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Abstract

The in-context learning paradigm with LLMs has
been instrumental in advancing a wide range of
natural language processing tasks. The selection
of few-shot examples (exemplars / demonstration
samples) is essential for constructing effective
prompts under context-length budget constraints.
In this paper, we formulate the exemplar selec-
tion task as a top-m best arms identification prob-
lem. A key challenge in this setup is the exponen-
tially large number of arms that need to be eval-
uated to identify the m-best arms. We propose
CASE (Challenger Arm Sampling for Exemplar
selection), a novel sample-efficient selective ex-
ploration strategy that maintains a shortlist of
“challenger” arms, which are current candidates
for the top-m arms. In each iteration, only one
of the arms from this shortlist or the current top-
m set is pulled, thereby reducing sample com-
plexity and, consequently, the number of LLM
evaluations. Furthermore, we model the scores
of exemplar subsets (arms) using a parameterized
linear scoring function, leading to stochastic lin-
ear bandits setting. CASE achieves remarkable
efficiency gains of up to 7× speedup in runtime
while requiring 7× fewer LLM calls (87% reduc-
tion) without sacrificing performance compared to
state-of-the-art exemplar selection methods. We
release our code and data. 1

1. Introduction
In-context learning (ICL) and Chain-of-Thought (COT)
have emerged as important techniques for enhancing the
capabilities of large language models (LLMs) across a range
of natural language tasks (Yang et al., 2018; Roy & Anand,
2022; Nanekhan et al., 2025; V et al., 2023). ICL allows
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Figure 1: Overview of CASE for selection of top-m best
exemplar subsets (arms).

LLMs to perform tasks by conditioning on a context that
includes demonstration examples or instructions, without
the need for additional fine-tuning, making it flexible and
adaptable. COT facilitates stepwise problem-solving by
employing rationales. However, one key challenge in maxi-
mizing the effectiveness of ICL is the careful selection of
few-shot examples along with their corresponding rationales
(Lu et al., 2022; Zhao et al., 2021). We refer to the triplet
of (input, rationale, output) as an exemplar/demonstration
examples.

Most existing approaches for selecting demonstration exam-
ples are based on heuristics or trial-and-error methods (Fu
et al., 2023; Brown et al., 2020), with only a few attempting
to address the problem in a more principled way (Xiong
et al., 2024). Exemplar / demonstration example selection
can be classified into two categories: task-level, where a
static set of exemplars representative of the task is chosen
for inference, and instance-level, where exemplars are dy-
namically selected for each test instance during inference
(Rubin et al., 2022; Xiong et al., 2024; Ye et al., 2023b),
which introduces overhead during inference. Additionally,
these methods do not consider the positive and negative
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interactions between the exemplars. In contrast, selecting
a static set of exemplars not only eliminates inference-time
overhead but also enables prompt caching, allowing for the
reuse of key-value (KV) attention states (Gim et al., 2024).
In this work, we propose a hybrid approach where first mul-
tiple sets of exemplars are selected at task-level, and then
test example-specific prompts are constructed at inference
time over the reduced search space (task-level exemplars).
The approaches closest to us are LENS (Li & Qiu, 2023),
which use marginal gains in accuracy as selection metric,
and EXPLORA (Purohit et al., 2024), which uses a heuristic
contrastive learning based exploration scheme, incurring
relatively high computational costs.

In this work, our primary goal is to propose a principled
and sample efficient exemplar selection approach without
compromising task performance. Recent studies aimed at
developing theoretically grounded models for ICL (Zhang
et al., 2023) primarily focus on linear functions and linear
transformers. We propose to use a linear function based on
sentence similarities between the in-context examples and
validation examples as the surrogate model for modeling
the goodness of in-context learning. This approach leads to
a linear reward model for a multi-armed bandit-based exem-
plar selection, leading to the linear stochastic bandits setting
(Abbasi-Yadkori et al., 2011). In this setting, our problem is
posed a multiple exemplar-subset selection (MESS).

