variable importance
metric, and is used to satisfy condition (2) of Theorem 1 (Section 3.2). Appendix E.1 discusses the
Lipschitz condition of important model classes, including Generalized additive models, deep neural
networks, and decision trees under differentiable approximation.

3. Growth condition on model rank (op(
√
n)). Given the feature map ϕ : X ∈ RD and the

data-generating distribution P (x), the rank of the model space H can be empirically measured
as limn→∞ rank(Φ), where Φn×D = [ϕ⊤(x1), . . . , ϕ

⊤(xn)]
⊤ is the feature matrix evaluated at

xi ∼ P (x).

To this end, we require the growth condition of the model rank to not increase faster than op(
√
n), so

that the model complexity is well-controlled. This condition is essential for the BvM phenomenon,
and is used to satisfy condition (4) of Theorem 2 (see Section 3.2 for related discussion). This
condition is easily satisfied by ML models in practice. For example, since the model rank is upper
bounded by the dimension of the feature map D, models with fixed feature dimension trivially
satisfies this condition. This growth condition can also be satisfied by adaptive-rank models such
random forest or sparse neural networks, and are in fact much less stringent than what is required by
the BvM theorems in the existing literature. See Appendix E.2 for detailed discussion.

21



C Proof for Posterior Convergence

Proof for Theorem 1
Recall the list of technical conditions:

i) (Convergence of Prediction Function f ) The posterior distribution Πn(f) converges
toward f0 at a rate of ϵn. (Note that in nonparametric learning setting, this rate is not faster
than Op(n

− 1
2 ) which is the optimal parametric rate);

ii) (Well-conditioned Derivative Functions) Dj : f → ∂
∂xj f the differentiation operator is

bounded: ∥Dj∥2op = inf{C ≥ 0 : ∥Djf∥22 ≤ C∥f∥22, for all f ∈ Hϕ};

Proof. Denote An = {f : ∥f − f0∥2n > Mnϵn} and Bn = {f : |ψj(f)−Ψj(f0)| > Mnϵn}, then
showing the statement in Theorem 1 is equivalent to showing Πn(Bn) → 0.

Specifically, we assume below two facts hold:

Fact 1. |ψj(f)− ψj(f0)| ≤ ∥Djf −Djf0∥2n
Fact 2. supj∈{1,...,d} |ψj(f0)−Ψj(f0)| ≲ ∥f − f0∥2n

Because if the above facts hold, we then have

sup
j∈{1,...,d}

|ψj(f)−Ψj(f0)| ≤ sup
j∈{1,...,d}

|ψj(f)− ψj(f0)|+ sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)|

≤ sup
j∈{1,...,d}

∥Djf −Djf0∥2n + sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)|

≤ sup
j∈{1,...,d}

∥Djf −Djf0∥22 +Op(n
− 1

2 ) + sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)|

≤ C∥f − f0∥22 +Op(n
− 1

2 ) + sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)|

(Dj is bounded)

≤ C∥f − f0∥2n +Op(n
− 1

2 ) + sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)|

≲ ∥f − f0∥2n.
It then follows that:

E0Πn

(
sup

j∈{1,...,d}
|ψj(f)−Ψj(f0)| ≥Mnϵn

)
≲ E0Πn

(
∥f − f0∥2n ≥M ′

nϵn

)
→ 0.

We now show Facts 1 and 2 are true.

• Fact 1 follows simply from the triangular inequality:

|ψj(f)− ψj(f0)| =
∣∣∣∥Djf∥2n − ∥Djf0∥2n

∣∣∣
= max

{
∥Djf∥2n − ∥Djf0∥2n, ∥Djf0∥2n − ∥Djf∥2n

}
≤ ∥Djf −Djf0∥2n.

• Fact 2 follows from standard Bernstein-type concentration inequality (see, e.g., Lemma
18 of Rosasco et al. [2013]). Specifically, for |Djf0(x)|2 a random variable with respect
to probability measure P (x) that is bounded by L. Given n iid samples {|Djf0(xi)|2}ni=1,
recall that ψj(f0) =

1
n

∑n
i=1 |Djf0(xi)|2 and Ψ(f0) = E(|Djf0|2), then with probability

1− η:

|ψj(f0)−Ψ(f0)| ≤ n−
1
2 ∗

(
2
√
2 ∗ L ∗ log(2/η)

)
,

that is, |ψj(f0) − Ψ(f0)| → 0 at the rate of O(n−
1
2 ). Notice that O(n−

1
2 ) is the optimal

parametric rate that cannot be surpassed by the convergence speed of the ReLU networks
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(recall the typical convergence rate is ϵn ≍ n−
β

2β+δ ∗ log(n)γ for some δ > 0 and γ > 1).
Therefore we have:

sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)| ≲ ∥f − f0∥2n.

Remark 1 (Convergence of L2 norm). The sample L2 norm and the expected L2 norm are closed to
each other at the rate ofO(n−

1
2 ). This will happen when x’s are sampled randomly from a probability

measure P (x).
Remark 2 (A condition on weak differentiabilty). Although not listed explicitly in the main theorem,
we also impose a weak technical condition (i.e., Non-trivial Gradient Function) on model function f
and true function f0 to avoid certain pathological situations:

iii) (Non-trivial Derivative Functions) Denote j∗ ∈ {1, . . . , d∗} the index of the causal
variables, and recall PX (x) the distribution of the input features x. Then there exists δ > 0
such that for all j∗ ∈ {1, . . . , d∗}, ||Dj∗f0(x)||22 > δ and ||Dj∗f(x)||22 > δ with non-zero
probability.

Note that this condition is weak in that it only requires the partial derivative under model function
f and f0 are not zero almost everywhere. For differentiable functions under continuous features,
this should be satisfied by definition. This basic technical condition is intended to remove two
pathological situations. The first is non-differentiable models (e.g., tree models), whose gradient
is zero almost everywhere in the feature space. The second case are the discrete features, where
the traditional sense of partial derivative is not well defined. In Appendix F, we discuss how to
incorporate non-differentiable models and discrete features into our framework. Briefly, a non-
differentiable model (e.g., partition-based models) can be made differentiable by employing a
differentable approximation. For discrete features, we can compute the discrete version of the
differentiable operator, e.g., Djf(x) = f(xj = 1,x−j)− f(xj = 0,x−j) for binary feature where
xd×1 = [xj , [x−j ]⊤(d−1)×1]

⊤ (known as contrast in statistics). Notice that this discrete differentiation
operator Djf(x) is a linear function of the original prediction function f . As a result, the posterior
convergence of ψj with respect to this operator is again guaranteed by the convergence of the
prediction f .
Remark 3 (Convergence guanrantee of f ). Note that our result focuses on posterior concentration
of variable importance ψj , not of prediction function f . In fact, the convergence of ψj depends on
the convergence of the prediction function f , as introduced in the assumptions of 1. In practice,
it is up to the practitioners to select a proper prediction model f that has a convergence guarantee
for the task at hand. Specifically, we showed that for any model, if its prediction function has
a posterior concentration guarantee, its variable importance has a convergence guarantee as well.
To this end, we notice that majority of popular machine learning methods (e.g., random features,
neural networks, tree ensembles) has a posterior concentration guarantee for target functions in
certain general function space (e.g., the space of α-Hölder space), given the recent advances in the
approximation and convergence guarantees of parametric (finite-dimensional) ML models in both
frequentist and Bayesian settings Ročková and van der Pas [2020], Wang and Rocková [2020], Liu
[2021], Schmidt-Hieber [2020].

Furthermore, we note that although the ML models covered in our work are not traditional universal
kernels Micchelli et al. [2006], most of them (e.g., random features, neural networks, tree ensembles)
do come with a universal approximation guarantee for an appropriately defined function class Rahimi
and Recht [2008], Biau [2012], Schmidt-Hieber [2020]. As a result, the kernel functions defined by
these models provide basis functions that span function spaces that are often dense in an infinite-
dimensional RKHS, implying that the resulting model can approximate f0 to arbitrary precision
Rahimi and Recht [2008]. Please see Rahimi and Recht [2008], Hornik et al. [1989], Biau [2012] for
specific results for random features, neural networks and random forests.
Remark 4 (Compatibility with high-dimensional settings). Although in the main text, we assumed
the data dimension d is fixed with respect to n (see Section 2, Problem Setup). Theorem 1 in fact
does not rely on a fixed d, and the proof can go through whenever d = o(n). That is to say, the
posterior concentration of variable importance measure ψj(f) can occur even in the high-dimensional
settings of d, which is allowed to grow with sample size n. In comparison, the Bernstein-von Mises
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(BvM) result in Theorem 2 implies a stronger sense of convergence (i.e., convergence in distribution)
and requires more stringent conditions (i.e., fixed data dimension d). This is in fact consistent with
modern BvM analysis of Bayesian ML models, where a fixed data dimension is commonly assumed
[Wang and Rocková, 2020, Rockova, 2020, Yang et al., 2015, Burnaev et al., 2013, Castillo and
Rousseau, 2015].

