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Abstract

In real-world reinforcement learning (RL) systems, various forms of impaired1

observability can complicate matters. These situations arise when an agent is2

unable to observe the most recent state of the system due to latency or lossy3

channels, yet the agent must still make real-time decisions. This paper introduces4

a theoretical investigation into efficient RL in control systems where agents must5

act with delayed and missing state observations. We establish near-optimal regret6

bounds, of the form Õ(
√
poly(H)SAK), for RL in both the delayed and missing7

observation settings. Despite impaired observability posing significant challenges8

to the policy class and planning, our results demonstrate that learning remains9

efficient, with the regret bound optimally depending on the state-action size of the10

original system. Additionally, we provide a characterization of the performance of11

the optimal policy under impaired observability, comparing it to the optimal value12

obtained with full observability.13

1 Introduction14

In Reinforcement Learning (RL), an agent engages with an environment in a sequential manner. In15

an ideal setting, at each time step, the agent would observe the current state of the environment, select16

an action to perform, and receive a reward [Smallwood and Sondik, 1973, Bertsekas, 2012, Sutton17

and Barto, 2018, Lattimore and Szepesvári, 2020]. However, real-world engineering systems often18

introduce impaired observability and latency, where the agent may not have immediate access to the19

instant state and reward information. In systems with lossy communication channels, certain state20

observations may even be permanently missing, never reaching the agent. Nevertheless, the agent is21

still required to make real-time decisions based on the available information.22

The presence of impaired observability transforms the system into a complex interactive decision23

process (Figure 1), presenting challenges for both learning and planning in RL. With limited knowl-24

edge about recent states and rewards, the agent’s policy must extract information from the observed25

history and utilize it to make immediate decisions. This introduces significant complexity to the26

policy class and poses difficulties for RL. Moreover, the loss of information due to permanently27

missing observations further hampers the efficiency of RL methods. Although a naïve approach28

would involve augmenting the state and action space to create a fully observable Markov Decision29

Process (MDP), such a method would lead to exponential regret growth in the state-action size.30

Why existing methods do not work. One may be tempted to cast the problem of impaired31

observability into a Partially Observed MDPs (POMDPs). However, this would not solve the32

problem. In POMDP, the system does not reveal its instant state to the agent but provides an33

emission state observation conditioned on the latent state. POMDPs are known to suffer from the34

curse of history [Papadimitriou and Tsitsiklis, 1987, Bertsekas, 2012, Krishnamurthy, 2016], unless35

additional assumptions are imposed. Existing efficient algorithms focus on subclasses of POMDPs36
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Figure 1: Reinforcement learning with impaired observability. At time h, the agent only observes the
past state sh−d and actions ah−d, . . . , ah−1. The policy depends on the observed information.

with decodable or distinguishable partial observations [Jin et al., 2020, Uehara et al., 2022, Zhan37

et al., 2022, Chen et al., 2022, Liu et al., 2022, Zhong et al., 2022, Chen et al., 2023], where the38

unseen instant state can be inferred from recent observations. Unfortunately, MDPs with impaired39

observability do not fall into these benign subclasses. The reason behind this is that at each time step,40

a new observation, if any, is in fact a past state. Viewing it as an emission state of the current one41

leads to a time reversal posterior distribution depending on the underlying transitions, which suffers42

from the curse of history and makes the POMDP intractable. The problem becomes even harder if43

some observations get missing.44

Empirical evidences suggested that efficient RL is possible even with impaired state observability45

[Lizotte et al., 2008, Liu et al., 2014, Agarwal and Aggarwal, 2021]. However, theoretical under-46

standing of this problem is very limited. One notable work [Walsh et al., 2007] studied learning with47

constant-time delayed observations. They identified subclasses of MDPs with nearly deterministic48

transitions that can be efficiently learned. Beyond this special case, efficient RL with impaired49

observability in MDPs with fully generality remains largely open.50

Some recent works studied delayed feedback in MDPs [Yang et al., 2023, Howson et al., 2023]. It51

is a fundamentally different problem where the agent’s policy can still access real-time states but52

learning uses delayed data. Our problem is fundamentally harder because the agent’s policy can only53

access the lossy and delayed history. See Section 1.1 for more discussions.54

Our results. In this paper, we provide algorithms and regret analysis for learning the optimal policy55

in tabular MDPs with impaired observability. Note that this optimal policy is a different one from the56

optimal policy with full observability. To approach this problem, we construct an augmented MDP57

reformulation where the original state space is expanded to include available observations of past58

state and an action sequence. However, the expanded state space is much larger than the original one59

and naïve application of known methods would lead to exponentially large regret bounds. In our60

analysis, we exploit structure of the augmented transition model to achieve efficient learning and61

sharp regret bounds. The main results are summarized as follows.62

• For MDPs with stochastic delays, we prove a sharp Õ(H4
√
SAK) regret bound (Theorem 4.1)63

comparing to the best feasible policy, Here S and A are the sizes of the original state and action64

spaces, respectively, H is the horizon, and K is the number of episodes. Here we allows the delay to65

be stochastic and conditionally independent given on current state and action. Moreover, we quantify66

the performance degradation of optimal value due to impaired observability, compared to optimal67

value of fully observable MDPs (Proposition B.2). We also showcase in Proposition 4.2 that a short68

delay does not reduce the optimal value, but slightly longer delay leads to substantial degradation.69

• For MDPs with randomly missing observations, we provide an optimistic RL method that provably70

achieves Õ(
√
H3S2AK) regret (Proposition 5.1). We also provide a sharper Õ(H4

√
SAK) regret71

in the case when the missing rate is sufficiently small (Theorem 5.2).72

To our best knowledge, these results present a first set of theories for RL with delayed and missing73

observations. Remarkably, our regret bounds nearly match the minimax-optimal regret of standard74

MDP in their dependence on S,A (noting that the target optimal policies are different in the two75

cases). It implies that RL with impaired observability are provably as efficient as RL with full76

observability (up to poly factors of H).77

1.1 Related work78

Efficient algorithms for learning in the standard setting of tabular MDPs without impaired observabil-79

ity has been extensively studied [Kearns and Singh, 2002, Brafman and Tennenholtz, 2002, Jaksch80
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et al., 2010, Dann and Brunskill, 2015, Azar et al., 2017, Agrawal and Jia, 2017, Jin et al., 2018,81

Dann et al., 2019, Zanette and Brunskill, 2019, Zhang et al., 2020, Domingues et al., 2021], where82

the minimax optimal regret is Õ(
√
H3SAK) [Azar et al., 2017, Domingues et al., 2021].83

The delayed observation studied in this paper is related to delayed feedback in Howson et al. [2023],84

Yang et al. [2023], yet the setup is fundamentally different. In delayed feedback, an agent sends a85

policy to the environment for execution. The environment executes the policy on behalf of the agent86

for an episode, but the whole trajectory will be returned to the agent after some episodes. The policy87

executed by the environment is able to “see" instant state and reward. It is Markov and not played by88

the agent. Our setting concerns learning executable policies when delayed or missing states appear89

within an episode. The policy is no longer Markov and can only prescribe action based on history.90

Therefore, the algorithms and analyses for delayed feedback MDPs are not applicable to our settings.91

Despite the distinct settings, there are existing fruitful results in efficiently learning MDPs or bandits92

with delayed feedback. Stochastic delayed feedback in bandits is studied in Agarwal and Duchi [2011],93

Dudik et al. [2011], Joulani et al. [2013], Vernade et al. [2017, 2020], Gael et al. [2020], Lancewicki94

et al. [2021]. In the more challenging setting of reinforcement learning, Howson et al. [2023]95

considers tabular MDPs and Yang et al. [2023] generalizes to MDPs with function approximation96

and multi-agent settings.97

On the other hand, results analyzing MDPs with missing observations are limited in literature,98

although missing data is a commonly recognized issue in applications [García-Laencina et al., 2010,99

Jerez et al., 2010, Little et al., 2012, Emmanuel et al., 2021]. One notable result is Bouneffouf et al.100

[2020] for bandits with missing rewards.101

Notation: For real numbers a, b, we denote a ∧ b = min{a, b}. In episodic MDPs, we use the102

superscript k to denote the index of episodes, and the subscript h to denote the index of time.103

We denote ai:j = {ai, . . . , aj} as the collection of actions from time i to j. For two probability104

distributions µ and ν, we denote their total variation distance as ∥µ− ν∥TV.105

MDP preliminary: An episodic MDP is described by a tuple (S,A, H,R, P ), where S,A are106

state and action spaces, respectively, H is the horizon, R = {rh}Hh=1 is the reward function and107

P = {ph}Hh=1 is the transition probability. We primarily focus on tabular MDPs, where S = |S| and108

A = |A| are both finite. We also assume that the reward is uniformly bounded with ∥rh∥∞ ≤ 1 for109

any h. An agent will interact with the environment for K episodes, hoping to find a good policy to110

maximize the cumulative reward. Within an episode, at the h-th step, the agent chooses an action111

based on the available information of the environment. After taking the action, the underlying112

environment produces a reward and transits to the next state. With full state observation, a policy π113

maps instant state s to an action a or an action distribution. Given such a policy π, the value function114

is V π
h (s1) = Eπ

[∑H
h′=h rh(sh′ , ah′)

∣∣sh] , where Eπ is the policy induced expectation.115

2 Problem formulation116

In this work, we study MDPs with impaired observability. We focus on two practical settings: 1)117

delayed observations and 2) missing observations.118

MDP with delayed observations In any episode, we denote dh ∈ {0, 1, . . . } as the observational
delay of the state and reward at step h. That is, we receive sh and rh at time h+ dh. The delay time
dh can be dependent on the state sh and action ah at time h. To facilitate analysis, we denote the inter-
arrival time between the arrival of observations for step h and h+1 as ∆h = dh+1−dh. With delays,
at time h, the nearest observable state is denoted as sth , where th = argmax {I :

∑I
i=0 ∆i ≤ h}.

