
A DERIVATION OF PRIMAL-DUAL OPTIMALITY CONDITIONS FOR DYNAMICAL
OT PROBLEM

The primal-dual analysis is a standard technique in the optimization literature such as in analyzing
certain semidefinite programs (Chen and Yang, 2021). Recall the Benamou-Brenier fluid dynamics
formulation of the static optimal transport problem

min
(µ,v)

∫ 1

0

∫
Rd

1

2
||v(x, t)||22 µ(x, t) dx dt (18)

subject to ∂tµ+ div(µv) = 0, (19)
µ(·, 0) = µ0, µ(·, 1) = µ1. (20)

Here, equation (19) is referred to as the continuity equation (CE), preserving the unit mass of the
density flow µt = µ(·, t). We write the Lagrangian function for any flow (µt)t∈[0,1] initializing from
µ0 and terminating at µ1 as

L(µ,v, u) =

∫ 1

0

∫
Rd

[
1

2
∥v∥22µ+ (∂tµ+ div(µv))u

]
dx dt, (21)

where u := u(x, t) is the dual variable for (CE). To find the optimal solution µ∗ for the minimum
kinetic energy (18), we study the saddle point optimization problem

min
(µ,v)∈(CE)

max
u

L(µ,v, u), (22)

where the minimization over (µ,v) runs over all flows satisfying (CE) such that µ(·, 0) = µ0 and
µ(·, 1) = µ1. Note that if µ /∈ (CE), then by scaling with arbitrarily large constant, we see that

max
u

∫ 1

0

∫
Rd

(∂tµ+ div(µv))u dx dt = +∞. (23)

Thus,

min
(µ,v)∈(CE)

∫ 1

0

∫
Rd

1

2
||v||22µ dx dt = min

(µ,v)
max
u

L(µ,v, u) (24)

⩾max
u

min
(µ,v)

L(µ,v, u), (25)

where the minimization over (µ,v) is unconstrained. Using integration-by-parts and suitable decay
for vanishing boundary as ∥x∥2 → ∞, we have

L(µ,v, u) =

∫ 1

0

∫
Rd

[
1

2
∥v∥22µ− µ∂tu− ⟨v,∇u⟩µ

]
dx dt

+

∫
Rd

[µ(·, 1)u(·, 1)− µ(·, 0)u(·, 0)] dx.

Now, we fix µ and u, and minimize L(µ,v, u) over v. The optimal velocity vector is v∗ = ∇u, and
we have

max
u

min
µ
L(µ,v∗, u) =

∫ 1

0

∫
Rd

[
−
(
1

2
∥∇u∥22 + ∂tu

)
µ

]
dx dt+

∫
Rd

[u(·, 1)µ1 − u(·, 0)µ0] dx,

(26)
for any flow µt satisfying the boundary conditions µ(·, 0) = µ0 and µ(·, 1) = µ1. If 1

2∥∇u∥
2
2+∂tu ̸=

0, then by the same scaling argument above, we have

min
µ

∫ 1

0

∫
Rd

[
−
(
1

2
∥∇u∥22 + ∂tu

)
µ

]
dx dt = −∞ (27)

because µ is unconstrained (except for the boundary conditions). Then we deduce that

min
(µ,v)∈(CE)

∫ 1

0

∫
Rd

1

2
||v||22µ ⩾ max

u∈(HJ)

{∫
Rd

u(·, 1)µ1 −
∫
Rd

u(·, 0)µ0

}
, (28)
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where u ∈ (HJ) means that u solves the Hamilton-Jacobi equation (HJ)

∂tu+
1

2
∥∇u∥22 = 0. (29)

From (28), we see that the duality gap is non-negative, and it is equal to zero if and only if (µ∗, u∗)
solves the following system of PDEs∂tµ+ div(µ∇u) = 0, ∂tu+

1

2
∥∇u∥22 = 0,

µ(·, 0) = µ0, µ(·, 1) = µ1.
(30)

PDEs in (30) are referred to as the Karush–Kuhn–Tucker (KKT) conditions for the Wasserstein
geodesic problem.