C.1 A finite-sample error bound

Although Theorem 1 is stated as an asymptotic result, we note that if the error bound for the prediction
function ϵn (Condition 1) is a finite-sample error bound, then a finite-sample error bound for the
variable importance ψj(f) can be trivially derived by extending the proof of Theorem 1. For example,
we can have the below finite-sample concentration result:
Proposition 3 (Finite-sample Error Bound for ψj(f)). Assume

i) (Finite-sample Error Bound for Prediction Function f ) The posterior distribution of f on
average converges toward f0 at a finite-sample rate of ϵn, such that E0En∥f − f0∥2n ≤ ϵn
and ϵn is finite-sample error bound that is an explicit function of n, andEn is the expectation
with respect to the posterior distribution Πn.

ii) (Well-conditioned Derivative Functions) Dj : f → ∂
∂xj f the differentiation operator is

bounded: ∥Dj∥2op = inf{C ≥ 0 : ∥Djf∥22 ≤ C∥f∥22, for all f ∈ Hϕ};

Also assumes the data x ∼ P (x) is generated with respect to probability measure P (x) that is
bounded by L. Then, with probability 1 − η, the posterior distribution for ψj(f) = ∥ ∂

∂xj f∥2n
contracts toward Ψj(f0) = ∥ ∂

∂xj f0∥2PX
at a finite-sample rate ϵ′n such that:

E0En( sup
j∈{1,...,d}

|ψj(f)−Ψj(f0)|) ≤ ϵ′n

where
ϵ′n = C ∗ ϵn + n−

1
2 ∗

(
2
√
2 ∗ L ∗ log(2/η)

)
.

Proof. Recall in Fact 2 of the proof of Theorem 1. By Bernstein inequality, we have, with probability
1− η:

|ψj(f0)−Ψ(f0)| ≤ n−
1
2 ∗

(
2
√
2 ∗ L ∗ log(2/η)

)
.

Then, following the same line of argument as the proof of Theorem 1, we have:

sup
j∈{1,...,d}

|ψj(f)−Ψj(f0)| ≤ sup
j∈{1,...,d}

|ψj(f)− ψj(f0)|+ sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)|

≤ sup
j∈{1,...,d}

∥Djf −Djf0∥2n + sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)|

≤ C∥f − f0∥2n + sup
j∈{1,...,d}

|ψj(f0)−Ψj(f0)|.

≤ C∥f − f0∥2n + n−
1
2 ∗

(
2
√
2 ∗ L ∗ log(2/η)

)
.

Now, take expectation E0En for both sides, we arrive at:

E0En

(
sup

j∈{1,...,d}
|ψj(f)−Ψj(f0)|

)
≤ CE0En∥f − f0∥2n + n−

1
2 ∗

(
2
√
2 ∗ L ∗ log(2/η)

)
= Cϵn + n−

1
2 ∗

(
2
√
2 ∗ L ∗ log(2/η)

)
.
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D Proofs for Asymptotic Normality

Lemma 4. Functional Delta Method (univariate) Suppose Pn is the empirical distribution of a
random sample X1, . . . , Xn from a distribution P , and ϕ is a function that maps the distribution of
interest into some space. Define the Gateaux derivative

ϕ′P (δx − P ) =
d

dt
|t=0 ϕ((1− t)P + tδx) = IFϕ,P (x),

which is also the Influence Function, and γ2 =
∫
IFϕ,P (x)

2dP . If integration and differentiation
can be exchanged, then ∫

ϕ′P (δx − P )dP = 0.

Further, if
√
nRn

P→ 0, where

Rn = ϕ(Pn)− ϕ(P )− 1

n

∑
i

ϕ′P (δxi
− P ),

then from the Central Limit Theory that
√
n(ϕ(Pn)− ϕ(P ))

d→ N (0, γ2).

Lemma 5. Functional Delta Method (multivariate) Suppose Pn is the empirical distribution of a
random sample X1, . . . , Xn from a distribution P , and ϕ : Rd → Rk. Define the Gateaux derivative

ϕ′
P (δx − P ) =

d

dt
|t=0 ϕ((1− t)P + tδx) = IFϕ,P (x),

which is also the Influence Function, and [V0]i,j =
∫
⟨[IFϕ,P (x)]i, [IFϕ,P (x)]j⟩dP . If integration

and differentiation can be exchanged, then∫
ϕ′

P (δx − P )dP = 0.

Further, if
√
nRn

P→ 0, where

Rn = ϕ(Pn)− ϕ(P )−
1

n

∑
i

ϕ′
P (δxi

− P ),

then from the Central Limit Theory that
√
n(ϕ(Pn)− ϕ(P )) d→ MVN (0,V0).

Proof for Theorem 2
To make our assumptions explicit, we list out a collection of easily-satisfied technical conditions.

(1) f is a consistent estimator of f0;

(2) Dj is bounded: ∥Dj∥2op = inf{C ≥ 0 : ∥Djf∥22 ≤ C∥f∥22, for all f ∈ Hϕ};

(3) f0 is square-integrable over the support of X and ∥f0∥2 = 1;

(4) rank(Hj) = op(
√
n);

Proof. SinceHj = D⊤
j Dj , Condition (2) is equivalent to the largest eigenvalue ofHj being bounded,

i.e., λmax(Hj) = Op(1). From the definition in Equation (10), we have

ψ′
j(f) =

∂

∂f
ψj(f) =

2

n
Hjf.
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Define a mean functional m : F → E(F ), where F is the distribution. Then in our case, f0 =
E(F ) = m(F ). According to Lemma 4, we have

ψj(f0) = ψj(E(F )) = ψj(m(F )) = ϕ(F ),

i.e., ϕ(·) = ψj(m(·)). Therefore,

ϕ′F (δy − F ) = ψ′
j(m(δy − F ))

=
d

dt
|t=0 ψj(m((1− t)F + tδy))

=
d

dt
|t=0 ψj((1− t)f0 + ty)

=
d

dt
|t=0

1

n
[(1− t)f0 + ty]⊤Hj [(1− t)f0 + ty]

=
2

n
(y − f0)

⊤Hjf0

= IFϕ,F (y).

On the other hand,

γ2 =

∫
IFϕ,F (y)

2dF

= 4

∫
1

n
· f⊤0 Hj(y − f0)(y − f0)

⊤Hjf0 ·
1

n
dF

= 4σ2∥Hjf0∥2n.
Moreover, we have ∫

ϕ′F (δy − F )dF =
2

n

∫
(y − f0)

⊤Hjf0dF = 0,

and
√
nRn =

√
n[ϕ(Fn)− ϕ(F )− 1

n

∑
i

ϕ′F (δyi
− F )]

=
√
n[ψj(f)− ψj(f0)−

1

n
· 2
n

∑
i

(yi − f0,i)
⊤[Hjf0]i]

=
√
n[

1

n
· (f⊤Hjf − f⊤0 Hjf0)−

1

n
· 2
n
(y − f0)

⊤Hjf0]

=
1√
n
[f⊤Hjf − f⊤Hjf0 + f⊤Hjf0 − f⊤0 Hjf0 −

2

n
(y − f0)

⊤Hjf0]

=
1√
n
[(f − f0)

⊤Hj(f + f0)−
2

n
(y − f0)

⊤Hjf0]

=
1√
n
[(f − f0)

⊤Hj(f − f0) + 2(f − f0)
⊤Hjf0 −

2

n
(y − f0)

⊤Hjf0]

=
1√
n
[ϵ̂⊤nHj ϵ̂n + 2ϵ̂⊤nHjf0 −

2

n
(y − f0)

⊤Hjf0] (12)

=
1√
n
op(

√
n) (13)

= op(1)
P→ 0,

where ϵ̂n = f−f0. We can prove the result from Equation (12) to Equation (13) as following: Denote
k = rank(Hj), then the eigendecomposition of Hj is Hj = UjΛU

⊤
j , with Uj = [u1, . . . ,uk] a

n× k orthogonal matrix and Λ a k× k diagonal matrix with elements {λi}ki=1 being the eigenvalues
of Hj , then define

v = U⊤
j ϵ̂n =

u
⊤
1 ϵ̂n
...

u⊤
k ϵ̂n

 .
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Therefore,

ϵ̂⊤nHj ϵ̂n = v⊤Λv =

k∑
i=1

λiv
2
i

≤ λmax(Hj)

k∑
i=1

v2i

= λmax(Hj)

k∑
i=1

u⊤
i Σ̂nui

≤ λmax(Hj)

k∑
i=1

λmax(Σ̂n)

= k · λmax(Hj) · λmax(Σ̂n)

= op(
√
n) ·Op(1) ·Op(1)

= op(
√
n),

where E(ϵ̂n) = 0, cov(ϵ̂n) = Σ̂n, and λmax(Σ̂n) is the largest eigenvalue of Σ̂n.

On the other hand, 2ϵ̂⊤nHjf0 = op(
√
n) because f is a consistent estimator of f0. Moreover, since

yi − f0,i = Op(1), we know 2
n (y − f0)

⊤Hjf0 = op(
√
n). So,

ϵ̂⊤nHj ϵ̂n + 2ϵ̂⊤nHjf0 −
2

n
(y − f0)

⊤Hjf0 = op(
√
n) (14)

Therefore, by Lemma 4, we have

√
n(ψj(f)− ψj(f0))

d→ N (0, 4σ2∥Hjf0∥2n).

