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A CAUSAL MODEL FOR NR-/FR-IQA

We provide here the causal models for the NR-IQA and FR-IQA settings in Figure
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(a) Causal model for NR-IQA (b) Causal model for FR-IQA

Figure 8: Causal model for the NR-/FR-IQA settings. The FR-IQA setting includes X, which is
the reference image. In both models, H indicates human annotator guidance which reflects that IQ
metrics are typically calibrated against human perceptual judgements (dashed-line box indicates H is
not used directly in the calculation of Q)).

While the main manuscript focused on the NR-IQA setting, we can see from the causal models here
that the results generalize to the FR-IQA case as well. In particular, the independence of ), M given
X is not affected by whether a “clean” reference image (Xy) is available for computing Q. Also,
these models also account for the influence of human annotators H in calibrating the function for
computing @, but not that this does not change the relationship between M, Q.

B CAUSAL MODEL FOR IQA WITH LATENT FEATURES

In understanding the difference between the baseline IQA formulation in Figure[T and the shared
features formulation of Figure[2]in Section 3] we provide an expanded version of the baseline DAG

in Figure E Here we show that the task DNN for computing Y and the function for computing @
rely on latent features Zy- and Zg respectively.
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Figure 9: Causal model for IQA that accounts for the use of latent features by the task DNN and IQ
metric towards computing M and @) respectively.

In this expanded model, Zy and Zg are independent given X and not “shared”, and therefore
Q L M | X as discussed in §E In contrast, Figure |Zconsiders the case where Z represents the
features derived from X that are common between Zy and Zg shown in the baseline case above.
Thus, Figure[2 shows the case where X does not block all paths between ), M since a path exists
from @ to M through Z. This ensures that () and M will be correlated given X unlike in the baseline
case above.

C CAUSAL MODEL FOR COMMON CORRUPTIONS ROBUSTNESS EVALUATION

The common corruptions framework (Hendrycks & Dietterich, 2019) is used in our experiments
to ensure full control of the image distortion types and severity. Figure[I0 shows a version of the
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baseline IQA causal model customized to account for the corruption process used by this evaluation
framework. Here, the corrupted image X is determined by the corruption function (e.g., Gaussian
noise, defocus blur, fog, contrast, brightness, JPEG compression), the severity (S € {1,2,3,4,5}),
and the “clean” image Xj.
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[ ] Predicted
—» causal link

Figure 10: Causal model for the common corruptions framework where C' refers to the corruption
type, .S refers to the corruption severity, and X is the unperturbed, “clean” image.

In this setting, we see that C, S replace the original set of imaging factors A in the graph in FigureT]
As such, the analysis from §3|holds in the common corruptions framework and allows us to study the
relationship between ), M in a setting where we can precisely control the imaging conditions.

D RELATIONSHIP OF NR-IQA AND DNN PERFORMANCE METRICS

In Figures [T, [12] and [I3 we show the relationship of additional NR-IQA metrics with DNN
performance for additional architectures and metrics. In general, we see weak trends in accuracy vs.
average IQ suggesting that these metrics are most consistent with the causal model in Figure[I]
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Figure 11: Comparison of ConvNext-B accuracy with (clockwise) ARNIQA, BRISQUE, CLIP-1IQA,
and TV. Little correlation is observed between group-wise accuracy and each NR-IQA metric.

E RELATIONSHIP OF STRONG TASK-GUIDED IQA AND DNN PERFORMANCE
METRICS

In Figures[I4,[I5][16, we examine the relationship between DNN performance and the strong task-
guided metrics (Qp, Qp, Q) described in §E Each figure pairs the task DNN under consideration
with a pre-trained task model used to compute the quality metric.
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Figure 12: Comparison of Swin-B accuracy with (clockwise) ARNIQA, BRISQUE, CLIP-IQA, and
TV. Little correlation is observed between group-wise accuracy and each NR-IQA metric.
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Figure 13: Comparison of ResNet34 accuracy with (clockwise) ARNIQA, BRISQUE, CLIP-IQA,
and TV. Little correlation is observed between group-wise accuracy and each NR-IQA metric.