Then the executable policy class

Πe = {πh(·|sth ,ath:h−1) for h = 1, . . . ,H}
chooses actions depending on the nearest visible state and history actions. We impose the following119

assumption on the interarrival time.120

Assumption 2.1 . The interarrival time ∆h takes value in {0, 1, . . . }. The distribution Dh(sh, ah) of121

∆h can depend on (sh, ah), but is conditionally independent of the MDP transitions given (sh, ah).122

Assumption 2.1 does not impose any distributional assumption on ∆h, but only requires that the123

delayed observations still arrive in order and at each time step, there is at most one new visible state124
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and reward pair (∆h ≥ 0). A widely studied example of delays in literature is that the inter-arrival125

time is geometrically distributed [Winsten, 1959]. Then the observation sequence {h+ dh} is known126

as a Bernoulli process, which is understood as the discretized version of a Poisson process.127

Our delayed observation setting is newly proposed and substantially generalizes the Constant Delayed128

MDPs (CDMDPs) studied in Brooks and Leondes [1972], Bander and White III [1999], Katsikopoulos129

and Engelbrecht [2003], Walsh et al. [2007]. When ∆h = 0 being deterministic for all h ≥ 1 and k,130

our observation delay coincides with CDMDPs. In CDMDPs, a new past observation is guaranteed131

to arrive at each time step. However, our delayed model can result in no new observation at some132

time steps.133

Observation delay leads to difficulty in planning, as the agent can only infer the current state and then134

choose an action. Therefore, the policy is naturally history dependent. We summarize the interaction135

protocol of the agent with the environment in Protocol 1. At the end of each episode, we can collect

Protocol 1 Interaction between the agent and the environment with delayed observations
1: for episode k = 1, . . . ,K do
2: for time h = 1, . . . ,H do
3: The agent observes a pair of new, if any, state and reward (skth , a

k
th
). By memory, the agent

also has access to past actions akth:h−1.
4: The agent plays action akh according to some executable policy πk

h ∈ Πe.
5: The environment transits to next state skh+1 ∼ ph(·|skh, akh), which is unobservable to the

agent. The environment also decides the delay at step h+ 1 as dkh+1 = dkh +∆k
h and tkh+1.

6: end for
7: The environment sends all unobserved pairs of state and reward as well as their corresponding

delay time to the agent.
8: end for

136 all the delayed observations, however, these observations are not used in planning. In reality, the137

agent can collect these observations by waiting after time H .138

MDP with missing observations In addition to the stochastic delay in observations, we also139

consider randomly missing observations. In applications, an agent interacts with the environment140

through some communication channel. The communication channel is often imperfect and thus,141

observation can be lost during transmission. This type of missing is permanent and we describe in142

the following assumption.143

Assumption 2.2 . Any pair of observation (state and reward) is independently observable in the144

communication channel. The observation rate is λh depending on h, but independent of the MDP145

transitions. Moreover, there exists a constant λ0 such that λh ≥ λ0 for any h. The agent will be146

informed when an observation is missing.147

3 Construction of augmented MDPs148

To tackle the limited observability, we expand the original state space and define an augmented149

MDP. It will serve as the basis for our subsequent theoretical analysis. For audience not interested in150

technical details, please feel free to skip this section.151

3.1 Augmented MDP with expected reward152

In the remainder of this section, we focus on the delayed observation case and defer the missing case153

to Section 5. Define τh = {sth ,ath:h−1, δth} as the augmented state, where δth ∈ [0,∆th ] is the154

delayed steps after observing (sth , rth). Let Saug denote the augmented state space of all possible155

τ ’s. Then the original MDP with delayed observations can be reformulated into a state-augmented156

one MDPaug = (Saug,A, H,Raug, Paug). The reward is defined as157

rh,aug(τh, ah) = E [rh(sh, ah)|τh, ah] ,
which is the expected reward given the nearest past state sth and history actions ath:h. We can define158

belief distribution bh(s|τh) = P(sh = s|τh). Then rh,aug(τh, ah) = Es∼bh(·|τh)[r(s, ah)]. Belief159

distributions are widely adopted in partially observed MDPs [Ross et al., 2007, Poupart and Vlassis,160

2008]. We will frequently use the belief distribution to study the expressivity of Πe in Section 4.2.161
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The transition probabilities Paug are sparse. For any τh = {sth ,ath:h−1, δth} and τh+1 =162

{sth+1
,ath+1:h, δth+1

}, we have163

ph,aug(τh+1|τh, ah) Condition
Ma(τh, τh+1)θdelay(sth , ath , δth)ph(sth+1

|sth , ath) if δth+1
= 0 and th+1 = th + 1

Ma(τh, τh+1)(1− θdelay(sth , ath , δth)) if δth+1
= δth + 1 and th+1 = th

0 otherwise

where Ma(τh, τh+1) indicates whether the rolling actions are matched, i.e.,164

Ma(τh, τh+1) = 1{ath:h−1 = ath+1:h−1},
and θdelay(sth , ath , δth) is defined as165

θdelay(sth , ath , δth) = P(∆th = δth |sth , ath , δth) =
P(∆th = δth |sth , ath)

1−∑δ<δth
P(∆th = δ|sth , ath)

.

The factored form of θdelay(sth , ath , δth)p(sth+1
|sth , ath) follows from the conditional independence166

in Assumption 2.1. We define Q-functions and value functions as follows. For any τh, ah and policy167

π ∈ Πe, we have168

Qπ
h,aug(τh, ah) = Eπ

[
H∑

h′=h

rh,aug(τh′ , ah′)
∣∣∣τh, ah] and

V π
h,aug(τh) =

〈
Qπ

h,aug(τh, ·), πh(·|τh)
〉
.

We note that V π
h is equivalent to V π

h,aug for the same executable policy π ∈ Πe. We also denote Ph,aug169

as the transition operator corresponding to Paug. It can be checked that170

Qπ
h,aug(τh, ah) = rh,aug(τh, ah) + [Ph,augV

π
h,aug](τh, ah).

MDPaug also appears in makes all the policies in Πe executable and Markov. Meanwhile, the reward171

function keeps track of all the expected reward for H steps. Although the expanded state space172

Saug is much more complicated than the original state space S , the sparse structures in the transition173

probabilities still allow an efficient exploration. We note that ph,aug only depends on the delay174

distribution and one-step Markov transitions. However, there is still one caveat for learning in MDPaug175

– the reward function depends belief distributions, which involve multi-step transitions.176

3.2 Augmented MDP with past reward177

To tackle the aforementioned challenge, we further define M̃DPaug = (S̃aug,A, H̃, R̃aug, P̃aug) that178

shares the optimal policy in MDPaug with an enlonged horizon H̃ = 2H . The state space S̃aug consists179

of any τh = {sth ,ath:h∧H , δth}. Comparing to Saug, we cut off the action at horizon H , since ah180

for h > H has no influence on the state and reward in time [0, H]. The reward function is defined as181

r̃h,aug(τh, ah) = rh(sth , ath)1{δth = 0}1{th ∈ {1, . . . ,H}}.
By definition, r̃aug(τh, ah) is a past reward. More importantly, r̃h,aug(τh, ah) zeros out rewards182

outside the original horizon H . Meanwhile, between the arrival of two consecutive state observations,183

the reward only counts once. Lastly, the transition probabilities are184

p̃h,aug(τh+1|τh, ah) Condition
Ma(τh, τh+1)θdelay(sth , ath , δth)ph(sth+1

|sth , ath) if δth+1
= 0, th+1 = th + 1 and h < H

Ma(τh, τh+1)(1− θdelay(sth , ath , δth)) if δth+1
= δth + 1, th+1 = th and h < H

Ma(τh, τh+1)ph(sth+1|sth , ath) if δth+1 = 0, th+1 = th + 1 and h > H

0 otherwise

We interpret the transitions as follows. When h ≤ H , the transition is the same as MDPaug. When185

h > H , we simply wait for unobserved states and rewards to come. As mentioned, actions taken186

beyond time H are irrelevant. We build an equivalence in the expected values of MDPaug and M̃DPaug.187