Theorem 6 (Asymptotic Distribution of Variable Importance (multivariate)). Suppose yi = f0(xi) +

ei, ei
i.i.d.∼ N (0, σ2), i = 1, . . . , n. Denote ψ = [ψ1, . . . , ψd] for ψj as defined in Equation (10). If

the following conditions are satisfied:

i) rank(Hj) = op(
√
n), j = 1, . . . , d;

ii) f0 is square-integrable over the support of X and ∥f0∥2 = 1;

iii) f is a consistent estimator of f0;

iv) Dj is bounded: ∥Dj∥2op = inf{C ≥ 0 : ∥Djf∥22 ≤ C∥f∥22, for all f ∈ Hϕ}.

Then ψ(f) asymptotically converges toward a multivariate normal distribution surrounding ψ(f0),
i.e.,

√
n(ψ(f)−ψ(f0)) d→ MVN (0,V0),

where V0 is a d× d matrix such that [V0]j1,j2 = 4σ2⟨Hj1f0, Hj2f0⟩n.

Proof. Define a mean function m : F → E(F ), where F is the distribution. Then in our case,
f0 = E(F ) = m(F ). According to Lemma 5, we have

[ψ(f0)]j = ψj(E(F )) = ψj(m(F )) = [ϕ(F )]j ,
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i.e., ϕ(·) = ψ(m(·)) and [ϕ(·)]j = ψj(m(·)), where ϕ : R → RP . Therefore,

[ϕ′
F (δy − F )]j = ψ′

j(m(δy − F ))

=
d

dt
|t=0 ψj(m((1− t)F + tδy))

=
d

dt
|t=0 ψj((1− t)f0 + ty)

=
d

dt
|t=0

1

n
[(1− t)f0 + ty]⊤Hj [(1− t)f0 + ty]

=
2

n
(y − f0)

⊤Hjf0

= [IFϕ,F (y)]j .

On the other hand,

[V0]j1,j2 =

∫
⟨[IFϕ,F (y)]j1, [IFϕ,F (y)]j2⟩dF

= 4

∫
1

n
· f⊤0 Hj1(y − f0)(y − f0)

⊤Hj2f0 ·
1

n
dF

= 4σ2⟨Hj1f0, Hj2f0⟩n.
Moreover, we have

[

∫
ϕ′

F (δy − F )dF ]j =
2

n

∫
(y − f0)

⊤Hjf0dF = 0,

and

[
√
nRn]j =

√
n[[ϕ(Fn)]j − [ϕ(F )]j −

1

n

∑
i

[ϕ′
F (δyi

− F )]j ]

=
1√
n
[f⊤Hjf − f⊤0 Hjf0 −

2

n
(y − f0)

⊤Hjf0]

=
1√
n
[(f − f0)

⊤Hj(f − f0) + 2(f − f0)
⊤Hjf0 −

2

n
(y − f0)

⊤Hjf0]

=
1√
n
[ϵ̂⊤nHj ϵ̂n + 2ϵ̂⊤nHjf0 −

2

n
(y − f0)

⊤Hjf0] (15)

=
1√
n
op(

√
n) (16)

= op(1)
P→ 0,

where ϵ̂n = f − f0 and the reason from Equation (15) to Equation (16) is because of Equation (14).
Therefore, by Lemma 5, we have

√
n(ψ(f)−ψ(f0)) d→ MVN (0,V0),

where V0 is a d× d matrix such that [V0]j1,j2 = 4σ2⟨Hj1f0, Hj2f0⟩n.
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E Additional Theoretical Discussions

E.1 Lipschitz condition of ML models

The condition of the differentiation operator Dj : f → ∂
∂xj f being bounded is guaranteed if f is

differentiable and Lipschitz, so that |f(x1)−f(x2)|
||x1−x2||2 ≤ C where ||x1 − x2||2 is the L2 metric in X .

Fortunately, a wide range of machine learning models (under proper regularity condition) satisfy the
Lipschitz condition. Below we consider a few important examples:

Generalized Additive Models (GAM). The generalized additive models is often written as the sum
of smooth functions,

f(x) = β0 +

d∑
j=1

βjhj(x
j).

As a result, f is Lipschitz if every individual smooth function hj is Lipschitz. To this end, we notice
that in the GAM algorithm, the hj’s are commonly estimated under a smoothness constraint in terms
of its second derivatives [Wood, 2006] ψ2,j =

∫
X | ∂2

∂(xj)2 f(x
j)|2dx, which essentially imposes an

upper bound on the first-order partial derivatives ∂
∂xj f(x

j) (assuming bounded support). As a result,
the Lipschitz of GAM function is guanranteed by the virtue of its smoothing constraints.

Decision Trees. Interestingly, we can understand the Lipschitz condition of a tree-type model by
investigating its model structure from a neural network lens. Specifically, for a depth-L tree model
with D leaf nodes, Karthikeyan et al. [2021] shows that a it can be written in the form of a neural
network layer:

f(x) =

D∑
k=1

qk(x)βk, where qk(x) = σstep

( L∑
l=1

σstep

(
(x⊤wk,I(l,k) + bk,I(l,k))S(l, k)

)
− h

)
.

Here qk(x) is a re-parametrization for the indicator function of whether x belongs to the kth leaf node,
i.e.,

∏L
l=1 σstep

[
(x⊤wk,I(l,k) + bk,I(l,k))S(l, k)

]
. (See Appendix A.1 or Section 3 of Karthikeyan

et al. [2021] for full detail.) Briefly, σstep(x) = I(x > 0) is the step function, I(l, k) indicates the
index for the ancestor node for the kth leaf at depth l, and S(l, k) ∈ {−1, 1} is a sign function for
whether kth leaf is the right subtree of node I(l, k). As a result, qk(x) measures whether x satisfies
every ancestry decision rules I

[
S(l, k)(x⊤wk,I(l,k) − bk,I(l,k)) > 0

]
at every level l ∈ {1, . . . , L},

where wk,I(l,k) is a d× 1 one-hot vector indicating the index of feature being selected by that node.

As a result, the tree model can be viewed as a wide 1-hidden layer neural network model with bounded
activation function σstep and hidden weights bounded within [−1, 1], which leads to a Lipschitz
function. Furthermore, the function f(x) remains Lipschitz if we replace the non-differentiable σstep

with a differentiable activation function that is Lipschitz (e.g., Appendix F).

Random Feature Models. The random feature methods are also structured the same way as
f(x) = σ(W⊤x+b), where W are frozen weights that are independently sampled from distribution
with finite second moments (e.g., Gaussian distribution), and σ is a trignomitric function (sin and
cos), or common activation functions that are used in the neural networks [Choromanski et al., 2018,
Liu et al., 2021]. As a result, f(x) is also Lipschitz with high probability. In practice, the Lipschitz
condition can be guaranteed in absolute terms by truncating the individual terms in W to be within a
range [−C,C] (e.g., C = 4. for W iid∼ N(0, 1)), which often leads to almost identical performance.

(Deep) Neural Networks. Both deep neural networks and random-feature models can be written as a
composition of functions:

f(x) = β⊤gL · gL−1 · · · · g1(x), where gl(x) = σ(W⊤
l x+ bl).

As a result, due to chain rule, f is Lipschitz if each of its individual layer gl is Lipschitz [Virmaux
and Scaman, 2018]. Similarly, since the layer function gl is a composition of the linear function
W⊤

l x+ bl and a non-linear activation σ, gl is guanranteed to be Lipschitz if both the linear function
is bounded with high probability, and the activation function σ is also Lipschitz. In the context
of neural network learning, this is often satisfied by the common practice of imposing L1 or L2

regularization to neural network weights, and by using standard choices of activation functions such
as ReLU, leaky ReLU, tanh, etc [Virmaux and Scaman, 2018, Liu, 2019].
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E.2 Discussion on Bernstein-von Mises (BvM) phenomenon

Dimensionality of the Derivative Function Space. Denote H the space of model functions spanned
by the basis functions {bk(x)}Dk=1, such that f(x) =

∑D
k=1 αkbk(x). Then, the space of partial

derivative function is Hj = { ∂
∂xj f |f ∈ H}. Furthermore, for every element in Hj , we have:

∂

∂xj
f =

D∑
k=1

αk · [ ∂
∂xj

bk(x)].

That is, the derivative function space Hj can be spanned by { ∂
∂xj bk(x)}Dk=1, the partial derivatives

of the basis functions for the original model space H. Furthermore, since differentiation is a linear
operator, the set of linearly independent functions in { ∂

∂xj bk(x)}Dk=1 should be equivalent to that
in {bk(x)}Dk=1. As a result, the effective dimensionality of the derivative function space Hj can be
controlled by the effective dimensionality of the model space H. As an aside, for a model space Hϕ

induced by the feature representation ϕ : X → RD, its effective dimensionality can be measured
by the rank of the feature matrix rank(Φ) for Φ = [ϕ(x1)

⊤, . . . , ϕ(xn)
⊤]⊤. Alternatively, in the

nonparametric literature, the effective dimensionality can also be measured by model-specific notions
of "parameter count", such as the number of leaf partitions of a tree model, or the number of non-zero
hidden weights of a deep neural network [Schmidt-Hieber, 2020].

