
Supplementary Material
Orientation Probabilistic Movement Primitives

on Riemannian Manifolds

Leonel Rozo1 Vedant Dave1, 2
1Bosch Center for Artificial Intelligence. Renningen, Germany.

2University of Leoben. Leoben, Austria.
leonel.rozo@de.bosch.com vedant.dave@unileoben.ac.at

Abstract: This document contains: (i) a notation table describing the most im-
portant variables and parameters used across the paper and this supplementary
material, (ii) algorithms summarizing the learning process of both classic ProMPs
and our Riemannian approach, and (iii) a detailed analysis of the experiments
where we provide hyperparameters values and compare our approach against Eu-
clidean (geometry-unaware) ProMP formulations. A video of our experiments can
be watched at https://sites.google.com/view/orientation-promp.

1 Background

1.1 Notation

Symbols Description
M Riemannian manifold
TpM Tangent space of manifoldM at p ∈M
TM Tangent bundle (group of all the tangent vectors inM)
N (µ,Σ) Gaussian distribution with mean µ ∈ Rd and covariance Σ ∈ Rd×d
NM(µ,Σ) Riemannian Gaussian distribution with mean µ ∈M and covariance Σ ∈ TµM
θ Parameters of Gaussian distribution
Expx(·) Exponential map at p ∈M
Logx(·) Logarithmic map at p ∈M
Γx→y(·) Parallel Transport from TpM to TqM
Sm m-dimensional sphere manifold
φi(zt) Normalized Gaussian basis function at time phase zt
w ProMP weight vector
Ψt ProMP basis function matrix at zt

Table 1: Notation for ProMP and Riemannian manifolds.

1.2 ProMPs algorithm

When learning from demonstrations, the example trajectories often differ in time length. ProMP
overcomes this issue by introducing a phase variable z to decouple the data from the time instances,
which in turn allows for temporal modulation. In this case, the demonstration ranges from z0 = 0 to
zT = 1, redefining the demonstrated trajectory as τ = {yt}zTt=z0 . The basis functions that form Ψ
are defined as a function of the phase variable z. Specifically, ProMP uses Gaussian basis functions
for stroke-based movements, defined as

bm(zt) = exp

(
−(zt − cm)2

2h

)
∀m = 1, . . . , Nφ, (1)

5th Conference on Robot Learning (CoRL 2021), London, UK.

mailto:leonel.rozo@de.bosch.com
mailto:vedant.dave@unileoben.ac.at
https://sites.google.com/view/orientation-promp

Algorithm 1: Classic ProMP Learning
Data: Set of N demonstrations with observations Yn ∀n = 1, . . . , N .
Input : Number of basis functions Nφ, width h, and regularization term λ.
Output: Mean µw and covariance Σw of P(w;θ).
foreach demonstration n do

Compute phase variables: zn = tn

t
final
n

.

Compute basis functions matrix Ψt using φm(zt) to build the basis matrix Ψ.
Compute weight vectorwn viawn = (ΨTΨ + λI)−1ΨTYn.

Fit a Gaussian over the weight vectorswn:

µw =
1

N

N∑
n=1

wn, Σw =
1

N

N∑
n=1

(wn − µw)(wn − µw)T

return µw,Σw

with width h and center ci, which are often experimentally designed. These Gaussian basis functions
are then normalized, leading to φm(zt) = bm(zt)∑Nφ

j=1 bj(zt)
. The classic ProMP learning process is

summarized in Algorithm 1.

1.3 Riemannian manifolds

Table 2 provides the different expressions for the Riemannian distance, exponential and logarithmic
maps, and parallel transport operation for the sphere manifold Sm. Note that these expressions
slightly differ from those used in [1], which actually correspond to exponential and logarithmic
maps defined using Lie Theory [2]. The main difference lies on the fact that the Lie-based maps are
defined with respect to the identity element of the Lie group (the manifold origin, loosely speaking).
Therefore, they are coupled with transport operations from and to the origin in order to be applied
on the complete manifold. Here we use maps that are defined at any point x ∈ M. Further details
can be found when analyzing how the retraction operation is defined using Lie and Riemannian
manifolds theories [2, 3].