Proposition 3.1. Let MDPaug and M̃DPaug be defined as in the previous paragraphs. Then for any188

initial state τ1 and any policy π = {πh}Hh=1 ∈ Πe, it holds,189

Eπ

[
H∑

h=1

rh,aug(τh, ah)
∣∣∣τ1] = Eπ

 H̃∑
h=1

r̃h,aug(τh, ah)
∣∣∣τ1
 ,

where in the right-hand side, the policy for steps H + 1 to H̃ is arbitrary.190
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The proof is provided in Appendix A.1. Proposition 3.1 implies that learning in MDPaug until time H191

is equivalent to that in M̃DPaug for H̃ steps.192

4 RL with delayed observations and regret bound193

In this section, we provide regret analysis of learning in MDPs with stochastic delays. For the sake of194

simplicity, we assume the reward is known, however, extension to unknown reward causes no real195

difficulty. Motivated by the augmented MDP reformulation, we introduce our learning algorithm196

in Algorithm 2. In Line 5, unobserved states and rewards are returned to the agent as described197

in Protocol 1. Using the data set, we construct bonus functions compensating the uncertainty in198

one-step transitions of the original MDP. This largely sharpens the confidence region, yet still ensures199

a valid optimism. We emphasize that in Line 9, we are planning on M̃DPaug involving the augmented200

transitions and expanded states of τ ∈ S̃aug. Only in this way, we can obtain an executable policy in201

delayed MDPs. The planning complexity is SAH though.

Algorithm 2 Policy learning for delayed MDPs using M̃DPaug

1: Input: Original horizon H , extended horizon H̃ , policy class Πe, failure probability γ.
2: Init: VH̃+1(τ) = 0 and QH̃(τ, a) = H for any τ and a, data set D0 = ∅, initial policy π0.
3: for episode k = 1, . . . ,K do
4: Execute policy πk−1 for H̃ steps.
5: After the episode ends, collect data Dk = Dk−1 ∪ {(skh, akh, rkh,∆k

h)}Hh=1.
6: On data set Dk, compute counting numbers Nk

h (sh, ah), Nk
h (sh, ah, sh+1) and

Nk
h (sh, ah, δh).

7: Estimate transition probabilities and delay distributions via

p̂kh(sh+1|sh, ah) =
Nk

h (sh, ah, sh+1)

Nk
h (sh, ah)

and θ̂kdelay(sh, ah, δh) =
Nk

h (sh, ah, δh)∑
δ≥δh

Nk
h (sh, ah, δ)

.

Then estimators of p̃h,aug in M̃DPaug is computed using p̂kh and θ̂kdelay.
8: Set bonus function as

bkh(τh, ah) = cH

(√
Hι

Nk
th
(sth , ah, δth)

+

√
Hι

Nk
th
(sth , ath)

)
for ι = log SAKH

γ and c sufficiently large.

9: Run optimistic value iteration in M̃DPaug for H̃ steps and obtain πk ∈ Πe.
10: end for
11: Return: Learned policy πk

1:H for k = 1, . . . ,K.

202

4.1 Regret bound203

We define regret in delayed MDP as204

Regret(K) =
∑K

k=1 maxπ∈Πe
V π
1 (sk1)−

∑K
k=1 V

πk
1 (sk1),

where V π
1 is the value function of the original MDP. Although the regret here is defined on the original205

MDP, it is equivalent to the regret of the same policy on MDPaug and further M̃DPaug by Proposition 3.1.206

Note that we are comparing with the best executable policy. The performance degradation caused by207

observation delay is discussed in Section 4.2. The following theorem bounds the regret.208

Theorem 4.1 (Regret bound for Delayed MDP). Suppose Assumption 2.1 holds. Let γ ∈ (0, 1) be209

any failure probability. With probaiblity 1− γ, the regret of Algorithm 2 satisfies210

Regret(K) ≤ c
(
H4

√
SAKι+H4S2Aι2

)
,

where ι = log SAHK
γ and c is some constant.211

The proof is provided in Appendix B.1. We discuss several implications.212
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Sharp dependence on S and A Theorem 4.1 has a sharp dependence on S and A, although the213

expanded state space S̃aug has a cardinality bounded by SAH . Naïvely learning and planning in214

M̃DPaug would suffer from the exponential enlargement of AH . However, we identify the sparse215

structures in the transition probabilities. As can be seen, p̃h,aug only involves one-step transitions in216

the original MDP and some conditionally independent delay distributions. Such structures lead to a217

rather easy estimation of p̃h,aug, which can be constructed from the estimators of one-step transitions218

in the original MDP. Meanwhile, the sparse structures make exploration in M̃DPaug efficient, due to219

many unreachable states.220

Effect of the delay distribution and delay length Theorem 4.1 holds for arbitrary conditionally221

independent delay distributions, even include heavy-tailed distributions. Our regret bound encodes222

the influence of delay by paying extra H factors. The reason to this is that if the delay is larger than223

H , then the corresponding state will only be observed after an episode ends and won’t be used in224

planning. Therefore, we can truncate the delay at H , regardless of its tail distributions.225

4.2 Performance degradation of policy class Πe226

This section devotes to quantify the performance degradation caused by delayed observations. In227

particular, we bound the value difference between the best executable policy and the best Markov228

policy in a no delay environment. Recall that V1 is the value function of the original MDP. We denote229

π∗
nodelay = argmaxπ V

π
1 (s1) and π∗

delay = argmaxπ∈Πe
V π
1 (s1)

as the best vanilla optimal policy and executable policy, respectively. The values achieved by π∗
nodelay230

and π∗
delay are denoted as V ∗

1,nodelay(s1) and V ∗
1,delay(s1), respectively. The gap between V ∗

1,nodelay231

and V ∗
1,delay quantifies the performance degradation, which is denoted as gap(s1) = V ∗

1,nodelay(s1)−232

V ∗
1,delay(s1). We bound gap in Proposition B.2 in Appendix due to space limit.233

In a nutshell, we show that the performance degradation gap is highly relevant to the belief distribution234

bh(·|τ). When bh(·|τ) is evenly spread, meaning that the entropy of bh is high and inferring the235

current unseen state is difficult, we potentially suffer from a large gap. On the contrary, when bh(·|τ)236

is nearly deterministic, the performance degradation is small. In the special case of deterministic237

transitions, we have gap = 0.238

4.3 The (mysterious) effect of delay on the optimal value239

To further understand the effect of the delay on the optimal value, we provide the following dichotomy.240

On the one hand, we show that there exists an MDP instance, such that a constant delay of d steps241

does not hurt the performance. On the other hand, in the same MDP instance, a constant delay of242

d+ 1 steps suffers from a constant performance drop.243

Proposition 4.2. Consider constant delayed MDPs. Fix a positive integer d < H . Then there exists244

an MDP instance such that the following two items hold simultaneously.245

• When delay is d, it holds 1
K

∑K
k=1 gap(s

k
1) = 0.246

• When delay is d+ 1, it holds 1
K

∑K
k=1 gap(s

k
1) ≥ 1

2 −
√

1
2K log 1

γ , with probability 1− γ.247

The proof is provided in Appendix B.3. We remark that Proposition 4.2 says that observation delay248

can be dangerous, even with the slightest possible number of steps. The idea behind Proposition 4.2249

is consistent with the analysis on gap. In particular, we construct an MDP instance demonstrated250

in Figure 2. The reward vanishes at all times but d + 1. When delay is d, the initial state s1 is251

revealed and the policy can choose the best action to receive a reward. When delay is d+ 1, however,252

there is always a 1/2 probability of missing the best action for any policy, which leads to a constant253

performance degradation.254

5 RL with missing observations and regret analysis255

We now switch our study to MDPs with missing observations. In such an environment, executable256

policies share the same structures as delayed MDPs, where an action is taken based on available257

history information. Compared to delayed observations, learning with missing observations is258

more challenging. Since unobserved states and rewards are never revealed, we are suffering from259

information loss. Besides, we will frequently deal with multi-step transitions, due to missing260

observations between two consecutive visible states.261
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rd+1(si, ai) = 1 for i = 1, 2

Figure 2: MDP instance on two states with two actions. The transition is lazy until time d. Then the
transition is uniform regardless of actions for time d+ 1. Reward is nonzero only at time d+ 1. This
is an example with a delay of length d causes no degradation and a delay of d+ 1 causes a constant
performance degradation.

5.1 Optimistic planning with missing observations262

Despite the difficulty, we present here algorithms that are efficient in learning and planning for MDPs263

with missing observations. We begin with an optimistic planning algorithm in Algorithm 3. To unify264

the notation, we denote skh = ∅ and rkh = ∅ as missing the observation.265

Algorithm 3 Optimistic planning for MDPs with missing observations
1: Input: Horizon H , observable rate λh.
2: Init: B0 = Θ to be all possible tabular MDPs, data set D0 = ∅.
3: for episode k = 1, . . . ,K do
4: Set policy πk = argmaxπ∈Πe

maxθ∈Bk V π
1,θ(s

k
1).