B METRIC GEOMETRY STRUCTURE OF THE WASSERSTEIN SPACE AND
GEODESIC

In this section, we review some basic facts on metric geometry properties of the Wasserstein space
and geodesic. We first discuss the general metric space (X, d), and then specialize to the Wasserstein
(metric) space (Pp(Rd),Wp) for p ⩾ 1. Furthermore, we connect to the fluid dynamic formulation
of optimal transport. Most of the materials are based on the reference books (Burage et al., 2001;
Ambrosio et al., 2008; Santambrogio, 2015).

B.1 GENERAL METRIC SPACE

Definition B.1 (Absolutely continuous curve). Let (X, d) be a metric space. A curve ω : [0, 1] → X
is absolutely continuous if there is a function g ∈ L1([0, 1]) such that for all t0 < t1, we have

d(ω(t0), ω(t1)) ⩽
∫ t1

t0

g(τ) dτ. (31)

Such curves are denoted by AC(X).
Definition B.2 (Metric derivative). If ω : [0, 1] → X is a curve in a metric space (X, d), the metric
derivative of ω at time t is defined as

|ω′|(t) := lim
h→0

d(ω(t+ h), ω(t))

|h|
, (32)

if the limit exists.

The following theorem generalizes the classical Rademacher theorem from a Euclidean space into
any metric space in terms of the metric derivative.
Theorem B.3 (Rademacher). If ω : [0, 1] → X is Lipschitz continuous, then the metric derivative
|ω′|(t) exists for almost every t ∈ [0, 1]. In addition, for any 0 ⩽ t < s ⩽ 1, we have

d(ω(t), ω(s)) ⩽
∫ s

t

|ω′|(τ) dτ. (33)

Theorem B.3 tells us that absolutely continuous curve ω has a metric derivative well-defined almost
everywhere, and the “length" of the curve ω is bounded by the integral of the metric derivative. Thus,
a natural definition of the length of a curve in a general metric space is to take the best approximation
over all possible meshes.
Definition B.4 (Curve length). For a curve ω : [0, 1] → X , we define its length as

Length(ω) := sup

{
n−1∑
k=0

d(ω(tk), ω(tk+1)) : n ⩾ 1, 0 = t0 < t1 < . . . < tn = 1

}
. (34)

Note that if ω ∈ AC(X), then

d(ω(tk), ω(tk+1)) ⩽
∫ tk+1

tk

g(τ) dτ (35)
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so that

Length(ω) ⩽
∫ 1

0

g(τ) dτ <∞, (36)

i.e., the curve ω is of bounded variation.
Lemma B.5. If ω ∈ AC(X), then

Length(ω) =
∫ 1

0

|ω′|(τ) dτ. (37)

Definition B.6 (Length space and geodesic space). Let ω : [0, 1] → X be a curve in (X, d).

1. The space (X, d) is a length space if

d(x, y) = inf {Length(ω) : ω(0) = x, ω(1) = y, ω ∈ AC(X)} . (38)

2. The space (X, d) is a geodesic space if

d(x, y) = min {Length(ω) : ω(0) = x, ω(1) = y, ω ∈ AC(X)} . (39)

Definition B.7 (Geodesic). Let (X, d) be a length space.

1. A curve ω : [0, 1] → X is said to be a constant-speed geodesic between ω(0) and ω(1) if

d(ω(t), ω(s)) = |t− s| · d(ω(0), ω(1)), (40)

for any t, s ∈ [0, 1].

2. If (X, d) is further a geodesic space, a curve ω : [0, 1] → X is said to be a geodesic
between x0 ∈ X and x1 ∈ X if it minimizes the length among all possible curves such that
ω(0) = x0 and ω(1) = x1.