Effective Dimensionality of Statistical ML Models. The BvM result (Theorem 2) contains a key
condition (4) Hj = op(

√
n). As stated in the main text, this condition can be satisfied if the effective

dimensionality of model space Hϕ does not grow faster than op(
√
n) with respect to the data.

Combined with the posterior convergence condition (i.e., (1)-(2) from Theorem 1), (4) provides
a more precise characterization of the convergence behavior of the model f ∈ Hϕ for the BvM
phenomenon to occur. Loosely, (1)-(2) states that the model f should balance its bias-variance
tradeoff well enough so that the overall error rate is controlled at the rate ϵn. Then, (4) goes one step
further and states that within this bias-variance tradeoff, the variance term must be well managed,
which is guaranteed by bounding the model complexity at the rate of op(

√
n).

As a matter of fact, for a wide class of ML models, a op(
√
n) bound on model complexity is not

a stringent requirement, as it only prescribes a growth rate of model complexity with respect to
data size. For example, the effective data size can be C ∗ √

n for an bounded but very large C).
Interestingly, condition (4) is in fact equivalent or looser than some of the previous BvM results
obtained for specific ML models. For example, the decision tree models (e.g., BART) obtains a
optimal rate when its number of partitions grow at a rate ofO((n/logn)d/2γ+d) for learning the space
of γ-Hölder continuous functions with γ > d/2 [Rockova, 2020], which leads to a more stringent
o(
√
n/logn) < o(

√
n) bound on complexity. A similar result also holds for deep learning models,

where the number of non-zero model weights is controlled at O(nd/(2γ+d)) for γ > d
2 ([Wang and

Rocková, 2020], Theorem 3.2), which also leads to a rate of o(
√
n).
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F Incorporating Non-differentiability

F.1 Incorporating Non-differentiable Model: featurized decision trees (FDT)

Several techniques have been proposed to learn a (soft) tree-structured model using gradient-
optimization methods. However, either their accuracies do not match the state-of-the-art tree learning
methods Yang et al. [2018] or result in models that do not obey the tree structure Irsoy et al. [2012],
Frosst and Hinton [2017], Biau et al. [2019], Tanno et al. [2019]. We propose to translate a learned tree
into its exact feature representation, and leverage this representation to unlock a rigorous uncertainty-
aware variable importance estimation method that was previously not available for this class of
models.

Feature-based Representation of a Decision Tree For a certain decision tree m in a learned
random forest, consider the following feature map ϕ : Rd → RD:

1. The decision tree partitions the whole feature space into D cells X = ∪D
k=1Xk. Label the

cells of the generated partition by 1, 2, . . . , D in arbitrary order.
2. To encode a data point x ∈ Rd, look up the label y of the cell that x falls into and set ϕ(x)

to be the (column) indicator vector of whether x ∈ Xk, i.e., ϕ(x) = {1(x ∈ Xk)}Dk=1.

The dimensionality D of ϕ equals the number of leaf nodes, and each feature mapping ϕ(x) takes the
one-hot form. This feature map ϕ induces a kernel

kdt(x,x
′) := ϕ(x)⊤ϕ(x′) =

{
1 if x,x′ in the same partition cell
0 otherwise

As a result, the feature mapping ϕ(x) defines a featurized decision tree.

x �(x)>

x1 [0, 1, 0]
x2 [0, 1, 0]
x3 [0, 0, 1]
x4 [1, 0, 0]
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Figure 2: Feature expansion of a decision tree evaluated on 4 data points in R2. The middle panel shows the
partition of R2 defined by the decision tree on the left. On the right is the associated feature map.

As introduced in Section 3.1, the solution for β is (Φ⊤Φ + σ2ID)−1Φ⊤y. Note that under the
decision tree kernel, Φ⊤Φ = diag(n1, . . . , nD) is a diagonal matrix of the number of training
samples in each leaf cell. Therefore, the time complexity to invert the matrix (Φ⊤Φ + σ2ID) is
O(D).

Differentiable Approximation The random features generated by Figure 2 can be written as

ϕ(x) = (1(x2 ≤ 2.3),1(x2 > 2.3,x1 ≤ 7.1),1(x2 > 2.3,x1 > 7.1))

= (1(x2 ≤ 2.3),1(x2 > 2.3) · 1(x1 ≤ 7.1),1(x2 > 2.3) · 1(x1 > 7.1)).

To calculate variable importance, the indicator function needs to be approximated by a smooth
function, so that we can take the derivative with respect to each feature. In this work, we consider
approximating the indicator function using the sigmoid function Irsoy et al. [2012]:

1(x > a) ≈ ic(x > a) =
1

1 + exp(−c · (x− a))
,

and analogously, 1(x ≤ a) = 1− ic(x > a). Here c is a hyperparameter that controls the smoothness
of the approximation. A larger c leads to a better approximation to the random forest algorithm,
but may result in a non-smooth prediction function which may be undesirable for approximating an
continuous regression function f0.
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F.2 Incorporating Discrete Features

Compared to the empirical derivative norm, a more principled way to measure the variable importance
of a discrete feature is contrast, which is the square of the difference in predictions when fixing the
feature to a certain value versus fixing it to the other value, while keeping the other features the same.
Specifically, we can consider defining a discrete version of the derivative:

Djf = f(xj = 1,x−j)− f(xj = 0,x−j), (17)

where x−j denotes all features with xj removed.

Then, in the case where the feature takes two values, we can set one of them as the reference group
with value 0 and the other group with value 1,

Ψj(f) = ∥Djf∥22 =

∫
x∈X

|Djf |2dP (x)

=

∫
x∈X

|f(xj = 1,x−j)− f(xj = 0,x−j)|2dP (x),

Since P (x) is not known from the training observations, Ψj(f) can be approximated by its empirical
counterpart:

ψj(f) = ∥Djf∥2n =
1

n

n∑
i=1

|Djf |2.

=
1

n

n∑
i=1

|f(xj
i = 1,x−j

i )− f(xj
i = 0,x−j

i )|2.

In the case where the feature takes multiple groups, we can calculate the pairwise contrasts and take
the L2 norm. Empirically, using contrast for discrete feature improves the performance of variable
importance estimation. As contrast is a linear function of the original prediction function f , the
posterior convergence of ψj with respect to this operator is guaranteed by the convergence of the
prediction function f . Similarly, the BvM phenomenon is guaranteed when Djf is bounded and
Hj = D⊤

j Dj has rank op(
√
n) (i.e., the similar set of conditions in Theorem 2 but with the original

Dj replaced by its discrete counterpart Equation (17)).

32



G Further Experiment Detail

G.1 Methods

We consider three main classes of models (Table 1).

I Random Forests (RF)
• FDT: Given a trained forest, we quantify variable importance using ψj by translating

it to an ensemble of FDT (Appendix F.1). We use a variant of random forest here,
extra trees Geurts et al. [2006] since it performs better. We use 50 trees to build the
forest and maximum number of leaf nodes for each tree is

√
n log(n). Throughout our

experiment, we fix c = 1 for continuous features calculated using integrated partial
derivatives and fix c = 0.1 for discrete features calculated using contrasts. We use
scikit-learn package in Python to train the random forest.

• RF-impurity [Breiman et al., 1984]: It measures variable importance with their
impurity based on the average reduction of the loss function were the variable to be
removed. We also use extra trees here. We use 50 trees to build the forest and maximum
number of leaf nodes for each tree is

√
n log(n). We use scikit-learn package in

Python to train the random forest.
• RF-knockoff [Candes et al., 2017]: It uses random forest statistics to assess variable

importance in our case. We use knockoff package in R to calculate the statistic.
• Bayesian additive regression trees (BART) Chipman et al. [2010]: It produces a

measure of variable importance by tracking variable inclusion proportions, enabling
variable selection with a user-defined threshold. We use bartMachine package in R
to train the model.

II (Approximate) Kernel Methods & Neural Networks
• Random Fourier Feature model (RFF): We apply ψj to a random-feature model that

approximates a Gaussian process with an RBF kernel Rahimi and Recht [2007], and set
the number of features to

√
n log(n) to ensure proper approximation of the exact RBF-

GP Rudi and Rosasco [2018]. We choose the lengthscale parameter of RBF-GP from a
list of lengthscale candidates {5, 10, 16, 23} based on the prediction performance on
testing data.

• Bayesian kernel machine regression (BKMR) Bobb et al. [2015]: It is based on a GP
with exact RBF kernel and spike-and-slab prior, using posterior inclusion probabilities
to perform variable selection. We use bkmr package in R to train the model and the
number of iterations of the MCMC sampler is set to be 4000.

• Bayesian Approximate Kernel Regression (BAKR) [Crawford et al., 2018]: It is based
on random-feature model with a projection-based feature importance measure and
an adaptive shrinkage prior, using squared estimates of the parameter coefficients to
perform variable selection. We use BAKR repository from the author’s GitHub to train
the model and the number of iterations of the MCMC sampler is set to be 2000.