5: Play policy πk and collect data Dk−1 ∪ {(skh, akh, rkh)}Hh=1.
6: Compute counting number Nk

h (s, a) =
∑k

j=1 1{skh = s, akh = a, skh+1 ̸= ∅}.
7: Update confidence set

Bk =
{
θ : ∥p̂kh(·|s, a)− pθh(·|s, a)∥TV ≤ c

√
Sι

Nk
h (s, a)

for all (h, s, a)
}
∩ Bk−1,

where p̂kh(s
′|s, a) = Nk

h (s,a,s′)

Nk
h (s,a)

and c is some constant.
8: end for

The majority of the algorithm resembles the typical optimistic planning [Jaksch et al., 2010] but with266

some notable differences. In Line 4, the value function V1,θ is for the original MDP with transition267

probabilities parameterized by θ. Different from the typical optimistic planning, the underlying MDP268

here obeys the stochastic observable model in Assumption 2.2. Therefore, the value V1,θ is the sum269

of all possible values under missing observations. When counting Nk
h (s, a) in Line 6, we exclude270

data tuples missing the next state, which inevitably slows down the learning curve. Nonetheless, the271

effect of missing only contributes as a scaling factor in the regret.272

Proposition 5.1. Suppose Assumption 2.2 holds with λh known. Given a failure probability γ, with273

probability 1− γ, the regret of Algorithm 4 satisfies274

Regret(K) ≤ c

(
1

− log(1− λ2
0)

√
H3S2AKι3 +

√
H4Kι

)
,

where ι = log SAHK
γ and c is some constant.275

The proof is provided in Appendix C.1. Proposition 5.1 is optimal in the K dependence and276

achieves an S2A dependence on the complexity of the underlying MDP. In the extreme case of277

λ0 ≈ 0, which implies that every state and reward are hardly observable, we have Regret(K) =278

Õ
(

1
λ2
0

√
H3S2AK

)
. Here λ2

0 is the probability of observing two consecutive states for estimating279

the transition probabilities. Proposition 5.1 requires knowledge of observable rate λh. This is not a280

restrictive condition, as estimating λh from Bernoulli random variables is much easier than estimating281

transition probabilities.282
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5.2 Model-based planning using augmented MDPs283

Proposition 5.1 has a lenient dependence on the missing rate 1− λ2
0, nonetheless, is not sharp on the284

dependence of S. We next show that the augmented MDP approach is effective to tackle missing285

observations, when the observable rate satisfies additional conditions. Specifically, we assume that286

the observable rate λh is independent of (s, a). We utilize the MDPaug reformulation, except that we287

redefine the transition probabilities as288

ph,aug(τh+1|τh, ah) =


λhph(sh+1|sth ,ath:h) if th+1 = h+ 1

Ma(τh+1, τh)(1− λh) if th+1 = th
0 otherwise

.

The first case in ph,aug corresponds to receiving the state observation at time h+ 1. In contrast to the289

delayed MDPs, the transition probabilities here potentially rely on multi-step transitions in the original290

MDP. The second case of the transition corresponds to missing the observation. We summarize the291

policy learning procedure in Algorithm 4 in Appendix C.2, which is similar to Algorithm 2, but with292

a new bonus function. The following theorem shows that Algorithm 4 is asymptotically efficient293

when the observable rate is relatively high.294

Theorem 5.2. Suppose Assumption 2.2 holds with λ0 ≥ 1−A−(1+v) for some positive constant v.295

Given a failure probability γ, with probability 1− γ, the regret of Algorithm 4 satisfies296

Regret(K) ≤ c

(
H4

√
SAKι3 + S2

√
H9K

1
(1+v) ι6

)
,

where ι = log SAHK
γ and c is some constant.297

The proof is provided in Appendix C.2. Some remarks are in order.298

SA rate when K is large When the number of episodes K ≥ S3(1+v)/v, the first term299

H4
√
SAKι3 in the regret bound dominates and attains a sharp dependence on S and A. How-300

ever, when the number of episodes are limited, the regret bound has a worse dependence on the state301

space size S. We also observe that as the missing rate λ becomes small (equivalently, v becomes302

large), the regret is close to Õ(H4
√
SAKι3).303

Observable rate smaller than 1− 1/A Theorem 5.2 holds for an observable rate λ0 > 1− 1/A.304

The intuition behind is that to fully explore all the actions when a state observation is missing takes305

A trials. Therefore, in expectation, we will encounter a missing observation at least every A episodes306

as long as λ0 > 1 − 1/A. Nonetheless, when λ0 ≤ 1 − 1/A, the regret bound remains curiously307

underexplored. We conjecture that λ0 = 1− 1/A is a critical point distinguishes unique strategies308

for learning and planning in MDPs with missing observations. A detailed analysis goes beyond the309

scope of the current paper.310

Proof sketch The proof of Theorem 5.2 adapts the analysis of model-based UCBVI algorithms311

[Azar et al., 2017]. Let m denote the maximal length of consecutive missing observations. We denote312

Em as the event when the maximal length of consecutive missing is less than m. On event Em, a naïve313

analysis leads to a Õ
(√

poly(H)SAm+1K
)

regret, in observation to the size of the expanded state314

space Saug. However, our analysis circumvents the Am dependence by exploiting the occurrence of315

consecutive missing observations is rare (Lemma C.3). On the complement of event, the regret is316

bounded by KH(1− P(Em)). Summing up the two parts and choosing a proper m yield our result.317

6 Conclusion and limitation318

In this paper, we have studied learning and planning in impaired observability MDPs. We focus319

on MDPs with delayed and missing observations. Specifically, for delayed observations, we have320

shown an efficient Õ(H4
√
SAK) regret. For missing observations, we have provided an optimistic321

planning algorithm achieving an Õ(
√
H3S2AK) regret. If the missing rate is relatively small, we322

have shown an efficient Õ(H4
√
SAK) regret bound. Further, we have characterized the performance323

drop caused by impaired observability compared to full observability. A limitation of the current324

study is that the planning complexity in augmented MDPs is high with an exponential dependence on325

the size of the action space. Sharpening such a dependence is left as a future direction.326
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A Omitted proof in Section 3449

A.1 Proof of Proposition 3.1450

Proof of Proposition 3.1. Consider an arbitrary fixed inter-arrival pattern ∆0,∆1, . . . ,∆H−1. We451

show that the expected accumulated rewards under this inter-arrival pattern are identical for MDPaug452

and M̃DPaug. In M̃DPaug, we have453

Eπ

 H̃∑
h=1

r̃h,aug(τh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1


(i)
= Eπ

 H̃∑
h=1

r̃th,aug(sth , ath)1{δth = 0}1{th ∈ {1, . . . ,H}}
∣∣∣ τ1,∆0, . . . ,∆H−1


(ii)
= Eπ

[
H∑

h=1

r(sh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1

]

= Eπ

[
H∑

h=1

rh,aug(τh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1

]
,

where equality (i) invokes the definition of r̃h,aug and equality (ii) eliminates zero reward terms.454

Now taking expectation over all possible inter-arrival patterns, we deduce455

Eπ

 H̃∑
h=1

r̃aug(τh, ah)
∣∣∣ τ1
 = Eπ

[
H∑

h=1

rh,aug(sh, ah)
∣∣∣ τ1] .

The proof is complete.456

B Omitted proofs in Section 4457

B.1 Proof of Theorem 4.1458

Proof of Theorem 4.1. We adapt the main steps from Azar et al. [2017] for proving the theorem. The459

proof consists of verifying a valid optimism and developing a regret analysis. We denote Q̃∗
h,aug as460

the optimal Q-function for M̃DPaug. When analyzing the regret, we also denote Q̃k
h,aug as the optimal461

Q-function in the k-th episode.462

Valid optimism To begin with, we verify that the choice of the bonus functions leads to a valid463

optimism in the following lemma.464

Lemma B.1. Given any failure probability γ < 1, we set a bonus as465

bkh(τh, ah) = cAH

(√
Hι

Nth(sth , ath , δth)
+

√
Hι

Nth(sth , ath)

)
,

where ι = log
(

SAHK
γ

)
and cA is a constant. Then with probability 1− γ, it holds466

Q̃k
h,aug(τh, ah) ≥ Q̃∗

h,aug(τh, ah), Ṽ k
h,aug(τh) ≥ Ṽ ∗

h,aug(τh) for any (k, h, τh, ah).

Proof of Lemma B.1. We compute the cardinality of the expanded state space S̃aug as467

|S̃aug|
(i)
=

H∑
i=0

HSAi = HS
AH+1 − 1

A− 1
≤ 2HSAH .