Operation Formula
dM(x,y) arccos(xTy)

Expx(u) x cos(‖u‖) + u sin(‖u‖) with u = u
‖u‖

Logx(y) dM(x,y) y−xTy x
‖y−xTy x‖

Γx→y(v)
(
− x sin(‖u‖)uT + u cos(‖u‖)uT + (I − uuT)

)
v with u = u

‖u‖ and u =

Logx(y)
Table 2: Principal operations on Sm (see Absil et al. [4] for details).

We will also need to parallel transport symmetric positive-definite matrices V (e.g. covariance
matrices) as follows: Γx→y(V) = Γx→y(lv)TΓx→y(lv), where lv = vec(Lv) and V = LT

vLv .

2 Orientation ProMPs

2.1 Computation of the marginal distribution

The marginal distribution of yt can be computed as1

P(y;θ) =

∫
NM(y|Expp(Ψw)︸ ︷︷ ︸

µy

,Σy)N (w|µw,Σw)dw, (2)

where the marginal distribution depends on two probability distributions that lie on different mani-
folds. However, the mean µy depends on a single fixed point p ∈M, and µw ∈ TpM. We exploit

1We drop time index t for the sake of notation.

2

these two observations to solve the marginal (2) on the tangent space TpM as follows

P(Logp(y)) =

∫
N (Logp(y)|Ψw, Σ̃y)N (w|µw,Σw)dw,

= N (Logp(y)|Ψµw,ΨΣwΨT + Σ̃y),

where Σ̃y = Γµy→p(Σy) is the parallel-transported covariance Σy from µy to p. Note that this
marginal distribution still lies on the tangent space TpM, so we need to map it back toM using the
exponential map, which leads to the final marginal

P(y;θ) = NM(y|Expp(Ψµw)︸ ︷︷ ︸
µ̂y

, Σ̂y), (3)

where Σ̂y = Γp→µ̂y(ΨΣwΨT + Σ̃y) is the parallel transportation of the full covariance matrix of
the final marginal.

2.2 Gradient-based optimization for MGLM

The geodesic regression problem

(p̂, û) = argmin
(p,u)∈TM

1

2

T∑
i=1

dM(ŷi,yi)
2 (4)

does not yield an analytical form like the original ProMP. As explained by Fletcher [5], a solution
can be obtained through gradient descent, which requires to compute the derivative of the Rieman-
nian distance function and the derivative of the exponential map. The latter is split into derivatives
w.r.t the initial point p and the initial velocity u. These gradients can be computed in terms of
Jacobi fields (i.e., solutions to a second order equation subject to certain initial conditions under a
Riemannian curvature tensor [5]).

However, to solve the multilinear geodesic regression

(p̂, ûj) = argmin
(p,uj)∈TM∀j

1

2

T∑
i=1

dM(ŷi,yi)
2, with ŷi = Expp(Uxi), (5)

Kim et al. [6] compute the corresponding gradients by exploiting the insight that the adjoint operators
resemble parallel transport operations. In such a way, we can overcome the hurdle of designing
special adjoint operators for the multivariate case, and instead, perform parallel transport operations
to approximate the necessary gradients. This multivariate framework serves the purpose of our
first objective, namely, compute the weight vector for each demonstration lying on a Riemannian
manifoldM. The weight estimate is here obtained by leveraging (5), leading to

(p̂, ŵm) = argmin
(p,wm)∈TM∀m

1

2

T∑
t=1

dM(Expp(Wφt),yt)
2

︸ ︷︷ ︸
E(p,wm)

, (6)

where φt is the vector of basis functions at time t and W contains the set of estimated tangent
weight vectors ŵm ∈ Tp̂M (i.e., Nφ tangent vectors emerging out from the point p ∈ M), that is,
W = blockdiag(ŵT

1 , . . . , ŵ
T
Nφ

).