Note that in a geodesic space (X, d), a constant-speed geodesic is indeed a geodesic. In addition, we
have the following equivalent characterization of the geodesic in a geodesic space.
Lemma B.8. Let (X, d) be a geodesic space, p > 1, and ω : [0, 1] → X a curve connecting x0 and
x1. Then the followings are equivalent.

1. ω is a constant-speed geodesic.

2. ω ∈ AC(X) such that for almost every t ∈ [0, 1], we have

|ω′|(t) = d(ω(0), ω(1)). (41)

3. ω solves

min

{∫ 1

0

|ω̃′|p dt : ω̃(0) = x0, ω̃(1) = x1

}
. (42)

B.2 WASSERSTEIN SPACE

Since the Wasserstein space (Pp(Rd),Wp) for p ⩾ 1 is a metric space, the following definition
specializes Definition B.2 to the Wasserstein metric derivative.
Definition B.9 (Wasserstein metric derivative). Let {µt}t∈[0,1] be an absolutely continuous curve
in the Wasserstein (metric) space (Pp(Rd),Wp). Then the metric derivative at time t of the curve
t 7→ µt with respect to Wp is defined as

|µ′|p(t) := lim
h→0

Wp(µt+h, µt)

|h|
. (43)

For p = 2, we write |µ′|(t) := |µ′|2(t).

In the rest of this section, we consider probability measures µt that are absolutely continuous with
respect to the Lebesgue measure on Rd and we use µt denote the probability measure, as well as its
density, when the context is clear.

15



Theorem B.10. Let p > 1 and assume Ω ∈ Rd is compact.

Part 1. If {µt}t∈[0,1] is an absolutely continuous curve in Wp(Ω), then for almost every t ∈ [0, 1],
there is a velocity vector field vt ∈ Lp(µt) such that

1. µt is a weak solution of the continuity equation ∂tµt + div(µtvt) = 0 in the sense of
distributions (cf. the definition in (49) below);

2. for almost every t ∈ [0, 1], we have

∥vt∥Lp(µt) ⩽ |µ′|p(t), (44)

where ∥vt∥pLp(µt)
=

∫
Ω
∥vt∥p2 dµt.

Part 2. Conversely, if {µt}t∈[0,1] are probability measures in Pp(Ω), and for each t ∈ [0, 1] we
suppose vt ∈ Lp(µt) and

∫ 1

0
∥vt∥Lp(µ) dt < ∞ such that (µt,vt) solves the continuity equation,

then we have

1. {µt}t∈[0,1] is an absolutely continuous curve in (Pp(Rd),Wp);

2. for almost every t ∈ [0, 1],
|µ′|p(t) ⩽ ∥vt∥Lp(µt). (45)

As an immediate corollary, we have the following dynamical representation of the Wasserstein metric
derivative.
Corollary B.11. If {µt}t∈[0,1] is an absolutely continuous curve in (Pp(Rd),Wp), then the velocity
vector field vt given in Part 1 of Theorem B.10 must satisfy

∥vt∥Lp(µt) = |µ′|p(t). (46)

Corollary B.11 suggests that vt can be viewed as the tangent vector field of the curve {µt}t∈[0,1] at
time point t. Moreover, Corollary B.11 suggests the following (Euclidean) gradient flow for tracking
particles in Rd: let y(t) := yx(t) be the trajectory starting from x ∈ Rd (i.e., y(0) = x) that evolves
according the ordinary differential equation (ODE)

d

dt
y(t) = vt(y(t)). (47)

The dynamical system (47) defines a flow Yt : Ω → Ω of vector field vt on Ω via

Yt(x) = y(t). (48)

Then, it is straightforward to check that the pushforward measure flow µt := (Yt)♯µ0 and the
chosen velocity vector field vt in the ODE (47) is a weak solution of the continuity equation
∂tµt + div(µtvt) = 0 in the sense that

d

dt

∫
Ω

ϕdt =

∫
Ω

⟨∇ϕ,vt⟩dµt, (49)

for any C1 function ϕ : Ω → R with compact support.
Theorem B.12 (Constant-speed Wasserstein geodesic). Let Ω ∈ Rd be a convex subset and µ, ν ∈
Pp(Ω) for some p > 1. Let γ be an optimal transport plan under the cost function ∥x− y∥pp. Define

πt : Ω× Ω → Ω,

πt(x, y) = (1− t)x+ ty,

as the linear interpolation between x and y in Ω. Then, the curve µt = (πt)♯γ is a constant-speed
geodesic in (Pp(Rd),Wp) connecting µ0 = µ and µ1 = ν.