• Sparse Neural Networks (NN): We apply ψj to a 1-layer neural network with 512
hidden units and L1 regularization (i.e., LASSO net) on the hidden layer, implemented
in the tensorflow.keras framework. We train the model with Adam optimizer and
early stopping with respect to validation RMSE. We sweep the regularization strength
of L1 penalty in exponential grids with exponents {−3,−2,−1, 0, 1., 2, 3}. We also
experimented with deeper layers (up to 3 layers) and observed similar performance.

III Linear Models
• GAM: We apply ψj to a featurized GP representation of the GAM, with the prior

center µ set at the frequentist estimate of the original GAM model obtained from a
sophisticated REML procedure [Wood, 2006]. We use mgcv package in R to train the
model.

• Bayesian Ridge Regression (BRR) Hoerl and Kennard [1970]: It applies a fixed prior
for each feature, using squared estimates of the parameter coefficients to perform
variable selection. We use BGLR package in R to train the model and the number of
iterations of the MCMC sampler is set to be 2000.
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• Bayesian Lasso (BL) Park and Casella [2008]: It developed a Bayesian way to access
the Lasso estimate which allows tractable full conditional distributions, using squared
estimates of the parameter coefficients to perform variable selection. We use BGLR
package in R to train the model and the number of iterations of the MCMC sampler is
set to be 2000.

The results in this paper were obtained using R 4.1.0 or Python 3.7. All experiments were run on a
Linux-based high performance computing cluster using SLURM-managed CPU resources.

G.2 Data

Outcome-generating function As discussed earlier, we generate data under the homoscedastic
Gaussian noise model y ∼ N (f0(x), 0.01) for different sparse functions f0 and features x. Given
n ∈ {100, 200, 500, 1000} observations in d ∈ {25, 50, 100, 200} dimensions, the goal is to model
f0 while identifying the d∗ = 5 features on which f0 depends. To this end we report mean squared
error (MSE) to quantify prediction performance and AUROC scores to quantify variable importance
estimation performance.

We consider four settings of the data-generation function f0:

1) linear: a simple linear function f0(x) = x1 − x2 + x3 + 0.5x4 + 2x5;
2) rbf: a Gaussian RBF kernel with length-scale 1. This kernel represents the space of

functions that are smooth (i.e., infinitely differentiable) and have reasonable complexity (i.e.,
does not have fast-varying fluctuations that are difficult to model);

3) matern32: a matérn 3
2 kernel with length-scale 1. Compared to RBF, it has the same

degree of complexity but is less smooth, in the sense that it represents the space of once-
differentiable functions, but is not necessarily infinitely differentiable;

4) complex: a complicated and non-smooth multivariate function that is outside the RKHS H:
f0(x) =

sin(max(x1,x2))+arctan(x2)
1+x1+x5 +sin(0.5x3)(1+exp(x4−0.5x3))+x32+2 sin(x4)+

4x5, which is non-continuous in terms of x1,x2 but infinitely differentiable in terms of
x3,x4,x5.

Synthetic Benchmarks We create synthetic benchmark datasets of varying number of observations
n and number of features d. The synthetic-continuous dataset uses only continuous features, and the
synthetic-mixture dataset uses a mixture of continuous and discrete features. The synthetic features
are drawn either from Bern(0.5) (if discrete) or Unif(−2, 2) (if continuous). Additionally, each
feature is either causal (i.e., used by f0) or non-causal. For each simulation setting, there are always
d∗ = 5 causal features. Specifically, in the synthetic-continuous dataset, all features are continuous,
while in the synthetic-mixture dataset, there are 2 discrete and 3 continuous causal features, while
there are 2 discrete non-causal features (all the rest of non-causal features are continous).

For each sample size - data dimension scenario, we use the same set of generated features across the
repeated simulation runs.

Socio-economic and Healthcare Data

• adult: 1994 U.S. census data of 48842 adults with 8 categorical and 6 continuous features
Kohavi. The data is publicly available6 and does not contain personally identifiable
information or offensive content. We concatenated the training data (adult.data)
and testing data (adult.test), and remove all observations with missing features.
Additionally, we removed the redundant feature "education", and performed suitable
re-categorization for discrete features: For "race", we encoded "White" as 0 and the rest
as 1; for "sex", we encoded "Female" as 1 and "Male" as 0; for "relationship", we
encoded "Husband" as 0, "Not-in-family" as 1 and the rest as 2; for "workclass", we
encoded "Private" as 0, "Self-emp-not-inc" as 1 and the rest as 2; for "marital_status",
we encoded "Married-civ-spouse" as 0, "Never-married" as 1 and the rest as 2; for
"occupation", we encoded "Prof-specialty" as 0, "Craft-repair" as 1 and the rest as 2;

6https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
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for "native_country", we encoded "United-States" as 0, "Mexico" as 1 and the rest
as 2. The final features in the dataset are: ("race", "sex", "education_num",
"hours_per_week", "age", "relationship", "workclass", "fnlwgt",
"capital_gain", "capital_loss", "marital_status", "occupation",
"native_country"). If the data dimension is higher than 13, additional features
will be generated from Unif(−2, 2).

• heart: a coronary artery disease dataset of 303 patients from Cleveland clinic database
with 7 categorical and 6 continuous features Detrano et al. [1989]. The data is publicly
available7 and does not contain personally identifiable information or offensive content. All
observations with missing features are removed before analysis.
The list of features used in the final datasets are ("sex", "exang", "thal",
"oldpeak", "age", "ca", "cp", "chol", "trestbps", "thalach", "fbs",
"restecg", "slope"). If the data dimension is higher than 13, additional features will be
generated from Unif(−2, 2).

• mi: disease records of myocardial infarction (MI) of 1700 patients from Krasnoyarsk
interdistrict clinical hospital during 1992-1995, with 113 categorical and 11 continuous
features Golovenkin et al. [2020]. The data is publicly available8 and does not contain
personally identifiable information or offensive content. We imputed missing values using
the IterativeImputer method from scikit-learn package and with a BayesianRidge
regressor. Specifically, it imputes each feature with missing values as a function of other
features in a round-robin fashion: At each step, a feature column is designated as output y
and the other feature columns are treated as inputs X . A regressor is fit on (X, y) for known
y. Then, the regressor is used to predict the missing values of y. This is done for each
feature in an iterative fashion, and then is repeated for 10 imputation rounds. The results of
the final imputation round are returned.
The listed of features used in the analysis are as below: ("sex", "ritm_ecg_p_01",
"age", "s_ad_orit", "d_ad_orit", "ant_im", "ibs_post", "k_blood",
"na_blood", "l_blood", "inf_anam", "stenok_an", "fk_stenok",
"ibs_nasl", "gb", "sim_gipert", "dlit_ag", "zsn_a", "nr11",
"nr01", "nr02", "nr03", "nr04", "nr07", "nr08", "np01", "np04",
"np05", "np07", "np08", "np09", "np10", "endocr_01", "endocr_02",
"endocr_03", "zab_leg_01", "zab_leg_02", "zab_leg_03", "zab_leg_04",
"zab_leg_06", "s_ad_kbrig", "d_ad_kbrig", "o_l_post", "k_sh_post",
"mp_tp_post", "svt_post", "gt_post", "fib_g_post", "lat_im",
"inf_im", "post_im", "im_pg_p", "ritm_ecg_p_02", "ritm_ecg_p_04",
"ritm_ecg_p_06", "ritm_ecg_p_07", "ritm_ecg_p_08", "n_r_ecg_p_01",
"n_r_ecg_p_02", "n_r_ecg_p_03", "n_r_ecg_p_04", "n_r_ecg_p_05",
"n_r_ecg_p_06", "n_r_ecg_p_08", "n_r_ecg_p_09", "n_r_ecg_p_10",
"n_p_ecg_p_01", "n_p_ecg_p_03", "n_p_ecg_p_04", "n_p_ecg_p_05",
"n_p_ecg_p_06", "n_p_ecg_p_07", "n_p_ecg_p_08", "n_p_ecg_p_09",
"n_p_ecg_p_10", "n_p_ecg_p_11", "n_p_ecg_p_12", "fibr_ter_01",
"fibr_ter_02", "fibr_ter_03", "fibr_ter_05", "fibr_ter_06",
"fibr_ter_07", "fibr_ter_08", "gipo_k", "giper_na", "alt_blood",
"ast_blood", "kfk_blood", "roe", "time_b_s", "r_ab_1_n", "r_ab_2_n",
"r_ab_3_n", "na_kb", "not_na_kb", "lid_kb", "nitr_s", "na_r_1_n",
"na_r_2_n", "na_r_3_n", "not_na_1_n", "not_na_2_n", "not_na_3_n",
"lid_s_n", "b_block_s_n", "ant_ca_s_n", "gepar_s_n", "asp_s_n",
"tikl_s_n", "trent_s_n").

We standardize (by subtracting from mean and dividing by standard deviation) all features except for
2 discrete causal features and 2 discrete non-causal features.

7https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/
processed.cleveland.data

8https://archive.ics.uci.edu/ml/machine-learning-databases/00579/
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Figure 3: Correlation matrix for adult dataset, where the upper left black box indicates the five causal features.
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Figure 4: Correlation matrix for heart dataset, where the upper left black box indicates the five causal features.
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Figure 5: Correlation matrix for the first 20 features in mi dataset, where the upper left black box indicates the
five causal features.
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G.3 Error Bars

Tables 2-11 shows the AUROC scores or Testing MSE’s for the result presented in the main text. For
the Testing MSE tables, a method will not be shown if they share the model fit with another method
(RF-impurity and RF-knockoff), or if the method does not produce valid result due to small sample
size (GAM).