Table[d also shows the point-wise predictability results for the strong task-guided IQA case. This
table extends Table [2| for additional task DNNs. Results here show that strong task-guided IQA
metrics are highly correlated with DNN performance and that predictability remains high regardless
of whether the pre-trained DNN used to compute () is the same DNN used to obtain M.

F RELATIONSHIP OF WEAK TASK-GUIDED IQA AND DNN PERFORMANCE
METRICS

We provide Figures [17, [I8] [I9] showing the relationship between DNN performance the weak
task-guided ZSCLIP-IQA metric from §6
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Figure 14: Comparison of ConvNext-B accuracy with (row) Qp, @, @, computed using (col)
ResNet34, Swin-B. High correlation is observed between each IQA metric and accuracy.

G CONTROLLING FOR IMAGE CONTENT WHEN EVALUATING PREDICTABILITY

The experiments of examined predictability by modeling P(M|Q, X). Since the content of X
may be a confounder for both M, @), we attempt to control for it in two ways.

In the first case, we take advantage of the synthetic nature of the IN-C dataset by looking at the
predictability of M from () for each image in the dataset separately which allows us to control the
content precisely and only change the quality characteristics. For this experiment, we train a logistic
regression classifier to predict P(M|Q) for individual image IDs trained using only M, () computed
from the set of distorted variants of each specific image ID. Given the original clean image and 15
corruptions with 5 severity levels each, we run 5-fold cross-validation with an 80/20 train/test split of
the 76 total images. We repeat this for all 50k image IDs in the ImageNet validation set. The results
shown in Figure [20a]are an average of the AUC over all image IDs and folds.

We see that even when controlling for the image content the weak task-guided IQA generally achieves
the highest m AU C' with the lowest variance. Overall, this supports our hypothesis and causal analysis
that weak task-guidance provides a means to associate M, ( even when conditioning on the image
directly.

In the second case, we adjust for image content by controlling for the image label Y. Here, we train
a separate classifier to model P(M|Q) for each of the 1000 labels in the ImageNet dataset. Each
classifier is trained on the aggregate of 50 images per label along with all 15 corruptions at 5 severity
levels (3751 total per label). We again use an 80/20 train/test split and perform 5-fold cross-validation.
The results shown in Figure are an average of the AUC over all labels and folds.
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Figure 15: Comparison of Swin-B accuracy with (row) Qp,, @i, @, computed using (col) ConvNext-
B, ResNet34. High correlation is observed between each IQA metric and accuracy.

We find here that across all IQ metrics evaluated, m AU C' is barely above chance. For the traditional
NR-IQA metrics, this supports our analysis and main experiments which show little correlation
between M, Q. For the ZSCLIP-IQA metric, we refer again to the causal model (Fig.[6) and see that
while the task selection variable ensures the association between M, (), it is the conditioning on Y’
(and X)), as done here, that blocks all paths between M, (Q and once again removes the association.

H PREDICTABILITY OF DNN PERFORMANCE FOR MILDLY CORRUPTED
DATASETS

To show that D1 is satisfied even in the case of mildly corrupted data, we plot the distributions of ()
in Figure@ Across all variants, even in cases where the likelihood is low, each IQA metric exhibits
sensitivity to corruption (D1).

While some IQA metrics are more sensitive to the overall image corruption, this does not necessarily
translate to higher predictability. In fact, ZSCLIP-IQA appears to have smaller differences in IQA
distribution across variants compared to other IQA metrics, yet the highest predictability of M.
Figure 22 shows the predictability of M from @ for variants of the IN-C benchmark created as
described in

Results show that weak task-guided IQA metrics are able to achieve higher AUC even when the
number of corrupted images in the dataset is low. In comparison, conventional NR-IQA metrics
achieve lower AUC' and are more sensitive to the total level of corruption.
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Figure 16: Comparison of ResNet34 accuracy with (row) Q, Q;, @, computed using (col) ConvNext-
B, Swin-B. High correlation is observed between each IQA metric and accuracy.