We formulate the selection of top-m exemplar subsets as
the problem of identification of top-m arms (Réda et al.,
2021) in the stochastic linear bandit setting (Réda et al.,
2021). The GIFA framework (Réda et al., 2021) proposed
an efficient gap-index based top-m arms identification algo-
rithm with reduced sample complexity. However, the com-
putation of challenger arm (current candidates for top-m
arms), requires computation of gap-indices between all cur-
rently estimated top-m arms and the remaining arms. This
is impractical in our setting since each arm corresponds
to a k-sized subset of the training exemplar set, leading
to an exponential number of candidate arms. Hence we
need an algorithm that can sample arms from the candidate
sets. While some uniform sampling algorithms for top-m
arms identification exist, (Chen et al., 2017; Kaufmann &
Kalyanakrishnan, 2013) for the general multi-arm bandit
setting, to the best of our knowledge, there are no sampling-
based algorithms for identification of top-m arms in the
stochastic linear bandits setting.

In this work, we propose CASE (Challenger Arm Sampling
for Exemplar Selection) where we propose a principled
sampling of challenger arms to form a shortlist challenger
set, pruning the space of possible candidate arms (see fig.
1). Our key idea is to iteratively create a low-regret set of
selected challenger arms, in addition to the current top-m
arms, from uniformly sampled arms. This leads to a se-

lective exploration-based algorithm that is sample-efficient.
We concurrently apply the state-of-the-art gap-index-based
algorithm rule for selecting top-m arms out of the total
exploration set. We also provide theoretical arguments to
justify our novel approach of combined selective exploration
and gap-index based identification of top-m arms. When
applied to exemplar selection, we observe improvements
in task performance of upto 15.19% compared to state-of-
the-art methods like LENS, competitive performance with
competitive approaches like EXPLORA and reduces num-
ber of LLM calls (about 7x) with speedup of upto 7x when
compared to state-of-the-art exemplar selection approaches.

2. Related Work
Exemplar Selection for ICL. The rise of LLMs has
transformed them into general-purpose answering engines
through emergent capabilities like ICL (Brown et al., 2020;
Wei et al., 2022; 2023; Wang et al., 2023a; Kojima et al.,
2023; Chen et al., 2022a) where a few examples are pro-
vided to LLMs to demonstrate the task. To eliminate manual
selection, several automated methods have emerged, such as
reinforcement learning (Zhang et al., 2022; Lu et al., 2023),
trained retrievers (Xiong et al., 2024), Determinantal Point
Processes (Ye et al., 2023a) and constrained optimization
(Tonglet et al., 2023). Additionally, dynamic selection meth-
ods that are learning-free, such as similarity-based (Rubin
et al., 2022), complexity-based (Fu et al., 2023), and MMR
(Ye et al., 2023b), have been explored. However, dynamic
methods increase inference-time computational costs. To
address this, a pre-selected, representative set of exemplars
is chosen for ICL, akin to coreset selection methods (Guo
et al., 2022), though the key difference is that ICL does not
involve parameter updates. To the best of our knowledge,
there has been very little research on a sample efficient ap-
proach for exemplar selection, with the closest work being
LENS (Li & Qiu, 2023) and EXPLORA (Purohit et al.,
2024). LENS is expensive in number of LLM calls and
is unsuitable for black-box models. EXPLORA proposes
a heuristic exploration approach which is computationally
intensive in terms of number of LLM calls and hence not
sample efficient. We propose a novel sample efficient exem-
plar selection approach for black-box and open LLMs.

Identification of Top-m Arms in Stochastic Linear Ban-
dits. The top-m arms identification problem aims to es-
timate a subset of m arms with the highest means. Vari-
ous methods have been proposed in both fixed-confidence
(Kalyanakrishnan et al., 2012) and fixed-budget settings
(Bubeck et al., 2013). In this paper, we focus on the fixed-
confidence setting, where the error probability in estimating
the top-m arms should be smaller than a predefined parame-
ter δ ∈ (0, 1). Adaptive sampling algorithms like UGapE
(Gabillon et al., 2012) and LUCB (Kalyanakrishnan et al.,
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2012), along with uniform sampling methods (Kaufmann &
Kalyanakrishnan, 2013; Chen et al., 2017), have been intro-
duced for the fixed confidence setup, but they lack efficiency
in terms of sample complexity. While efficient adaptive
sampling methods for linear bandits, such as (Fiez et al.,
2019), RAGE (Zhang et al., 2023), LTS (Jedra & Proutiere,
2020), PEPS (Li et al., 2023), LinGapE (Xu et al., 2017)
and LinGame (Degenne et al., 2020), have been proposed,
they primarily address best-arm identification (m = 1). To
the best of our knowledge, GIFA (Réda et al., 2021) was
the first unified framework for efficient top-m arm identifi-
cation with low sample complexity. However, algorithms
implemented in GIFA framework require large number of
gap-index computations and comparisons, leading to high
sample complexity. This is due to its challenger arm sam-
pling mechanism, which considers the complement of the
current top-m estimate as the challenger set, resulting in a
large search space. In this work, we propose a novel and ef-
ficient algorithm with applications to exemplar selection for
diverse tasks in LLMs. Possible other formulations could
be learning to rank (LTR) or online learning to rank (Zoghi
et al., 2017; Grotov & De Rijke, 2016; Li et al., 2019). LTR
relies on static relevance estimates assigned to samples or
on user clicks, in an online setting. In contrast, our prob-
lem requires dynamic feedback from LLMs to determine
the importance of exemplars. Therefore, learning to rank
approaches are not well-suited to our problem setup.