If µ has a density with respect to the Lebesgue measure on Rd, then there is an optimal transport map
T from µ to ν (Brenier, 1991). According to Theorem B.12, we obtain McCann’s interpolation (Mc-
Cann, 1997) in the Wasserstein space as

µt = [(1− t)id + tT ]♯µ, (50)
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which is a constant-speed geodesic in (Pp(Rd),Wp). id is the identity function in Rd.

To sum up, we collect the following facts about the geodesic structure and dynamical formulation
of the OT problem. Let p > 1, and Ω ⊂ Rd be a convex subset (either compact or have no mass
escaping at infinity).

1. The metric space (Pp(Ω),Wp) is a geodesic space.

2. For µ, ν ∈ Pp(Ω), a constant-speed geodesic {µt}t∈[0,1] in (Pp(Ω),Wp) between µ and ν
(i.e., µ0 = µ and µ1 = ν) must satisfy µt ∈ AC(Pp(Ω)) and

|µ′|(t) =Wp(µ(0), µ(1)) =Wp(µ, ν) (51)

for almost every t ∈ [0, 1].

3. The above µt solves

min

{∫ 1

0

|µ̃′|p(t) dt : µ̃(0) = µ, µ̃(1) = ν, µ̃ ∈ AC(Pp(Ω))
}
. (52)

4. The above µt solves the Benamou-Brenier problem

W p
p (µ, ν) = min

{∫ 1

0

∥vt∥pLp(µ̃t)
dt : µ̃(0) = µ, µ̃(1) = ν, ∂tµ̃t + div(µ̃tvt) = 0

}
,

(53)
and µt = µ(·, t) defines a constant-speed geodesic in (Pp(Ω),Wp).

C ENTROPIC REGULARIZATION

Our GeONet is compatible with entropic regularization, which is closely related to the Schrödinger
bridge problem and stochastic control (Chen et al., 2016). Specifically, the entropic-regularized
GeONet (ER-GeONet) solves the following fluid dynamic problem:

min
(µ,v)

∫ 1

0

∫
Rd

1

2
||v(x, t)||22 µ(x, t) dx dt

subject to ∂tµ+ div(µv) + ε∆µ = 0, µ(·, 0) = µ0, µ(·, 1) = µ1.

(54)

Applying the same variational analysis as in the unregularized case ε = 0 (cf. Appendix A), we
obtain the KKT conditions for the optimization (54) as the solution to the following system of PDEs:

∂tµ+ div(µ∇u) =− ε∆µ, (55)

∂tu+
1

2
∥∇u∥22 = ε∆u, (56)

with the boundary conditions µ(·, 0) = µ0, µ(·, 1) = µ1 for ε > 0. Note that (56) is a parabolic
PDE, which has a unique smooth solution uε. The term ε∆u effectively regularizes the (dual)
Hamilton-Jacobi equation in (7). In the zero-noise limit as ε ↓ 0, the solution of the optimal entropic
interpolating flow (54) converges to solution of the Benamou-Brenier problem (4) in the sense of the
method of vanishing viscosity (Mikami, 2004; Evans, 2010).

D GRADIENT ENHANCEMENT

In this section, we fortify the base method we presented in Section 3. We present gradient enhance-
ment, which is a technique to strengthen any standard PINN (Yu et al., 2022). This technique improves
efficiency, as fewer data points are needed to be sampled from U(Ω)×U(0, 1), and accuracy as well.
We apply gradient enhancement to our proposed neural operator.