To solve (6), we need to compute the gradients of E(p,wm) with respect to p and each wm. As
stated above, these gradients depend on the so-called adjoint operators, which broadly speaking,
bring each error term Logŷt

(yt) from TŷtM to TpM, with ŷt = Expp(Wφt). Therefore, these
adjoint operators can be approximated as parallel transport operations as proposed in [6]. This leads
to the following reformulation of the error function of (6)

E(p,wm) =
1

2

T∑
t=1

‖Γŷt→p(Logŷt
(yt))‖2. (7)

3

Algorithm 2: Orientation ProMP Learning
Data: Set of N demonstrations with quaternion data Yn = {yt}Tt=1 ∀n = 1, . . . , N , with yt ∈ S3.
Input : Number of basis functions Nφ, width h, learning rate η, maximum learning rate ηmax.
Output: Tangent space origin p, mean µw and covariance Σw of P(w;θ).
foreach demonstration n do

1. Compute phase variables: zn = tn

t
final
n

.

2. Compute basis functions matrix Ψt using φm(zt) to build the basis matrix Ψ of (3).
3. Gradient descent for MGLM:

Initialize: p0 ∈M (only for n = 1) and weight vectorsw(n)
m,0 ∀m = 1, . . . , Nφ.

Compute estimated trajectory points ŷt = Expp(Wφt).
while termination criteria do

p̂ = Exppk
(−η∇pE) using (8).

ŵm = Γpk→pk+1
(wm,k − η∇wmE) using (8).

if E(p̂, ŵm) < E(pk,wm,k) then
pk+1 ← p̂
wm,k+1 ← ŵm
η = min(2η, ηmax)

else
η = η/2

Fit a Gaussian over the set of concatenated weight vectors {w(n)}Nn=1 withw(n) =
[
w

(n)T

1 . . .w
(n)T

Nφ

]T
:

µw =
1

N

N∑
n=1

w(n), Σw =
1

N

N∑
n=1

(w(n) − µw)(w(n) − µw)T

return p,µw,Σw

Then, the approximated gradients of the error function E(p,wm) correspond to

∇pE(p,wm) ≈ −
T∑
t=1

Γŷt→p(Logŷt
(yt)), and ∇wmE(p,wm) ≈ −

T∑
t=1

φt,mΓŷt→p(Logŷt
(yt)).

(8)

The learning process for orientation ProMPs on quaternion trajectories is given in Algorithm 2.

2.3 Blending

Classic ProMP blends a set of movement primitives by using a product of Gaussian distributions.
When it comes to blend primitives inM, one needs to consider that each trajectory distribution is
parametrized by a set of weight vectors that lie on different tangent spaces TpM. We resort to the
Gaussian product formulation on Riemannian manifolds introduced by Zeestraten [7], where the
log-likelihood of the product is iteratively maximized using a gradient-based approach as proposed
by Dubbelman [8]. Formally, the log-likelihood of a product of Riemannian Gaussian distributions
is given by (factoring out constant terms)

`(y) = −1

2

S∑
s=1

Logµy,s
(y)TΣ−1y,sLogµy,s

(y), (9)

where µy,s and Σy,s are the parameters of the marginal distribution Ps(y;θ) for the skill s. Note
that the logarithmic maps in (9) act on different tangent spaces Tµy,sM, ∀ s = 1 . . . S. In order to
perform the log-likelihood maximization, we need to switch the base and argument of the maps while
ensuring that the original log-likelihood function remains unchanged. To do so, we can leverage
the relationship Logx(y) = −Logy(x) as well as parallel transport operations to overcome this
problem, leading to

J =
1

2

S∑
s=1

Logµ+(µy,s)
TΛy,sLogµ+(µy,s) (10)

4

Figure 1: Time-series plot of the re-orient skill demonstrations (), and mean trajectory () of the
marginal distribution P(p;θ). Top: end-effector position variables [x, y, z] given in m. Bottom: end-effector
orientation represented as a quaternion [qw, qx, qy, qz]. Time axis given in sec.