I COMPUTE RESOURCES

All experiments were run using a single NVIDIA A40 GPU with 48GB of memory. Predictability
analysis can be conducted on CPU-only machine with at least 8 cores.
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Figure 17: Comparison of ConvNext-B accuracy with (top to bottom) @}, @i, @, based on ZSCLIP-
IQA. High correlation is observed between each ZSCLIP-IQA variant and accuracy.
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Figure 18: Comparison of Swin-B accuracy with (top to bottom) @, Q;, @, based on ZSCLIP-IQA.
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Some correlation is observed between each ZSCLIP-IQA variant and accuracy.
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IQA. High correlation is observed between each ZSCLIP-IQA variant and accuracy.
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Table 4: Correlation between IQ and accuracy. SRCC, PLCC computed using average accuracy for
each (corruption, severity). AUC and CE based on point-wise predictions (95% CI within £0.001). SRCC,
PLCC values have p < 0.05.

Model  IQA Metric | AUCT CE| || |PLCC |t |SRCC |1t

ConvNext-B @, | 0.772  0.562 || 0.8224+0.070  0.854+0.063
ConvNext-B Q; | 0.778  0.555 || 0.8264+0.067 0.854%0.063
ConvNext-B @, | 0.826  0.504 || 0.888+0.045 0.910£0.044
ResNet34 )y, 0.725  0.601 || 0.859+£0.069 0.924+0.045

ConvNext-B  ResNet34 @, 0.717  0.603 || 0.866£0.051 0.925+0.043
ResNet34 @), 0.719  0.601 || 0.875+0.051 0.926+0.044
Swin-B @, 0.760  0.579 || 0.624+0.165 0.724+£0.170
Swin-B Q; 0.724  0.601 || 0.604+0.166 0.686+0.176
Swin-B @, 0.791 0.547 || 0.742+0.132  0.797+0.139

ConvNext-B @y, | 0.767  0.557 || 0.858+£0.060 0.889+0.055
ConvNext-B @; | 0.760  0.563 || 0.853+0.059 0.896+0.055
ConvNext-B @, | 0.801 0.522 || 0.904+0.044 0.930+0.041
ResNet34 ()}, 0.848  0.470 || 0.930£0.028 0.969+0.023

ResNet34  ResNet34 ), 0.827  0.492 || 0.951£0.015 0.973+0.020
ResNet34 @), 0.850  0.461 || 0.960+0.015 0.977+0.021
Swin-B @, 0.751 0.574 || 0.643+0.153 0.774+0.140
Swin-B Q; 0.709  0.600 || 0.628+0.146 0.754+£0.145
Swin-B @, 0.774  0.551 || 0.747£0.129  0.825+0.112

ConvNext-B @y, | 0.744  0.586 || 0.706+0.129 0.768+0.098
ConvNext-B @; | 0.746  0.586 || 0.709+0.127 0.768+0.099
ConvNext-B @, | 0.791 0.542 || 0.788+0.102 0.834=+0.079
ResNet34 )y, 0.722  0.603 || 0.8284+0.078 0.896+0.053

Swin-B ResNet34 Q; 0.713 0.604 || 0.831+£0.061 0.89240.053
ResNet34 @), 0.716 0.602 || 0.845+0.062 0.897+0.052
Swin-B @, 0.766 0.578 || 0.483+0.207 0.654+0.174
Swin-B Q; 0.732 0.597 || 0.4584+0.203 0.611+0.181
Swin-B @, 0.807 0.529 || 0.620+0.184 0.732+0.142
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Figure 20: Mean AUC (mAUC) for classifiers trained (a) per image ID (X;) to model P(M|Q, X;)
and (b) per label Y to model P(M|Q,Y"). Averages are taken over all images/labels respectively and
cross-validation folds with error bars indicating one standard deviation. Higher variance in (a) is
attributed to lower sample sizes for training the logistic regression classifier.
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Figure 21: Distribution of IQA for each mildly corrupted variant of IN-val. Line color indicates the
likelihood of image corruption p, for each variant. Note that the amount of similarity/difference in
the IQ distribution across variants does not explain the predictability which is determined by the
causal DAG such as in §3] §5| and §6] See Figure[22|for predictability results.
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Figure 22: AUC vs. p. where p. represents the fraction of images in the test set that are mildly
corrupted. Results are listed top to bottom: ConvNet-B, ResNet34, Swin-B. Predictability for
ZSCLIP-IQA is relatively insensitive to the proportion of corrupted images whereas other metrics
only improve as the proportion and diversity of corruptions increases.

25