For a fixed episode k, we show by backward induction that the assertion in Lemma B.1 holds. To ease468

the presentation, we omit all superscripts of k, all subscripts of “aug”, as well as the tilde ·̃ notation.469
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When h = H̃ + 1, the base assertion holds immediately. Suppose the assertion is true for time h+ 1.470

At time h, for any fixed (τh, ah), if Qh(τh, ah) = H , the assertion holds true. Otherwise, we have471

Qh(τh, ah)−Q∗
h(τh, ah) = [P̂hVh+1](τh, ah)− [PhV

∗
h+1](τh, ah) + bkh(τh, ah)

≥
(
[P̂h − Ph]V

∗
h+1

)
(τh, ah)︸ ︷︷ ︸

(A)

+ bkh(τh, ah).

We show a lower bound on (A). If h ≥ H , expanding the transition kernel Ph leads to472

(A) =
∑
τh+1

V ∗
h+1(τh+1)(p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

(i)
=
∑
sth+1

V ∗
h+1(τh+1)(p̂h(sth+1|sth , ath)− ph(sth+1|sth , ath))

(ii)

≥ −cA,1H

√
Hι

Nth(sth , ath)
,

where equality (i) requires τh+1 to take sth+1 as the new state observation, and inequality (ii) follows473

from the Hoeffding’s inequality (Lemma D.2) with a constant cA,1. Note that the Hι term in the474

numerator comes from a union bound over S̃aug ×A.475

On the other hand, if h < H , expanding the transition kernel Ph yields476

(A) =
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

=
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{δth+1

= 0}1{th+1 = th + 1}︸ ︷︷ ︸
(A1)

+
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{δth+1

= δth + 1}1{th+1 = th}︸ ︷︷ ︸
(A2)

.

Note that (A1) accounts for receiving a new state observation in τh+1, and (A2) accounts for no new477

state observation. We tackle these two terms separately. For (A1), we have478

(A1) =
∑
sth+1

V ∗
h+1(τh+1)

(
(1− θ̂(sth , ath , δth))p̂h(sth+1

|sth , ath)− (1− θ(sth , ath , δth))ph(sth+1
|sth , ath)

)
=
∑
sth+1

V ∗
h+1(τh+1)

((
1− θ̂(sth , ath , δth)

)
− (1− θ(sth , ath , δth))

)
p̂(sth+1

|sth , ath)

+
∑
sth+1

V ∗
h+1(τh+1)(1− θ(sth , ath , δth))

(
p̂(sth+1

|sth , ath)− p(sth+1
|sth , ath)

)
(i)

≥ −H
∣∣∣θ̂(sth , ath , δth)− θ(sth , ath , δth)

∣∣∣− cA,2H

√
Hι

Nth(sth , ath)
,

where in (i), the first term is the estimation error of θ̂ using the collected data, the second term follows479

from Hoeffding’s inequality, and cA,2 is an absolute constant. For (A2), we have480

(A2) ≥ −H
∣∣∣θ̂(sth , ath , δth)− θ(sth , ath , δth)

∣∣∣ ,
since τh+1 is now uniquely determined. Summing up (A1) and (A2), we obtain481

(A) = (A1) + (A2) ≥ −2H
∣∣∣θ̂(sth , ath , δth)− θ(sth , ath , δth)

∣∣∣− cA,2H

√
Hι

Nth(sth , ath)
.
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It remains to bound the estimation error of θ̂(sth , ath , δth). Using the Hoeffding’s inequality again,482

we obtain483 ∣∣∣θ̂(sth , ath , δth)− θ(sth , ath , δth)
∣∣∣ ≤ cθ

√
Hι

Nth(sth , ath , δth)
.

Taking cA = max{cA,1, cA,2, cθ, 2}, we have484

(A) ≥ −cAH

(√
Hι

Nth(sth , ath , δth)
+

√
Hι

Nth(sth , ath)

)
.

With the choice of the bonus function, it can be checked that485

Q̃k
h,aug(τh, ah)− Q̃∗

h,aug(τh, ah) ≥ (A) + bkh(τh, ah) ≥ 0

with probability 1− γ for any (τh, ah).486

Regret analysis In the sequel, we omit subscripts “aug” and tilde ·̃ for simplicity. Thanks to487

Lemma B.1, we consider
(
Qk

h −Qπk

h

)
(τkh , a

k
h) as an upper bound of (Q∗

h −Qπk

h ) (τkh , a
k
h). We488

bound
(
Qk

h −Qπk

h

)
(τkh , a

k
h) by489 (

Qk
h −Qπk

h

)
(τkh , a

k
h)

≤
(
[P̂k

hV
k
h+1 − PhV

πk

h+1]
)
(τkh , a

k
h) + bkh(τ

k
h , a

k
h)

≤
(
[P̂k

h − Ph]V
∗
h+1

)
(τkh , a

k
h) +

(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + bkh(τh, a

k
h)

≤
(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)︸ ︷︷ ︸

(A)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + 2bkh(τ

k
h , a

k
h). (B.1)

Similar to Lemma B.1, for h ≥ H , we expand term (A) into490

(A) =
∑
τh+1

(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
[V k

h+1 − V ∗
h+1](τh+1)

=
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1|skth , akth)− ph(sth+1|skth , akth)

)
. (B.2)

On the other hand, for h ≤ H , the decomposition of term (A) is more complicated. We have491

(A) =
∑
τh+1

(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
[V k

h+1 − V ∗
h+1](τh+1)

=
∑
τh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
1{δth+1

= 0}1{th+1 = tkh + 1}︸ ︷︷ ︸
(A1)

+
∑
τh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
1{δth+1

= δtkh + 1}1{th+1 = tkh}︸ ︷︷ ︸
(A2)

.

Term (A2) can be directly bounded by492

(A2) ≤ H
∣∣∣θ̂k(skth , akth , δkth)− θ(skth , a

k
th
, δkth)

∣∣∣
≤ cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

15



with probability 1− γ. To bound (A1), we have493

(A1) =
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

((
1− θ̂k(skth , a

k
th
, δkth)

)
p̂kh(sth+1

|skth , akth)

−
(
1− θ(skth , a

k
th
, δkth)

)
ph(sth+1

|skth , akth)
)

=
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
((

1− θ̂k(skth , a
k
th
, δkth)

)
−
(
1− θ(skth , a

k
th
, δkth)

))
p̂kh(sth+1

|skth , akth)

+
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
1− θ(skth , a

k
th
, δkth)

) (
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)
≤
(
1− θ(skth , a

k
th
, δkth)

) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)
+H

∣∣∣θ̂k(skth , akth , δkth)− θ(skth , a
k
th
, δkth)

∣∣∣
≤
(
1− θ(skth , a

k
th
, δkth)

) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)
+ cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

Putting (A1) and (A2) together, we obtain494

(A) ≤
(
1− θ(skth , a

k
th
, δkth)

) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)
+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

. (B.3)

In both (B.2) and (B.3) for different ranges of h, we apply the Bernstein inequality (Lemma D.1) to495

derive496 ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)

≤ c ·
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

[√
ph(sth+1

|skth , akth)ι
Nk

th
(skth , a

k
th
)

+
ι

Nk
th
(skth , a

k
th
)

]
(i)

≤ c ·
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

[
ph(sth+1

|skth , akth)
2cH

+
(2cH + 1)ι

Nk
th
(skth , a

k
th
)

]

≤ c ·

SH(2cH + 1)ι

Nk
th
(skth , a

k
th
)

+
1

2cH

∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)ph(sth+1
|skth , akth)

 , (B.4)

where inequality (i) follows from
√
ab ≤ a+ b. Substituting (B.4) into (B.2), for h ≥ H , we deduce497

(A) ≤ 1

2H

∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)ph(sth+1
|skth , akth) +

cSH(2cH + 1)ι

Nk
th
(skth , a

k
th
)

(i)

≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + c′

mSH2ι

Nk
th
(skth , a

k
th
)
,
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where c′ is a sufficiently large constant. By the same reasoning, substituting (B.4) into (B.3), for498

h < H , we have499

(A) ≤ 1

2H

(
1− θ(skth , a

k
th
, δkth)

) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)ph(sth+1
|skth , akth) +

cSH(2cH + 1)ι

Nk
th
(skth , a

k
th
)

+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

(i)

≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + c′

SH2ι

Nk
th
(skth , a

k
th
)
+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

We denote ζkh = c′ SH2ι
Nk

th
(skth

,ak
th

)
. Now we have a unified upper bound on (A) for any h ∈ [1, H̃] as500

(A) ≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + ζkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

. (B.5)

Substituting (B.5) back into (B.1), we have501 (
V k
h − V πk

h

)
(τkh ) =

(
Qk

h −Qπk

h

)
(τkh , a

k
h)

≤
(
1 +

1

2H

)(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h) + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

We further denote ξkh =
(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h) −

[
V k
h+1 − V πk

h+1

]
(τkh+1) and rewrite502 (

V k
h − V πk

h

)
(τkh ) as503 (

V k
h − V πk

h

)
(τkh ) ≤

(
1 +

1

2H

)([
V k
h+1 − V πk

h+1

]
(τkh+1) + ξkh

)
+ ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

Recall H̃ = 2H . Using a recursive summation argument, we deduce504 (
V k
1 − V πk

1

)
(τk1 ) ≤

H̃∑
h=1

(
1 +

1

2H

)h
(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)

≤ e

2H∑
h=1

(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)
.