Table 2: AUROC scores and their standard deviations for synthetic-mixture dataset.

n RF-FDT (Ours) NN (Ours) GAM (Ours) RF-Impurity RFF (Ours) BRR RF-KnockOff BKMR BL BART BAKR
100 0.8 (0.09) 0.68 (0.03) NaN (NA) 0.72 (0.13) 0.59 (0.11) 0.66 (0.12) 0.57 (0.06) 0.57 (0.09) 0.68 (0.09) 0.71 (0.16) 0.56 (0.09)
200 0.93 (0.1) 0.72 (0.03) 0.72 (0.15) 0.86 (0.2) 0.65 (0.18) 0.69 (0.16) 0.59 (0.06) 0.57 (0.08) 0.69 (0.17) 0.78 (0.14) 0.68 (0.12)
500 0.97 (0.05) 0.75 (0.03) 0.88 (0.07) 1 (0) 0.68 (0.2) 0.83 (0.09) 0.67 (0.1) 0.64 (0.11) 0.83 (0.09) 0.95 (0.08) 0.75 (0.14)
1000 0.99 (0.03) 0.79 (0.03) 0.89 (0.1) 1 (0) 0.69 (0.25) 0.86 (0.1) 0.69 (0.1) 0.68 (0.16) 0.86 (0.1) 0.99 (0.02) 0.77 (0.1)

Table 3: AUROC scores and their standard deviations for synthetic-continuous dataset.

n RF-FDT (Ours) NN (Ours) GAM (Ours) RF-Impurity RFF (Ours) BRR RF-KnockOff BKMR BL BART BAKR
100 0.61 (0.13) 0.68 (0.05) NaN (NA) 0.68 (0.13) 0.56 (0.12) 0.69 (0.17) 0.61 (0.12) 0.62 (0.1) 0.69 (0.13) 0.69 (0.14) 0.61 (0.1)
200 0.83 (0.13) 0.73 (0.04) 0.74 (0.12) 0.85 (0.13) 0.66 (0.11) 0.75 (0.15) 0.68 (0.13) 0.57 (0.08) 0.75 (0.13) 0.79 (0.12) 0.61 (0.14)
500 0.98 (0.03) 0.76 (0.03) 0.8 (0.14) 0.99 (0.02) 0.71 (0.16) 0.8 (0.12) 0.87 (0.1) 0.59 (0.1) 0.8 (0.12) 0.96 (0.03) 0.76 (0.12)
1000 1 (0) 0.79 (0.03) 0.86 (0.11) 1 (0) 0.63 (0.24) 0.87 (0.14) 0.97 (0.08) 0.64 (0.15) 0.86 (0.14) 1 (0) 0.79 (0.14)

Table 4: AUROC scores and their standard deviations for adult dataset.

n RF-FDT (Ours) NN (Ours) GAM (Ours) RF-Impurity RFF (Ours) BRR RF-KnockOff BKMR BL BART BAKR
100 0.76 (0.09) 0.68 (0.04) NaN (NA) 0.61 (0.15) 0.62 (0.13) 0.57 (0.09) 0.58 (0.13) 0.54 (0.1) 0.61 (0.09) 0.66 (0.11) 0.62 (0.13)
200 0.8 (0.09) 0.7 (0.04) 0.7 (0.14) 0.64 (0.11) 0.6 (0.14) 0.61 (0.11) 0.57 (0.1) 0.58 (0.12) 0.63 (0.09) 0.7 (0.12) 0.72 (0.12)
500 0.84 (0.07) 0.75 (0.02) 0.79 (0.13) 0.64 (0.09) 0.57 (0.18) 0.62 (0.09) 0.59 (0.12) 0.59 (0.08) 0.6 (0.1) 0.71 (0.08) 0.64 (0.11)
1000 0.81 (0.1) 0.77 (0.02) 0.86 (0.1) 0.61 (0.08) 0.64 (0.18) 0.7 (0.12) 0.57 (0.09) 0.55 (0.08) 0.69 (0.1) 0.7 (0.11) 0.72 (0.14)
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Table 5: AUROC scores and their standard deviations for heart dataset.

n RF-FDT (Ours) NN (Ours) GAM (Ours) RF-Impurity RFF (Ours) BRR RF-KnockOff BKMR BL BART BAKR
50 0.71 (0.06) 0.66 (0.04) NaN (NA) 0.49 (0.15) 0.56 (0.14) 0.58 (0.08) 0.59 (0.06) 0.59 (0.09) 0.58 (0.07) 0.63 (0.09) 0.6 (0.09)
100 0.72 (0.06) 0.66 (0.04) NaN (NA) 0.44 (0.11) 0.58 (0.12) 0.58 (0.09) 0.58 (0.07) 0.57 (0.08) 0.57 (0.08) 0.59 (0.11) 0.59 (0.12)
150 0.75 (0.08) 0.67 (0.05) 0.62 (0.12) 0.41 (0.12) 0.59 (0.13) 0.59 (0.06) 0.61 (0.11) 0.58 (0.07) 0.56 (0.08) 0.6 (0.07) 0.64 (0.12)
257 0.74 (0.09) 0.72 (0.03) 0.64 (0.12) 0.45 (0.12) 0.52 (0.17) 0.57 (0.07) 0.66 (0.13) 0.59 (0.09) 0.56 (0.06) 0.58 (0.09) 0.64 (0.11)

Table 6: AUROC scores and their standard deviations for mi dataset.

n RF-FDT (Ours) NN (Ours) GAM (Ours) RF-Impurity RFF (Ours) BRR RF-KnockOff BKMR BL BART BAKR
100 0.86 (0.05) 0.64 (0.04) NaN (NA) 0.77 (0.08) 0.59 (0.13) 0.65 (0.1) 0.67 (0.12) 0.57 (0.09) 0.63 (0.11) 0.62 (0.14) 0.86 (0.05)
200 0.85 (0.04) 0.73 (0.05) 0.87 (0.05) 0.79 (0.07) 0.62 (0.08) 0.62 (0.09) 0.63 (0.12) 0.58 (0.1) 0.65 (0.1) 0.61 (0.11) 0.84 (0.07)
500 0.85 (0.05) 0.75 (0.03) 0.87 (0.07) 0.77 (0.06) 0.43 (0.15) 0.64 (0.09) 0.62 (0.08) 0.59 (0.1) 0.61 (0.09) 0.6 (0.08) 0.81 (0.1)
1000 0.83 (0.04) 0.77 (0.02) 0.89 (0.06) 0.73 (0.07) 0.56 (0.17) 0.6 (0.13) 0.62 (0.11) 0.54 (0.08) 0.67 (0.1) 0.63 (0.11) 0.88 (0.09)

Table 7: Testing MSE’s and their standard deviations for synthetic-mixture dataset. A method will not be
shown if they share the model fit with another method (RF-impurity and RF-knockoff), or if the method does
not produce valid result due to small sample size (GAM)

n RF-FDT (Ours) NN (Ours) GAM (Ours) RFF (Ours) BRR BKMR BL BART BAKR
100 1.02 (0.25) 1.06 (0.22) NaN (NA) 1.76 (0.28) 1.01 (0.23) 1.52 (0.14) 0.95 (0.21) 0.98 (0.23) 2.87 (1.06)
200 0.87 (0.16) 1.02 (0.12) 1.59 (0.29) 1.53 (0.22) 1.01 (0.13) 1.56 (0.09) 0.95 (0.12) 0.98 (0.16) 1.04 (0.14)
500 0.76 (0.13) 1.04 (0.12) 1.04 (0.2) 1.42 (0.15) 0.94 (0.13) 1.57 (0.08) 0.93 (0.13) 0.83 (0.14) 0.97 (0.11)
1000 0.66 (0.12) 1.03 (0.13) 0.96 (0.18) 1.32 (0.15) 0.94 (0.16) 1.62 (0.07) 0.93 (0.17) 0.75 (0.12) 1.01 (0.13)

Table 8: Testing MSE’s and their standard deviations for synthetic-continuous dataset. A method will not be
shown if they share the model fit with another method (RF-impurity and RF-knockoff), or if the method does
not produce valid result due to small sample size (GAM)

n RF-FDT (Ours) NN (Ours) GAM (Ours) RFF (Ours) BRR BKMR BL BART BAKR
100 1.01 (0.2) 1.06 (0.16) NaN (NA) 1.73 (0.26) 1.05 (0.15) 1.55 (0.11) 1.01 (0.16) 1.02 (0.15) 2.39 (0.59)
200 0.87 (0.15) 0.97 (0.19) 1.41 (0.32) 1.48 (0.23) 0.92 (0.18) 1.5 (0.15) 0.9 (0.16) 0.93 (0.19) 0.95 (0.19)
500 0.85 (0.19) 1.08 (0.12) 1.02 (0.25) 1.43 (0.13) 0.95 (0.19) 1.58 (0.09) 0.91 (0.19) 0.93 (0.2) 1 (0.15)
1000 0.72 (0.15) 1.05 (0.18) 0.94 (0.2) 1.4 (0.19) 0.91 (0.18) 1.6 (0.11) 0.9 (0.18) 0.8 (0.19) 0.98 (0.18)