Figure 2: Time-series plot of the re-orient skill demonstrations (), original mean trajectory () of the
marginal distribution P(p;θ), and resulting mean trajectory () of the new marginal distribution P(p;θ∗)
passing through a given via-point () p∗ ∈ R3 × S3. Top: end-effector position variables [x, y, z] given in m.
Bottom: end-effector orientation represented as a quaternion [qw, qx, qy, qz]. Time axis given in sec.

where µ+ is mean of the resulting Gaussian (that we are estimating) and Λy,s = Γµy,s→µ+(Σ−1y,s).

We can rewrite (10) by defining the vector ε(µ+) =
[
Logµ+(µy,1)T · · · Logµ+(µy,S)T

]T
and

the block diagonal matrix Λ = blockdiag(Λy,1, · · · ,Λy,S). This results inJ having the form of the
objective function used to compute the empirical mean v of a Gaussian distribution on a Riemannian
manifoldM (Eq. 2.115 in Dubbelman [8]),

J (v) =
1

2
ε(v)TΛε(v), (11)

from which is possible to iteratively compute the mean as

vk+1 ← Expvk(∆v) with ∆v = −(JTΛJ)−1JTΛε(v), (12)

where J is the Jacobian of ε(v) with respect to the basis of the tangent space ofM at vk.

We can now carry out a similar iterative estimation of the mean µ+ as follows

∆µ+
k

=

(
S∑
s=1

αsΛy,s

)−1(S∑
s=1

αsΛy,sLogµ+
k

(µy,s)

)
, and µ+

k+1 ← Expµ+
k

(∆µ+
k

), (13)

where Λy,s = Γµy,s→µ+
k

(Σ−1y,s). After convergence at iteration K, we obtain the final parameters
of the distribution P(y+) = NM(y+|µ+,Σ+) as follows

µ+ ← µ+
K and Σ+ =

(
S∑
s=1

αsΛy,s

)−1
. (14)

5

Figure 3: Snapshots of the human demonstrations of the top-grasp skill [9].

Figure 4: Time-series plot of the top-grasp skill demonstrations (), original mean trajectory () of the
marginal distribution P(p;θ), and resulting mean trajectory () of the new marginal distribution P(p;θ∗)
passing through a given via-point () p∗ ∈ R3 × S3. Top: end-effector position variables [x, y, z] given in m.
Bottom: end-effector orientation represented as a quaternion [qw, qx, qy, qz]. Time axis given in sec.

3 Experiments

In this section, we provide additional details about the experiments carried out on both the synthetic
dataset and the real manipulation skills reported in the main paper. Specifically, we provide the hy-
perparameters values used to train the models, as well as additional results regarding the comparison
against different classical ProMPs implementations: Euler-angles and unit-norm approximations.

3.1 Synthetic data experiment on S2

The original trajectories were generated in R2 and subsequently projected to S2 by a simple mapping
to unit-norm vectors. Each letter in the dataset was demonstratedN = 8 times. We trained 4 ProMP
models, one for each letter of the set {G, I, J,S}. The models trained for I and J used Nφ = 30
basis functions with width h = 0.01 and uniformly-distributed centers c, while the models trained
over the datasets of more involved letters, i.e. G and S, employed Nφ = 60 basis functions with
width h = 0.001. All ProMP models were trained following Algorithm 2 with initial learning rate
η = 0.005, and corresponding upper bound ηmax = 0.03 .

3.2 Manipulation skills on R3 × S3

Riemannian ProMPs. We collected a set of 4 demonstrations of the re-orient skill [9]
through kinesthetic teaching, where full-pose robot end-effector trajectories {pt}Tt=1 were recorded.
Here pt ∈ R3 × S3 represents the end-effector pose at time step t. The raw data was used to train a
Riemannian ProMP on R3×S3, where the position and orientation models were learned using Algo-
rithms 1 and 2, respectively. Both models used the same set of basis functions with Nφ = 40, width
h = 0.02, and uniformly-distributed centers c. The orientation model was trained using η = 0.005
as initial learning rate, and corresponding upper bound ηmax = 0.03.