As a consequence, the total regret is bounded by505

Regret(K) ≤ e

K∑
k=1

2H∑
h=1

(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)
. (B.6)

We need to sum over ζkh , ξ
k
h, b

k
h. Consider ζkh first. We have506

K∑
k=1

2H∑
h=1

ζkh = c′
K∑

k=1

2H∑
h=1

SH2ι

Nk
th
(skth , a

k
th
)

(i)

≤ c′H
K∑

k=1

H∑
h=1

SH2ι

Nk
h (s

k
h, a

k
h)

(ii)

≤ cζH
4S2Aι2, (B.7)

where inequality (i) invokes the fact that th only takes value in {1, . . . ,H} and each Nk
th
(skth , a

k
th
)507

is repeated at most H times, and inequality (ii) follows from the pigeon-hole argument in Azar et al.508

[2017].509

Next we bound the summation over ξkh. This is a martingale difference sequence. We apply Azuma-510

Hoeffding’s inequality (Lemma D.3) with n = 2H and ci = 4H to obtain511

K∑
k=1

2H∑
h=1

ξkh ≤ cξ
√
KH4ι. (B.8)
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The additional H dependence above comes from a union bound over S̃aug ×A. Lastly, we tackle the512

summation over bonus functions bkh. We have513

K∑
k=1

2H∑
h=1

bkh =

K∑
k=1

2H∑
h=1

cAH

√
Hι

Nk
th
(sth , ath)

≤ cAH

K∑
k=1

H∑
h=1

H

√
Hι

Nk
th
(sth , ath)

≤ cbH
7/2

√
SAKι. (B.9)

Putting (B.7), (B.8) and (B.9) together, we deduce514

Regret(K) ≤ c
(
H7/2

√
SAKι+H4S2Aι2 +

√
H4Kι

)
+ 2ecθH

K∑
k=1

2H∑
h=1

√
Hι

Nk
th
(skth , a

k
th
, δkth)

for some constant c. To this end, the only remaining task is to find
∑K

k=1

∑2H
h=1

√
1

Nk
th

(skth
,ak

th
,δkth

)
,515

which undergoes a similar argument as the bonus summation. We have516

K∑
k=1

2H∑
h=1

√
1

Nk
th
(skth , a

k
th
, δkth)

≤ H
K∑

k=1

H∑
h=1

√
1

Nk
h (s

k
h, a

k
h, δ

k
h)

= H
∑

(h,s,a,δ)

NK
h (s,a,δ)∑
i=1

√
1

i

(i)

≤ 2H
∑
δ

∑
(h,s,a)

√
NK

h (s, a, δ)

(ii)

≤ 2H
∑
δ

√
SAKH

(iii)

≤ 2H2
√
SAKH, (B.10)

where inequality (i) invokes
∑n

i=1 1/
√
i ≤ 2

√
n, inequality (ii) follows from Cauchy-Schwarz, and517

inequality (iii) uses the fact that δ is bounded by H . Plugging (B.10) into the regret bound, we obtain518

the desired result519

Regret(K) ≤ c
(
H4

√
SAKι+H4S2Aι2 +

√
H4Kι

)
with probability 1− γ. Absorbing

√
H4Kι into H4

√
SAKι yields the bound in Theorem 4.1.520

B.2 Statement and proof of Proposition B.2521

Proposition B.2. In the setup of Section 4.2, we have522

gap(s1) ≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)(
ρ
π∗
delay

h ∧ ρ
π∗
nodelay

h

)
(τ)dτ︸ ︷︷ ︸

E1

+ 2 ∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV︸ ︷︷ ︸
E2

]
.

where ρ
π∗
nodelay

h and ρ
π∗
delay

h are visitation measures induced by π∗
nodelay and π∗

delay, respectively.523

Term E1 is strictly larger than zero due to the convexity of the max operation. Term E2 accounts524

for the difference in the visitation measure. When the original MDP has deterministic transitions,525

we can check that E1 is zero, since the expectation over s is concentrated on a singleton that526

can be inferred from history. Hence, the visitation measures are also identical, which implies527

V ∗
1,nodelay(s1) − V ∗

1,delay(s1) = 0. On the contrary, when bh(·|τ) is evenly spread, meaning that528

the entropy of bh is high, we potentially suffer from a large performance drop, in that, inferring the529

current state is difficult.530
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Proof of Proposition B.2. Let τ1, . . . , τH denote the states observed in the delayed environment.531

Since π∗
nodelay is greedy and Markov, we obtain532

V ∗
1,nodelay(s1) = Eπ∗

nodelay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

nodelay [E[rH(sH , aH)|τH ]|s1]

= Eπ∗
nodelay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

nodelay

[∑
s

bH(s|τH)max
a

rH(s, a)|s1
]
.

Recursively applying the above argument, we deduce533

V ∗
1,nodelay(s1) = Eπ∗

nodelay

[
H∑

h=1

∑
s

bh(s|τh)max
a

rh(s, a)|s1
]
.

We also rewrite V ∗
1,delay(s1) as534

V ∗
1,delay(s1) = Eπ∗

delay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

delay [E[rH(sH , aH)|τH ]|s1]

= Eπ∗
delay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

delay

[
max

a

∑
s

bH(s|τH)rH(s, a)|s1
]

= ...

= Eπ∗
delay

[
H∑

h=1

max
a

∑
s

bh(s|τh)rh(s, a)|s1
]
.

Then we write the difference between V ∗
1,nodelay(s1) and V ∗

1,delay(s1) as535

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ

+

∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)
ρ
π∗
nodelay

h (τ)dτ + 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.

We also have536

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

+

∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)
ρ
π∗
delay

h (τ)dτ + 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.
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Combining the above two inequalities, we obtain537

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)(
ρ
π∗
delay

h ∧ ρ
π∗
nodelay

h

)
(τ)dτ

+ 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.

The proof is complete.538

B.3 Proof of Proposition 4.2539

Proof of Proposition 4.2. We construct an MDP instance (S,A, H,R, P ) for H > d as follows. Let540

S = {1, 2} and A = {a1, a2}. For the reward function, we have541

rh(s, a) =

{
1 if a = as and h = d+ 1

0 otherwise
.

The reward is nonzero only at time d+ 1. The transition probabilities are defined as542

ph(s
′|s, a) =


1
2 if h = d+ 1

1 if h ̸= d+ 1 and s′ = s

0 otherwise
.

The transition probability at step d+ 1 says that s′ is uniform regardless of the previous state and543

action. Suppose a uniform initial distribution on s1. We first show that if the constant delay equals d,544

then there exists a policy π∗,d achieving maximal value. Indeed, the policy is chosen as545

π∗,d
h (·|{sh−d,ah−d:h−1}) =

{
ash−d

if h = d+ 1

Uniform(A) if h ̸= d+ 1.

It is straightforward to check that π∗,d is optimal, since at step d+ 1, s1 is revealed and the policy546

takes the optimal action as1 to obtain reward 1.547

On the other hand, if the constant delay equals d + 1, then any policy suffers from a constant548

performance degradation. To see this, in a single trajectory, since the starting state is only revealed at549

time d+ 2, the policy at time d+ 1 cannot exploit the information of the initial state. Therefore, any550

policy coincides with the best action with probability 1
2 . For K episodes, with probability 1− γ, the551

total reward of any policy π ∈ Πe is bounded by552

K∑
k=1

V π
1 (sk1) ≤

1

2
K +

√
K

2
log

1

γ
,

due to Hoeffding’s inequality. As a result, the performance drop is at least553

gap(K) ≥ 1

2
−
√

1

2K
log

1

γ
.