Table 9: Testing MSE’s and their standard deviations for adult dataset. A method will not be shown if they
share the model fit with another method (RF-impurity and RF-knockoff), or if the method does not produce
valid result due to small sample size (GAM)

n RF-FDT (Ours) NN (Ours) GAM (Ours) RFF (Ours) BRR BKMR BL BART BAKR
100 0.95 (0.4) 0.96 (0.13) NaN (NA) 1.69 (0.44) 0.3 (0.11) 0.92 (0.15) 0.22 (0.07) 0.4 (0.11) 2.71 (0.92)
200 0.91 (0.24) 1.02 (0.2) 1.23 (0.32) 1.63 (0.31) 0.28 (0.07) 1.03 (0.07) 0.22 (0.05) 0.4 (0.12) 0.28 (0.07)
500 0.96 (0.18) 1 (0.11) 0.45 (0.08) 1.31 (0.14) 0.25 (0.06) 1 (0.08) 0.22 (0.07) 0.28 (0.08) 0.22 (0.07)
1000 0.96 (0.18) 1.02 (0.14) 0.32 (0.06) 1.28 (0.17) 0.24 (0.05) 1.08 (0.04) 0.21 (0.04) 0.28 (0.12) 0.21 (0.04)

Table 10: Testing MSE’s and their standard deviations for heart dataset. A method will not be shown if they
share the model fit with another method (RF-impurity and RF-knockoff), or if the method does not produce
valid result due to small sample size (GAM)

n RF-FDT (Ours) NN (Ours) GAM (Ours) RFF (Ours) BRR BKMR BL BART BAKR
50 0.92 (0.21) 1.03 (0.16) NaN (NA) 1.93 (0.5) 0.35 (0.12) 1.03 (0.13) 0.26 (0.1) 0.39 (0.12) 0.44 (0.18)
100 0.95 (0.27) 1.09 (0.23) NaN (NA) 1.88 (0.29) 0.32 (0.08) 1.02 (0.1) 0.24 (0.06) 0.43 (0.13) 2.18 (0.68)
150 0.98 (0.22) 1.06 (0.19) 1.76 (0.37) 1.65 (0.32) 0.27 (0.08) 0.99 (0.12) 0.21 (0.08) 0.4 (0.14) 0.31 (0.1)
257 0.91 (0.26) 1.04 (0.15) 0.79 (0.2) 1.51 (0.2) 0.27 (0.06) 1 (0.1) 0.23 (0.06) 0.33 (0.12) 0.25 (0.06)

Table 11: Testing MSE’s and their standard deviations for mi dataset. A method will not be shown if they share
the model fit with another method (RF-impurity and RF-knockoff), or if the method does not produce valid
result due to small sample size (GAM)

n RF-FDT (Ours) NN (Ours) GAM (Ours) RFF (Ours) BRR BKMR BL BART BAKR
100 1.55 (0.94) 1.63 (1.1) NaN (NA) 2.02 (0.44) 0.36 (0.15) 0.78 (0.22) 0.31 (0.1) 0.32 (0.1) 0.66 (0.32)
200 1.76 (2.86) 1.29 (0.63) 0.61 (0.27) 1.82 (0.48) 0.32 (0.11) 0.85 (0.22) 0.3 (0.11) 0.28 (0.12) 0.41 (0.15)
500 1.13 (0.35) 1.17 (0.44) 0.42 (0.22) 1.57 (0.27) 0.27 (0.07) 0.53 (0.25) 0.26 (0.06) 0.26 (0.09) 0.26 (0.09)
1000 1.2 (1.05) 1 (0.16) 0.36 (0.08) 1.43 (0.3) 0.28 (0.07) 0.71 (0.34) 0.27 (0.07) 0.24 (0.07) 0.25 (0.07)
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G.4 Code

For the code, data, instructions, the total amount of compute and the type of resources
used to reproduce the experimental results, please visit https://github.com/wdeng5120/
featurized-decision-tree.
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H Experiment Results and Additional Figures

Figures 6-10 and 11-15 show the AUROC scores and MSE results, respectively, across all of the
datasets. Here we also summarize additional observations that are not included in the main text. The
figure captions contain further descriptions of the results.

Synthetic Benchmarks. In the synthetic datasets, where all features are independent, FDT, RF,
BART, GAM, BRR and BL perform better and more stable than they do in the real datasets where
there’s feature correlation. The better performance of FDT compared to RF-impurity and RF-
knockoff illustrates the advantage of the proposed integrated partial derivative metric for variable
importance estimation. For the synthetic-continuous and synthetic-mixture cases, FDT has higher
AUROC scores across most scenarios, especially when data are generated having high complexity
with quickly-varying local fluctuations (rbf, matern32). Moreover, all 11 methods perform only
moderately well in complex data settings. The two tree-based methods, RF and BART also have
high AUROC scores across scenarios, since the tree-based methods naturally rank by how well the
features improve the purity of the node. Note that under low dimension case (d = 25), BKMR is
comparable to FDT when f0 ∈ H (linear, rbf, matern32). However, when it comes to medium-
or relatively high-dimension settings (d = 50, 100), BKMR produces low AUROC scores due to
suffering from the issue of curse of dimensionality van der Vaart and Zanten [2011]. RFF, also a
kernel-based method, has similar trend as BKMR. Finally, BAKR performs consistently poorly and
has lowest AUROC scores in relatively low-dimension setting (d = 25, 50). Linear models (GAM,
BRR and BL) achieve comparable or superior performance under the linear data setting. However,
for more complicated data generation functions, BRR and BL consistently perform poorly with low
AUROC scores.

Socio-economic and Healthcare Datasets In the adult, heart and mi cases, where the features are
correlated, the performances of all 11 methods are worse than in the synthetic-mixture and synthetic-
continuous cases (where the features are independent). Their performance tends to saturate earlier
and are less stable with respect to the sample size. In relatively low-dimension settings (d = 25, 50),
the standard methods such as BART has higher AUROC scores than FDT. However, when the
dimension is higher (d = 100, 200), FDT consistently performs better.
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Figure 6: AUROC scores for synthetic-mixture data. FDT generally outperforms other methods in most of the
data settings in relatively higher dimension (d = 50, 100, 200). Knockoff with random forest statistics produce
lower AUROC scores than in synthetic-continuous, even in linear data settings. Additive models BRR, BL and
GAM have mediocre scores under the nonlinear settings. Some model (e.g., GAM) reports missing result in
n > p setting due to the restrictions of their implementations.
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Figure 7: AUROC scores for synthetic-continuous data. FDT generally outperforms other methods in most
of the data settings, with BKMR as the comparable one when d = 25. However, BKMR performs poorly in
higher dimension. Tree-based methods RF, BART and Knockoff with random forest statistics have high AUROC
scores. Additive models BRR, BL and GAM have mediocre scores under the nonlinear settings. Some model
(e.g., GAM) reports missing result in n > p setting due to the restrictions in their implementations.
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Figure 8: AUROC scores for adult data. In relatively low-dimension settings (d = 25, 50), the standard methods
such as BART has higher AUROC scores than FDT. However, when the dimension is higher (d = 100, 200),
FDT performs better consistently. Some model (e.g., GAM) reports missing result in n > p setting due to the
restrictions in their implementations.
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Figure 9: AUROC scores for heart data. In relatively low-dimension settings (d = 25, 50), the standard methods
such as BART has higher AUROC scores than FDT. However, when the dimension is higher (d = 100, 200),
FDT performs better consistently. Some model (e.g., GAM) reports missing result in n > p setting due to the
restrictions in their implementations.
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Figure 10: AUROC scores for mi data. In low-dimension setting (d = 25), the standard methods such as
BART has higher AUROC scores than FDT. However, when the dimension is higher (d = 50, 100), FDT and
GAM perform better consistently. Some model (e.g., GAM) reports missing result in n > p setting due to the
restrictions in their implementations.
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Figure 11: Testing MSE for synthetic-mixture data. FDT generally performs better or competitively with
baselines, except in the linear case where BL unsurprisingly does best. BKMR consistently performs worse
than other methods, except in the low data size, high dimension setting when BAKR performs worst. Some
model (e.g., GAM) reports missing result in n > p setting due to the restrictions in their implementations.
Notice that this dataset contains a setting n = p, which can lead to the double descent phenomenon for some
random-feature-based models [d’Ascoli et al., 2020].
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Figure 12: Testing MSE for synthetic-continuous data. A method will not be shown if they share the model fit
with another method (RF-impurity and RF-knockoff), or if the method does not produce valid result due to
small sample size (GAM).
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Figure 13: Testing MSE for adult data. A method will not be shown if they share the model fit with another
method (RF-impurity and RF-knockoff), or if the method does not produce valid result due to small sample
size (GAM).
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Figure 14: Testing MSE for heart data. A method will not be shown if they share the model fit with another
method (RF-impurity and RF-knockoff), or if the method does not produce valid result due to small sample
size (GAM). Notice that this dataset contains a setting n = p, which can lead to the double descent phenomenon
for some random-feature-based models [d’Ascoli et al., 2020].
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Figure 15: Testing MSE for mi data. A method will not be shown if they share the model fit with another
method (RF-impurity and RF-knockoff), or if the method does not produce valid result due to small sample
size (GAM).
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I Additional Experiments: Regularization Path for Bangladesh birth cohort
study

We propose a way to visualize the selection path that incorporates the uncertainty of variable
importance scores. Specifically, we consider the posterior survival function S(s) = P (ψj > s), j =
1, . . . , d for increasing s starting from 0. Larger value of S(s) indicates larger probability of that
certain feature being relevant. This is analogous to the regularization path under the LASSO method.
However, our approach incorporates posterior uncertainty, and does not require repeated model fitting
at different levels of regularization strength Mairal and Yu [2012].