Figure 1 shows the recorded demonstrations and the mean of the resulting marginal distribution
P(p;θ). It is evident that the ProMP model properly captures the relevant motion pattern on R3×S3.
We then evaluated how this learned skill may adapt to a specific via-point. To do so, we chose a via
point p∗ ∈ R3 × S3, representing a new position and orientation of the end-effector at t = 8.5 sec.
By using the approach described in Section 3 of the main paper, we computed a new marginal
distribution P(p;θ∗), where the updated mean is required to pass through p∗. Figure 2 displays the

6

Figure 5: Time-series plot of the key-turning skill demonstrations (), original mean trajectory () of
the marginal distributionP(p;θ), and resulting mean trajectory () of the new marginal distributionP(p;θ∗)
passing through a given via-point () p∗ ∈ R3 × S3. Top: end-effector position variables [x, y, z] given in m.
Bottom: end-effector orientation represented as a quaternion [qw, qx, qy, qz]. Time axis given in sec.

Riemannian
ProMPs

Euler ProMPs Unit-norm ProMPs

Jerkiness 21.1 338.8 278.7

Tracking accuracy 6.25 × 10−5 1.28× 10−3 6.24× 10−4

Deviation from mean 18.16 28.15 22.94
Table 3: Trajectory jerkiness (a.k.a smoothness [11]), tracking accuracy, and deviation from the mean trajectory
for via-point adaptation of the re-orient skill. Bold values represent the best achieved result.

updated mean of the new marginal distribution, where the original trajectory mean is also displayed
for reference. It can be observed that the updated trajectory successfully adapts to pass through the
given via-point. Note that the adapted trajectory exploits the variability of the demonstration data
(i.e. the associated covariance) to adapt the trajectory smoothly. This adaptation is more pronounced
for the position trajectory (top row in Fig. 2), specially along the x axis.

To showcase the versatility of our approach, we trained two additional Riemannian ProMPs over
data collected for the top-grasp and key-turning skills. The former corresponds to a dataset
recorded on the same robotic setup as that of the re-orient skill [9], while the latter is a syn-
thetic dataset recorded from a robotic simulator. Figure 3 displays the demonstration process of the
top-grasp skill: Approach the metallic cap and grasp it from its top. Four demonstrations were
used to train a Riemannian ProMP using a set of basis functions with Nφ = 20, width h = 0.025,
and uniformly-distributed centers c. Figure 4 shows our model successfully learns the relevant mo-
tion pattern of this skill. We also tested our approach on a dataset of synthetic demonstrations sim-
ulating a key-turning skill: Approach the key hole while aligning the end-effector accordingly,
and later turning the end-effector 90 degrees clock-wise. Figure 5 displays the recorded demonstra-
tions, the mean of the resulting marginal distribution, and updated mean trajectory for a given via-
point. Our model once again captures the motion patterns for the key-turning skill, and exploits
the demonstrations variability to update the mean trajectory while adapting to a via-point. These
results confirm that our Riemannian formulation for ProMP makes full-pose trajectory learning and
adaptation possible. The reproduction of the learned skills in simulation, using PyRoboLearn [10],
can be watched in the supplementary video at https://sites.google.com/view/orientation-promp.

Comparison against Euler-angles and unit-norm ProMPs. Using the same demonstrations of
the aforementioned skills, we trained three different ProMPs over the orientation trajectories to
assess the importance of considering the quaternion geometry as proposed in this paper. The first
model corresponds to our Riemannian ProMP approach, the second model is a classical ProMP
trained over the Euler angles of the recorded orientation trajectories, and the third model is a classical
ProMP trained over quaternion trajectories, whose output is normalized to comply with the unit-
norm constraint. All models used the same set of hyperparameters detailed above. Moreover, our
Riemannian models were trained using η = 0.005 as initial learning rate, and corresponding upper
bound ηmax = 0.03. The output distributions from the Euler-angles model were transformed to

7

https://sites.google.com/view/orientation-promp

Riemannian ProMP

Euler-angles to quaternion ProMP

Unit-norm ProMP

Figure 6: Comparison of mean trajectory retrieval and via-point adaptation for our approach (top), Euler-angles
ProMPs (middle), and unit-norm approximation ProMPs (bottom). The figure shows time-series plots of the
re-orient skill demonstrations (), original mean trajectory () of the marginal P(p;θ), and resulting
mean trajectory () of the new marginal P(p;θ∗) passing through the via-point () p∗ ∈ ×S3. The end-
effector orientation is represented as a quaternion [qw, qx, qy, qz]. Time axis given in sec.