554
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C Omitted proofs in Section 5555

C.1 Proof of Proposition 5.1556

Proof of Proposition 5.1. We have by standard performance difference arguments that557

K∑
k=1

max
π∈Πe

V π
θ⋆(sk1)− V πk

θ⋆ (sk1)
(i)

≤
K∑

k=1

V πk

θk (sk1)− V πk

θ⋆ (sk1)

(ii)
=

K∑
k=1

H∑
h=1

Eπk

θ⋆

[〈
(Pθk

h − Pθ⋆

h )(·|sh, ah), V πk

θk,h+1(·)
〉]

≤
H∑

h=1

K∑
k=1

Eπk

θ⋆

[
c

√
H2Sι

Nk
h (sh, ah)

∧H

]
(iii)

≤
H∑

h=1

K∑
k=1

c′
√

H2Sι

Nk
h (s

k
h, a

k
h)

+H
√
H2Kι

(iv)

≤ c′
(⌈

log HK
γ

− log(1− λ2
0)

⌉
√
H2Sι · SAHK +

√
H4Kι

)

≤ c′
(⌈

1

− log(1− λ2
0)

⌉√
H3S2AKι3 +

√
H4Kι

)
,

where inequality (i) follows from valid optimism, equality (ii) recursively expand the value function558

and ⟨·, ·⟩ denotes the inner product, inequality (iii) invokes Azuma-Hoeffding’s inequality, and559

inequality (iv) invokes Lemma C.2.560

C.2 Algorithm and proof of Theorem 5.2561

Algorithm 4 Policy learning for MDPs with missing observations
1: Input: Horizon H .
2: Init: VH+1(τ) = 0 and QH(τ, a) = H for any τ, a, data set D0 = ∅, initial policy π0.
3: for episode k = 1, . . . ,K do
4: Execute policy πk−1.
5: After the episode ends, collect data Dk = Dk−1 ∪ {(skh, akh, rkh)}Hh=1.
6: On data set Dk, compute counting numbers

Nk
h (τh, ah) =

k∑
j=1

1{τkh = τh, a
k
h = ah, s

k
h+1 ̸= ∅} and Nk

h,λ =

k∑
j=1

1{skh = ∅}.

7: Estimate transition probabilities and delay distributions via

p̂kh(sh+1|τh, ah) =
Nk

h (τh, ah, sh+1)

Nk
h (τh, ah)

and λ̂k
h = Nk

h,λ/k.

8: Set bonus function as

bkh(τh, ah) = cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)
for ι = log SAKH

γ and c sufficiently large.
9: Run optimistic value iteration in MDPaug for H steps and obtain πk ∈ Πe.

10: end for
11: Return: Learned policy πk for k = 1, . . . ,K.

We remark that similar to delayed MDPs, in Line 9 the planning is on MDPaug and the obtained562

policy is executable given any τ ∈ Saug when state observation is missed. Therefore, the planning563
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complexity is SAH . Different from Algorithm 2, the bonus function here depends on multi-step564

transitions, in that missing observations are permanently lost.565

Proof of Theorem 5.2. The proof utilizes similar steps as Theorem 4.1, with an extra care on the566

summation of bonus functions.567

Valid optimism We verify the choice of bonus functions leads to a valid optimism.568

Lemma C.1. Given any failure probability γ < 1, we set bonus functions as569

bkh(τh, ah) = cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)
with ι = log

(
SAHK

γ

)
.

Then with probability 1− γ, it holds570

Qk
h,aug(τh, ah) ≥ Q∗

h,aug(τh, ah), V k
h,aug(τh) ≥ V ∗

h,aug(τh) for any (k, h, τh, ah).

Proof. In the proof, we omit subscript “aug” for simplicity. We use backward induction on time h571

again. The base case of H+1 holds immediately due to the initial value of VH+1,aug. Suppose at time572

h+ 1, the assertion holds. Then for time h, if Qh,aug = H , the assertion holds trivially. Otherwise,573

we have574

Qh(τh, ah)−Q∗
h(τh, ah)

= r̂h(τh, ah) + [P̂hVh+1](τh, ah)− rh(τh, ah)− [PhV
∗
h+1](τh, ah) + bkh(τh, ah)

≥
(
[P̂h − Ph]V

∗
h+1

)
(τh, ah)︸ ︷︷ ︸

(A)

+ r̂h(τh, ah)− rh(τh, ah)︸ ︷︷ ︸
(B)

+ bkh(τh, ah).

We lower bound (A) and (B) separately. For term (A), we have575

(A) =
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

=
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{th+1 = h+ 1}

+
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{th+1 = th}

=
∑
sh+1

V ∗
h+1(τh+1)

(
(1− λ̂h)p̂h(sh+1|sth ,ath:h)− (1− λh)ph(sh+1|sth ,ath:h)

)
︸ ︷︷ ︸

(A1)

+ V ∗
h+1({sth ,ath:h})(λ̂h − λh)︸ ︷︷ ︸

(A2)

.

In (A1), τh+1 is {sh+1}. We bound (A1) as576

(A1) =
∑
sh+1

V ∗
h+1(τh+1)

(
(1− λ̂h)p̂h(sh+1|sth ,ath:h)− (1− λh)p̂h(sh+1|sth ,ath:h)

+ (1− λh)p̂h(sh+1|sth ,ath:h)− (1− λh)ph(sh+1|sth ,ath:h)
)

=
∑
sh+1

V ∗
h+1(τh+1)(1− λh) (p̂h(sh+1|sth ,ath:h)− ph(sh+1|sth ,ath:h))

+
∑
sh+1

V ∗
h+1(τh+1)(λh − λ̂h)p̂h(sh+1|sth ,ath:h)

(i)

≥ −cAH

√
Hι

Nh(τh, ah)
−H

∣∣∣λ̂h − λh

∣∣∣ ,
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where inequality (i) invokes Hoeffding’s inequality and holds with probability 1− γ for any τh, ah577

and some constant cA. Term (A2) is immediately bounded by578

(A2) ≥ −H
∣∣∣λ̂h − λh

∣∣∣ .
Putting (A1) and (A2) together, we derive579

(A) ≥ −cAH

√
Hι

Nh(τh, ah)
− 2H

∣∣∣λ̂h − λh

∣∣∣
with high probabilty. For term (B), we have580

(B) =
∑
sh

r(sh, ah)
(
b̂h(sh|τh)− bh(sh|τh)

)
≥ −cB

√
Hι

Nh(τh, ah)
.

Taking c = cA + cB and summing up (A) and (B), we have581

Qh(τh, ah)−Q∗
h(τh, ah) ≥ −cH

√
Hι

Nh(τh, ah)
− 2H

∣∣∣λ̂h − λh

∣∣∣+ bkh(τh, ah).

We estimate λh by its empirical average. In episode k ≥ 1, we have access to k i.i.d. realizations of582

Bernoulli random variable with rate λh (observable or not). Therefore, by Hoeffding’s inequality, we583

have584 ∣∣∣λ̂k
h − λh

∣∣∣ ≤ 2

√
log HK

γ

k
≤ 2

√
ι

k
.

Substituting into Qk
h(τh, ah)−Q∗

h(τh, ah) and reloading constant c give rise to585

Qk
h(τh, ah)−Q∗

h(τh, ah) ≥ −cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)
+ bkh(τh, ah) ≥ 0.

The proof is complete.586

Regret analysis We omit subscript “aug” to ease the presentation. The same derivation in the proof587

of Theorem 4.1 gives rise to588

(Q∗
h −Qπk

h ) (τkh , a
k
h) ≤

(
Qk

h −Qπk

h

)
(τkh , a

k
h)

≤
(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)︸ ︷︷ ︸

(A)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + 2bkh(τ

k
h , a

k
h). (C.1)

Lemma C.1 shows that (A) can be written as589

(A) =
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(1− λh)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(λh − λ̂k
h)p̂

k
h(sh+1|skth ,akth:h)

≤
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(1− λh)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+H

∣∣∣λ̂k
h − λh

∣∣∣
≤ (1− λh)

∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+ 2H

√
ι

k
.

Following the derivation in (B.4), (B.5) and (B.6), we have590

Regret(K) ≤ e

K∑
k=1

H∑
h=1

(
ξkh + ζkh + 2bkh + 2H

√
ι

k

)

≤ e

K∑
k=1

H∑
h=1

(
ξkh + ζkh + 2bkh

)
+ 2

√
H4Kι.

where ξkh =
(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h) −

[
V k
h+1 − V πk

h+1

]
(τkh+1) is the martingale difference and591

ζkh = c′ SH2ι
Nk

h (τk
h ,ak

h)
.592

23



Counting number summation The summation over ξkh is standard. Using the Azuma-Hoeffding’s593

inequality, we have594

K∑
k=1

H∑
h=1

ξkh ≤ cξ
√
KH4ι.