We apply this to Bangladesh birth cohort study [Kile et al., 2014] (a well-established dataset in the
environmental health literature), where we fit models to learn the association between infant’s neural
development scores and key environmental factors such as hospital location (clinic), sex (sex),
levels of macro nutrient intake (prot, fat, carb, fib, ash) and levels of measured concentration
of environmental toxins in body fluids (as_ln, mn_ln, pb_ln), while controlling for other socio-
economic and biological factors (family income, parent education levels, etc). In general, the level of
macro-nutrient intake (in particular fiber and protein) indicates a child’s general nutrition status (i.e.,
whether he/she is eating well), and is known to be positively associated with neural development.
On the other hand, the existing studies in the Bangladesh population have established a neurotoxic
effect between arsenic exposure (i.e., as_ln), through drink water) on the early-stage cognitive
development [Hamadani et al., 2011], as well as weak but significant effect of the joint mixture of
other environmental toxins (manganese (mn_ln) and lead (pb_ln))) [Gleason et al., 2014, Valeri
et al., 2017]. Furthermore, due the fact that the model has already controlled for biological and
socio-economic confounding factors, non-nutrient-related factors such as hospital location and sex
should not have a significant effect on the children’s neural development status.

The result of variable importance estimation is shown in Figure 16, where we plot the posterior
survival function P (ψj > s) for s ∈ (0, 1), and compare it to the survival function under Bayesian
Approximate Kernel Regression (BAKR), Bayesian Ridge Regression (BRR), Bayesian LASSO (BL),
and also the frequentist LASSO regularization path under the GAM model. We normalized all
variable importance scores within the range (0, 1). As a result, the variable selection performance
is indicated by the relative magnitudes of the area under the curve for each variable (and not by the
absolute magnitude due to the normalization).

As shown in Figure 16, the top variables selected by our method (FDT) correspond well with
existing conclusions in the literature: it correctly picked up the larger impact of macro-nutrients
(in particular, fibre, fat and protein) and smaller but still significant effects of environmental toxins
(arsenic, manganese and lead), also notice that it ranked known non-causal factors such as hospital
location and sex to be the lowest. In comparison, the linear methods (GAM, BRR and BL) all
incorrectly reported high effect from hospital location on children’s neural developement outcome
(likely due to their restrict model form), while the nonlinear model (BAKR, based on RBF kernel)
did not properly pick up the effect of environmental toxins.
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Figure 16: Regularization path for Bangladesh birth cohort study. The top variables selected by our method
(FDT) correspond well with established toxicology pathways in the literature.
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J Detailed Comparison with Related Work

Liu (2021) [Liu, 2021] is a closely-related work that derives posterior concentration and BvM
result for the partial-derivative estimator of variable importance under Bayesian neural networks.
Comparing to the current work, [Liu, 2021] focuses narrowly on the Deep Bayesian neural network
model, while our work establishes a general set of conditions that is applicable to a much wider classes
of machine learning models (GAMs, decision trees, random-feature models, DNNs, ensemble). More
specifically, [Liu, 2021]’s result relies on specific assumptions on hidden weights and network width
of a ReLU network (Section 2 and Assumption 1), and cannot be generalized straightforwardly to
the wider class of models. In comparison, this work established much more generalized conditions
in terms of the Lipschitz condition of predictive function, and the effective dimensionality of the
model space (see Appendix B.1 for a summary), and we consider in detail the implication of these
assumptions for different model classes (Appendix E). On the empirical side, [Liu, 2021] only studied
model performance on simulated data sampled i.i.d. from fixed simple distributions, while our work
investigated performance of the metric on a wide range of model classes and on non-simulated,
realistic data distributions and on correlated, discrete variables (see Section 4 and Appendix G).
Furthermore, some of our model variants (e.g., FDT) strongly outperforms neural network in almost
all situations.

He et al. (2021) [He et al., 2021] is another closely-related work that employ partial derivative-based
kernel method to realize variable selection. [He et al., 2021] shares similarity with this work in that
we both consider gradient norm as the variable importance estimator, but with drastically different
focus in theoretical results and empirical investigations. Specifically, [He et al., 2021] (1) studies
a frequentist variable selection approach based on thresholding (2) does not address uncertainty
in the variable importance estimators, and (3) focuses on classical, non-adaptive Gaussian process
kernels (e.g., linear, quadratic, RBF kernels, see Sections 4 and 6 of [He et al., 2021]) and does not
consider generalization across modern ML models. In comparison, our framework (1) focuses on
Bayesian estimation of variable importance, (2) explicitly incorporates model uncertainty and derives
its theoretical guarantee, (3) considers and empirically investigates the generalization of the approach
across wide range of modern ML models, in particular tree-ensemble models whose compatibility to
kernel-based variable importance method is not obvious.
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K Further Discussion of Limitations

Our proposed framework provides principled uncertainty quantification by performing exact Bayesian
inference on the weights β of a feature map ϕ(x). We do not consider uncertainty in the feature
map itself. This means, for example, that if the feature map is given by the last hidden layer of
a neural network trained by maximizing the posterior, then our model class corresponds to the
neural linear model. This model is different from a fully Bayesian neural network, which performs
posterior inference also on the kernel hyperparameters (i.e., the hidden weights) Ober and Rasmussen
[2019], Snoek et al. [2015], Thakur et al. [2021]. Likewise, the kernel induced by the featurized
decision tree studied here does not consider uncertainty in the tree’s partitioning process. However,
as discussed in the method section (Section 2.1), this “linearity" of the model parameter does not
impact the expressiveness of the GP model, since the basis functions ϕ = {ϕk}Dk=1 themselves are
nonlinear and are allowed to be updated as part of the learning process. At the same time, the fact
that the full posterior inference is performed only with respect to β indeed places a limitation on
the model’s ability in uncertainty quantification, as the uncertainty in the model hyperparameters is
not accounted for. Yet, this does not seem to be a significant limitation in the method’s empirical
performance (e.g., FDT outperforms BART in our experiments), although this point still merits
further investigation in the future.

The theoretical results of the current paper assume fixed data dimension d = O(1). However, this
does not restrict the significance and practicality of our theoretical results. On the theoretical side,
even for fixed d, a general framework to nonparametric Bayesian inference of feature importance
is currently missing in the field. On the application side, the majority of the machine learning
applications fall into the fixed dimension setting. For example, in vision tasks, we usually handle
images with fixed dimensions (i.e. height, width, and number of channels); in language tasks, we
handle sentences with fixed vocabulary size and maximum sentence length; and in tabular tasks, we
often work with tables with fixed number of columns. Furthermore, as commented in Section 3.2,
the posterior concentration of variable importance (Theorem 1) does not rely on this assumption
in its proof. Therefore, posterior concentration can occur even for high-dimensional settings with
d = o(n). In contrast, the BvM theorem usually represents a much stronger type of convergence (i.e.,
convergence in the predictive CDF of the entire Bayesian predictive posterior) and usually requires
a stricter set of conditions. This is especially true in our setting, where our BvM results consider
the quadratic functional of the nonlinear model, rather than the predictive function of the model
itself. To this end, we highlight that most of the modern BvM results in ML models are derived by
assuming fixed dimension. This includes [Wang and Rocková, 2020] for Bayesian neural networks,
[Burnaev et al., 2013, Yang et al., 2015] for Gaussian process models, [Rockova, 2020] for BART
(i.e., Bayesian tree models), and finally [Castillo and Rousseau, 2015] for general semi-parametric
models. Therefore, our setting is consistent with the modern literature in Bernstein von-Mises results
for ML models. At the same time, it should be acknowledged that in recent years, there have been a
few "high-dimensional" Bernstein von Mises results for specialized settings. The more recent ones
include [Bontemps, 2011] for linear regression, and [Lu, 2017] for Bayesian inverse problems with
nonlinear forward dynamics. However, extending these results to the quadratic functionals of a
general nonlinear model is non-trivial and out-of-scope for our current work, but is an important and
interesting direction of future theoretical investigations.

In our experiments, we focused on kernels based on tree ensembles, kernel methods and linear
models. In the future, it would be worth expanding this framework to other model classes (e.g.,
MARS Friedman [1991]) and estimating the importance of interaction effects and higher-order terms.
We would also like to apply this method to large-scale scientific studies (e.g., epidemiology studies
based on extremely large EHR datasets) where an uncertainty-aware nonlinear variable importance
estimation method is typically impossible due to challenges with scalability.
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