Riemannian
ProMPs

Euler ProMPs Unit-norm ProMPs

Jerkiness 114.85 956.2 523.1

Tracking accuracy 1.0 × 10−7 9.8× 10−4 2.3× 10−4

Deviation from mean 2.43 5.2 4.1
Table 4: Trajectory jerkiness (a.k.a smoothness [11]), tracking accuracy, and deviation from the mean trajectory
for via-point adaptation of the top-grasp skill. Bold values represent the best achieved result.

quaternion trajectories mainly for comparison purposes. However, the robot orientation controller
also works with quaternion data, therefore such transformation is required whenever we need to send
the desired orientation trajectory to the robot.

Figure 6 shows the mean of the resulting marginal (black line) and via-point adapted (light-blue
line) distributions for each approach trained over the re-orient skill. No significant differ-
ences were observed when comparing the mean trajectories of the marginal distributions P(y;θ)
and P(y;θ), i.e. Riemannian and classical ProMPs, respectively. However, when we evalu-
ated how these models adapt to via-points (e.g. at t = 10.0 sec), the importance of considering
the quaternion space geometry is very noticeable. First, the deviation from the original mean∑T
t=1 dM(yt,y

∗
t) significantly increases for models trained over Euler angles and unit-norm ap-

proximation. Second, the tracking accuracy w.r.t the via-point dM(yt=10,y
∗
t=10) is compromised

when using the Euclidean approaches. Third, our Riemannian approach retrieves the smoothest
adapted trajectories when compared to its Euclidean counterparts, which is of paramount impor-
tant when controlling real robots (supplemental simulation videos using PyRoboLearn [10] can be
found at https://sites.google.com/view/orientation-promp). Quantitative measures regarding trajec-
tory smoothness, accuracy and deviation are given in Table 3, where it is clear that our Riemannian
formulation outperforms the other two Euclidean methods. Similar results were obtained for both
the top-grasp and key-turning skills, reported in Tables 4 and 5, respectively.

8

https://sites.google.com/view/orientation-promp

Riemannian
ProMPs

Euler ProMPs Unit-norm ProMPs

Jerkiness 2.52 28.8 18.9

Tracking accuracy 7.0 × 10−4 2.8× 10−3 9.8× 10−4

Deviation from mean 19.63 30.5 24.4
Table 5: Trajectory jerkiness (a.k.a smoothness [11]), tracking accuracy, and deviation from the mean trajectory
for via-point adaptation of the key-turning skill. Bold values represent the best achieved result.

Riemannian
ProMPs

Euler ProMPs Unit-norm ProMPs

Weights estimation 254.8 sec 1.8097 sec 3.2797 sec

Trajectory retrieval 0.2266 sec 0.2089 sec 0.2391 sec

Via-point conditioning 0.3261 sec 0.2321 sec 0.2481 sec
Table 6: Comparison of the computational cost when learning the model weights and retrieving the trajectory
distribution for the standard and via-point cases of the re-orient skill. Trajectory retrieval and via-point
conditioning times consider the computation cost over the whole trajectory.

As discussed in the main paper, the aforementioned benefits of our Riemannian approach comes at
the cost of increasing the computational complexity of the model weights estimation. Table 6 re-
ports the computational cost for our Riemannian formulation, the Euler and Unit-norm ProMPs for
the re-orient skill. We measured the execution time for the model weights estimation, trajec-
tory retrieval and via-point conditioning. It is evident that weights estimation based on multivariate
geodesic regression takes significantly longer than the original ProMP approach. Note that this ex-
ecution time can be easily reduced by relaxing the stopping criteria of the gradient-based optimizer,
such as maximum iterations and geodesic reconstruction error. More importantly, the trajectory
retrieval and via-point conditioning processes are not compromised, which are the methods that a
practitioner may be interest in running on the real platform. All the approaches were implemented
in unoptimized Python code.