It remains to find the summations involving Nk
h (τ

k
h , a

k
h). First, we show that the event Em =595

{h− th − 1 ≤ m}, i.e., the maximal consecutive delay is upper bounded by m > 0, holds with high596

probability. We have597

P(Em) ≤
(
1−H(1− λ0)

m+1
)K

,

since λ0 is a uniform lower bound of λh. Next, we provide an upper bound on NK
h (τh, ah). For598

a given tuple (h, τh, ah, th), the consecutive missing length is h − th − 1. Such a missing pattern599

appears with probability at most (1− λ0)
h−th−1. As a consequence, denote CK

h−th−1 as the number600

of h− th − 1 consecutive missings in K episodes. With probability 1− γ, we have601

CK
h−th−1 ≤ K(1− λ0)

h−th−1 +
√
K(1− λ0)h−th−1Hι+ ι.

by Bernstein’s inequality in Lemma D.1. Furthermore, at a fixed time h, we use Lemma C.3 to602

bound the gap between two consecutive appearances of the same missing pattern. We instantiate603

Lemma C.3 with θ = (1−λ0)
h−th−1 and obtain that the gap is bounded by

⌈
ι

− log(1−(1−λ0)
h−th−1)

⌉
604

with probability 1 − γ. Within the gap, the number of consecutive delays of length larger than605

h− th − 1 is bounded by606

C≥h−th−1

(i)

≤
⌈

ι

− log(1− (1− λ0)h−th−1)

⌉
(1− λ0)

h−th

+

√⌈
ι

− log(1− (1− λ0)h−th−1)

⌉
(1− λ0)h−thHι+ ι

(ii)

≤
√
2(1− λ0)Hι+ 2(1− λ0) + ι,

where inequality (i) follows from Bernstein’s inequality again and inequality (ii) invokes the fact607

x+ log(1− x) ≤ 0 for x ∈ [0, 1) and bounds ⌈x⌉ by x+ 1. Now we can bound the summation of608

the counting numbers. Conditioned on the event Em, we have609

K∑
k=1

H∑
h=1

√
1

Nk
h (τ

k
h , a

k
h)

(i)

≤
∑

(h,τ,a,th)

C≥h−th−1

NK
h (τ,a)∑
i=1

√
1

i

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
) ∑

(h,τ,a,th)

√
NK

h (τ, a)

(ii)

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)∑

h,th

√
SAh−thCK

h−th−1

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)

·
∑
h,th

√
SA

(
K((1− λ0)A)h−th−1 +

√
K(A2(1− λ0))h−th−1Hι+Ah−th−1ι

)
(iii)

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)∑

h,th

√
SA

(
K +

√
KAmHι+Amι

)
≤ 2

(√
2(1− λ0)Hι+ 2(1− λ0) + ι

)
H2

√
SA

(
K +

√
KAmHι+Amι

)
≤ 2

√
H5SAι2

(
K +

√
KAmHι+Amι

)
,

24



where inequality (i) follows since Nk
h is repeated at most C≥h−th−1 times before getting an up-610

date and inequality (ii) follows from Cauchy-Schwarz inequality, and inequality (iii) invokes the611

assumption of λA ≤ 1. Moreover, conditioned on the event Em, we also have612

K∑
k=1

H∑
h=1

1

Nk
h (τ

k
h , a

k
h)

≤
∑

(h,τ,a,th)

C≥h−th−1

NK
h (τ,a)∑
i=1

1

i

≤
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
) ∑

(h,τ,a,th)

logNK
h (τ, a)

≤ ιH5/2SAm+1 logK.

Putting together On event Em, the regret is bounded by613

Regret(K)
(i)

≤ c

(
√
H4Kι+

K∑
k=1

H∑
h=1

[
SH2ι

Nk
h (τ

k
h , a

k
h)

+H

√
Hι

Nk
h (τ

k
h , a

k
h)

])

≤ c

H4

√√√√SAι3K

(
1 +

√
AmHι

K
+

Amι

K

)
+ S2Am

√
H9ι6 +

√
H4Kι

 ,

where c is a sufficiently large constant and we substitute the bonus functions into inequality (i).614

On the complement of Em, the regret is bounded by H(1−P(Em)) ≤ H2K(1−λ0)
m+1. We choose615

m = 1
2

⌊
logK

− log(1−λ0)

⌋
such that H(1− P(Em)) ≤ H2K(1− λ0)

m+1 ≤ H2
√
K. We can now check616

that Am+1 = exp
(

logA
− log(1−λ0)

log
√
K
)
≤ K

1
2(1+v) . Therefore, combining the regret on event Em617

and the complement event E∁
m leads to618

Regret(K) ≤ c

(
H4

√
SAKι3 + S2

√
H9K

1
(1+v) ι6

)
.

The proof is complete.619

C.3 Supporting lemmas620

Lemma C.2. Suppose Assumption 2.2 holds. With probability 1− γ for some failure probability621

γ > 0, we have622

K∑
k=1

H∑
h=1

1√
Nk

h (s
k
h, a

k
h)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
√
SAKH.

Proof of Lemma C.2. For any time h, we denote Keff(h) as the collection of episodes that the h-th623

and (h+ 1)-th step observations are available. It is clear that the cardinality of Keff(h) is bounded624

by K for any h. Within each Keff(h), we would like to bound the gap between two observations.625

Thanks to Lemma C.3, the gap is bounded by q with probability 1 − K(1 − λ2
0)

q+1. We set626

K(1− λ2
0)

q+1 = γ/H , which implies q =

⌈
log HK

γ

− log(1−λ2
0)

⌉
. Therefore, for any time step h, available627

observations are at most separated by q episodes.628

With these notations, we bound629

K∑
k=1

H∑
h=1

1√
Nk

h (s
k
h, a

k
h)

(i)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
H∑

h=1

∑
k∈Keff (h)

1√
Nk

h (s
k
h, a

k
h)

(ii)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
H∑

h=1

K∑
k=1

1√
Nk

h (s
k
h, a

k
h)

(iii)

≤ 2

⌈
log HK

γ

− log(1− λ2
0)

⌉
√
SAHK,
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where inequality (i) follows since Nk
h will only be updated when h ∈ Keff(h) and then repeat at630

most
⌈

log HK
γ

− log(1−λ2
0)

⌉
times, inequality (ii) invokes the cardinality bound of Keff(h), and inequality631

(iii) follows from the standard pigeon-hole principle.632

Lemma C.3. Let {ui}ki=1 be i.i.d. Bernoulli random variables. Suppose P(ui = 1) = θ. Define the633

largest gap between ui’s as634

g(k) = sup{j − i : ui = 0 and uj = 0 with uℓ = 1 for ℓ = i+ 1, . . . , j − 1}.
Then for any integer q > 0, the following tail probability bound holds635

P(g(k) > q) ≤ kθq+1.

Proof of Lemma C.3. We denote Ineg = {ℓ1, . . . , ℓm} as the index set for uℓi = 0 when i =636

1, . . . , |Ineg|. Let vj = ℓj+1 − ℓj , which is a geometric random variable with a success rate θ. Note637

that the cardinality of Ineg is at most k. Therefore, we have638

P(g(k) > q) ≤ P( max
j=1,...,k

vj > q)

= 1− P (vj ≤ q for j = 1, . . . , k)

= 1−
(
1− θq+1

)k
≤ kθq+1,

where the last inequality follows from 1− kθq+1 ≤ (1− θq+1)k.639

D Helper concentration inequalities640

Lemma D.1 (Bernstein’s inequality). Let x1, . . . , xn be i.i.d. zero mean random variables. Suppose641

|xi| ≤ M for any i = 1, . . . , n. Then for all positive t, it holds642

P

(
n∑

i=1

xi > t

)
≤ exp

(
−

1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

)
.

In particular, given a failure probability γ < 1, it holds643

P

 n∑
i=1

xi >

√√√√ n∑
i=1

Var[xi] log
1

γ
+M log

1

γ

 ≤ γ.

Proof of Lemma D.1. The proof of Bernstein’s inequality is standard; see for example Wainwright644

[2019, Section 2.1]. Here we verify the second claim. Let exp
(
−

1
2 t

2∑n
i=1 Var[xi]+

1
3Mt

)
≤ γ hold true.645

We find a suitable t by646

exp

(
−

1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

)
≤ γ

⇐⇒
1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

≥ log
1

γ

⇐⇒ t2 − 2

3
tM log

1

γ
≥

n∑
i=1

Var[xi] log
1

γ

⇐⇒ t ≥

√√√√ n∑
i=1

Var[xi] log
1

γ
+

1

9
M2 log2

1

γ
+

1

3
M log

1

γ
.

It is enough to choose t =
√∑n

i=1 Var[xi] log
1
γ +M log 1

γ .647
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Lemma D.2 (Hoeffding’s inequality). Let x1, . . . , xn be i.i.d. random variables. Suppose ai ≤ xi ≤648

bi for any i = 1, . . . , n. Then for all positive t, it holds649

P

(∣∣∣∣∣
n∑

i=1

xi − E

[
n∑

i=1

xi

]∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

In particular, given a failure probability γ < 1, it holds650

P

 1

n

∣∣∣∣∣
n∑

i=1

xi − E

[
n∑

i=1

xi

]∣∣∣∣∣ >
√∑n

i=1(bi − ai)2 log
2
γ

2n2

 ≤ γ.

Proof of Lemma D.2. The proof is standard; see Wainwright [2019, Section 2.1].651

Lemma D.3 (Azuma-Hoeffding’s inequality). Let x1, . . . , xn be a martingale adapted to filtration652

F1 ⊂ · · · ⊂ Fn. Suppose E[xi − E[xi]|Fi−1] = 0 and |xi − E[xi]| ≤ ci. Then for all positive t, it653

holds654

P

(
n∑

i=1

xi − E[xi] > t

)
≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
.

In particular, given a failure probability γ < 1, it holds655

P

 n∑
i=1

xi − E[xi] >

√√√√2

n∑
i=1

c2i log
1

γ

 ≤ γ.

Proof of Lemma D.3. The proof is standard and applies Lemma D.2.656
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