The motivation behind gradient enhancement stems minimizing the residual of a differentiated PDE.
We turn our attention to PDEs of the form
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{
F
(
x, t, ∂x1u, . . . , ∂xd

u, ∂x1x1u, . . . , ∂xdxd
u, . . . , ∂tu, λ

)
= 0 on Ω× [0, 1],

u(·, 0) = u0, u(·, 1) = u1 on Ω,
(57)

for domain Ω ⊆ Rd, parameter vector λ, and boundary conditions u0, u1. One may differentiate the
PDE function F with respect to any spatial component to achieve

∂

∂xℓ
F
(
x, t, ∂x1u, . . . , ∂xd

u, ∂x1x1u, . . . , ∂xdxd
u, . . . , ∂tu, λ

)
= 0. (58)

The differentiated PDE is additionally equal to 0, similar to what we see in a PINN setup. If we
substitute a neural network into the differentiated PDE of (58), what remains is a new residual, just
as we saw with the neural network substituted into the original PDE. Minimizing this new residual in
the related loss function characterizes the gradient enhancement method.

We utilize the same loss function in (14), but we add the additional terms

LGE,cty,i =
1

N

d∑
ℓ=1

γℓ

∣∣∣∣∣∣ ∂

∂xℓ

( ∂
∂t

Cϕ,i + div(Cϕ,i∇Hψ,i)
) ∣∣∣∣∣∣2

L2(Ω×(0,1))
, (59)

LGE, HJ,i =
1

N

d∑
ℓ=1

ωℓ

∣∣∣∣∣∣ ∂

∂xℓ

( ∂
∂t

Hψ,i +
1

2
||∇Hψ,i||22

) ∣∣∣∣∣∣2
L2(Ω×(0,1))

, (60)

where the variables and neural networks that also appeared in (14) are the same. Here γℓ and ωℓ
are positive weights. The summation is taken in order to account for gradient enhancement of each
spatial component of x ∈ Ω.

E DEEPONETS

A challenge resides in solving the previous risk minimization problem over numerous instances of
data. This challenge may be conciliated by instituting the novel architecture of the DeepONet that
learns a general nonlinear operator, where one (or a pair of) neural network(s) encode(s) the input
and another encodes the collocation samples. This architecture originates as a fine equivalence to the
universal approximation theorem for operators.

General DeepONet. A general operator G† may be approximated by an unstacked DeepONet (Chen
and Chen, 1995; Lu et al., 2021)

G†(u0)(x, t) ≈
p∑
k=1

Bk
(
u0(x1), . . . , u0(xm), θ

)
· Tk(x, t, ξ), (61)

where Bk, Tk are scalar elements of output of neural networks B, T , and p is a constant denoting the
number of such elements. We take B and T to be artificial neural networks parameterized by θ, ξ
respectively. B, T are known as the branch and trunk networks respectively. u0 is the initial function
in which the operator is applied, evaluated at distinct locations x1, . . . , xm for branch input. (x, t) is
any arbitrary point in space and time in which G†(u0) may be evaluated.

Enhanced DeepONet. The above framework is restricted to one initial input function u0. We turn
our attention to the enhanced DeepONet, a DeepONet styled to act upon dual initial conditions Tan
and Chen (2022). Our true operator Γ† may be approximated using a second neural network encoder
for input u1,

Γ†(u0, u1)(x, t) ≈
p∑
k=1

B0
k

(
u0(x1), . . . , u0(xm), θ0

)
· B1

k

(
u1(x1), . . . , u1(xm), θ1

)
· Tk(x, t, ξ).

(62)
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Physics-informed DeepONet. The enhanced DeepONet may be substituted into any physics-
informed framework, such as that of equation (9), taking place of the PDE solution value in the
empirical loss to be minimized Wang et al. (2021). Generalization of the trained DeepONet permits
any solution to the PDEs to be evaluated instantaneously given the appropriate input function(s).