References
[1] A. Ude, B. Nemec, T. Petrić, and J. Morimoto. Orientation in Cartesian space dynamic move-

ment primitives. In IEEE International Conference on Robotics and Automation (ICRA), pages
2997–3004, 2014. URL https://doi.org/10.1109/ICRA.2014.6907291.

[2] J. Solà, J. Deray, and D. Atchuthan. A micro lie theory for state estimation in robotics, 2020.
URL https://arxiv.org/abs/1812.01537.

[3] N. Boumal. An introduction to optimization on smooth manifolds. Available online, Nov 2020.
URL http://www.nicolasboumal.net/book.

[4] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, 2007. URL https://press.princeton.edu/absil.

[5] P. T. Fletcher. Geodesic regression and the theory of least squares on Riemannian manifolds.
International Journal of Computer Vision (IJCV), 105:171–185, 2013. URL https://doi.
org/10.1007/s11263-012-0591-y.

[6] H. J. Kim, N. Adluru, M. D. Collins, M. K. Chung, B. B. Bendin, S. C. Johnson, R. J.
Davidson, and V. Singh. Multivariate general linear models (MGLM) on Riemannian man-
ifolds with applications to statistical analysis of diffusion weighted images. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2705–2712, 2014. URL
https://doi.org/10.1109/CVPR.2014.352.

[7] M. Zeestraten. Programming by Demonstration on Riemannian Manifolds. PhD thesis,
University of Genova, Italy, 2018. URL https://iris.unige.it/handle/11567/
930621#.YCgbRuoo85k.

9

https://doi.org/10.1109/ICRA.2014.6907291
https://arxiv.org/abs/1812.01537
http://www.nicolasboumal.net/book
https://press.princeton.edu/absil
https://doi.org/10.1007/s11263-012-0591-y
https://doi.org/10.1007/s11263-012-0591-y
https://doi.org/10.1109/CVPR.2014.352
https://iris.unige.it/handle/11567/930621#.YCgbRuoo85k
https://iris.unige.it/handle/11567/930621#.YCgbRuoo85k

[8] G. Dubbelman. Intrinsic Statistical Techniques for Robust Pose Estimation. PhD thesis, Uni-
versity of Amsterdam, Netherlands, 2011. URL https://hdl.handle.net/11245/
1.348545.

[9] L. Rozo, M. Guo, A. G. Kupcsik, M. Todescato, P. Schillinger, M. Giftthaler, M. Ochs,
M. Spies, N. Waniek, P. Kesper, and M. Bürger. Learning and sequencing of object-centric
manipulation skills for industrial tasks. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 9072–9079, 2020. doi:10.1109/IROS45743.2020.9341570.

[10] B. Delhaisse, L. Rozo, and D. G. Caldwell. Pyrobolearn: A python framework for robot learn-
ing practitioners. In Conference on Robot Learning (CoRL), pages 1348–1358, Osaka, Japan,
October 2019. URL https://proceedings.mlr.press/v100/delhaisse20a.
html.

[11] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, and E. Burdet. On the analysis
of movement smoothness. Journal of NeuroEngineering and Rehabilitation, 12(112):1–11,
2015. URL https://doi.org/10.1186/s12984-015-0090-9.

10

https://hdl.handle.net/11245/1.348545
https://hdl.handle.net/11245/1.348545
http://dx.doi.org/10.1109/IROS45743.2020.9341570
https://proceedings.mlr.press/v100/delhaisse20a.html
https://proceedings.mlr.press/v100/delhaisse20a.html
https://doi.org/10.1186/s12984-015-0090-9

	Background
	Notation
	ProMPs algorithm
	Riemannian manifolds

	Orientation ProMPs
	Computation of the marginal distribution
	Gradient-based optimization for MGLM
	Blending

	Experiments
	Synthetic data experiment on S2
	Manipulation skills on R3 S3