F DEEPONET DIFFERENTIATION

We found it effective to differentiate our trunk networks individually, and subsequently form the
DeepONets afterwards. It can be noted the branch networks take no (x, t) input, and so no branch
derivatives are taken. The product rule of calculus allows the derivatives in the continuity physics-
informed term to be reformed, which can be stated as

div(Cjϕ∇Hj
ψ) =

d∑
j=1

{
(

p∑
k=1

B0,cty
k B1,cty

k ∂xj
T cty
k )(

p∑
k=1

B0,HJ
k B1,HJ

k ∂xj
T HJ
k )

+(

p∑
k=1

B0,cty
k B1,cty

k T cty
k )(

p∑
k=1

B0,HJ
k B1,HJ

k ∂2xj
T HJ
k )

}
,

(63)

where the above trunk network derivatives are evaluated at (xj , tj), xj = (xj1, . . . , x
j
d) ∈ Ω ⊆ Rd.

Similarly, the norm-gradient term in the Hamilton-Jacobi physics-informed loss can be reformulated

||∇Hj
ψ||

2
2 =

d∑
j=1

(

p∑
k=1

B0,HJ
k B1,HJ

k ∂xj
T HJ
k )2. (64)

We reiterate the above derivatives are computed with automatic differentiation.

G ADDITIONAL SIMULATION RESULT FOR GAUSSIAN MIXTURES

Here we present additional simulation result for Gaussian mixtures with k0 = k1 = 5 and πi = 0.2
for all i, with the same loss coefficients. We choose ui ∈ [1.1, 3.9]2, σ2

0,i, σ
2
1,i ∈ [0.4, 0.8], and

covariance σ01,i ∈ [−0.4, 0.4]. The MSE of GeONet on testing pairs is shown in Table 4.

Table 4: MSE of GeONet on 50 test data of Gaussian mixtures over a 50× 50 mesh. All values are
multiplied by 10−3. We report the means and standard deviations of the MSE. Training is done with
k0 = k1 = 5, πi = 0.2 for all i, with the same loss coefficients. Training data at the boundaries has
resolution 30× 30.

GeONet error for Gaussian mixtures

Number of Gaussians t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1
Identity k0 = k1 = 5 0.23± 0.23 1.70± 0.67 2.60± 1.10 1.80± 0.74 0.22± 0.21
Generic k0 = k1 = 5 0.22± 0.15 1.70± 0.92 2.70± 1.50 1.70± 0.76 0.20± 0.13
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H HYPERPARAMETER SETTINGS AND TRAINING DETAILS

We discuss training characteristics of GeONet. We provide details of the base method. An unmodified
Adam optimizer was chosen for all branch, trunk neural networks. The below widths are held for
each hidden layer. The activation listed is for each hidden layer in all six neural networks. We
found constant learning rate to be successful, but one can consider modifying this. Coefficients
α1, α2, β0, β1 were chosen after experimentation on sub-datasets. Training is done on a NVIDIA
Tesla P100 GPU.

Table 5: Architecture and training details in our experimental Section 4. Gaussian mixture details
pertain to Table 4.

Hyperparameter/Characteristic Gaussian mixtures CIFAR-10 data
No. of initial conditions (µ0, µ1) 1,500 600
L (no. of collocations per epoch) 900 1,024
Branch width 180 300
Branch depth 5 4
Trunk width 120 120
Trunk depth 7 6
p (dimension of branch, trunk outputs) 120 250
Number of parameters 1,461,120 2,821,260
Batch size 9,000 10,240
Number of batches 150 60
Activation tanh gelu
Learning rate 5× 10−5 4× 10−5

Time per epoch ∼ 22 sec ∼ 12 sec
Total number of epochs ∼ 2, 500 ∼ 4, 500
Final training time ∼ 15 hrs ∼ 15 hrs
Final training loss ∼ 4× 10−6 ∼ 1× 10−4

α1, α2, β0, β1 30, 30, 1, 1 10, 10, 1, 1
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