3. CASE: Challenger Arm Sampling-based
Exploration for Exemplar-subset Selection

In-context learning (ICL) enables LLMs to acquire task-
specific knowledge from just a few demonstration examples
without updating the model’s parameter. However, due to
the financial and computational costs and the limitations of
LLMs in effectively processing large input contexts, provid-
ing all available demonstration examples for a given task is
ineffective and impractical. Therefore, a key challenge is the
efficient and optimal selection of demonstration examples
(also called exemplars), particularly in a black-box setting
where access to the model’s parameters or confidence esti-
mates is unavailable. To address this, we propose a novel
algorithm for exemplar subset selection. We formulate the
task of constructing an optimal prompt as a multiple exem-
plar subset selection problem (section 3.1). This is posed as
a top-m arm selection problem in stochastic linear bandits
(Kalyanakrishnan & Stone, 2010; Réda et al., 2021) (section
3.2), leading to a novel sample efficient approach for top-m
arm selection, which we call as CASE (section 3.3).

3.1. Problem Setup- Multiple Exemplar-subset Selection

For a given task, let u denote the input examples and v
denote the output labels. For simplicity, we include ratio-

nales / chain-of-thought reasoning used in the demonstra-
tion samples in the example u. Let X = {ui, vi}ni=1 be
the set of all n potential exemplars and (utest, vtest) de-
note a test input example and desired output. A prompt
P is constructed from a subset S ⊆ X of k exemplars,
which is used for the prediction of utest. Hence, P =
[S, utest] = [(ui1 , vi1), ..., (uik , vik), utest]. The prompt P
is then passed to a response generator function f which uses
a sampling / decoding mechanism to generate responses
from an LLM (given by the distribution PLLM . Hence,
f(P ) ∼ (PLLM (r|P )). The final step is a post-processing
δ applied to an LLM-generated response f(P ) for extract-
ing the task-specific output v̂test. Commonly used post-
processing strategies include regular-expression matching
(δregex) and self-consistency (δSC) (Wang et al., 2023b).

While the above-described basic mechanism can be used
for in-context learning, a single subset of k-exemplars of-
ten may not capture all the diverse aspects of a given task.
Hence, prompt generators π are used to generate prompts
specific to a given test input utest, from a shortlist of
multiple high-scoring exemplar subsets S1, ..., Sm, where
Si ⊆ X , ∀i = 1, ...,m. Hence, prompt P is calculated
as P = π(S1, ..., Sm, utest). Popular prompt generators
include similarity-based (πKNN ), which selects the subset
with the highest semantic similarity to the test example, and
diversity-based (πMMR) (discussed in section 4). Hence,
the entire output generation process can be described as:

v̂test = δ(f(P )), where P = π(U, utest),

and U = (S1, ..., Sm) (1)

Here, U = (S1, ..., Sm) is a set of m subsets of the potential
exemplar set X .

The main challenge in this paper is to select U , a high-
scoring set of subsets of exemplars, Si, that can be used by
a given prompt generator π to generate dynamic prompts
(test example-specific) that maximize the performance on a
given task. We use a separate validation set for measuring
the performance of U , a selected set of exemplar subsets.
Let V be the set of n′ validation examples {u′

i, v
′
i}n

′

i=1, and
let the validation accuracy for a prompt P be defined as:
A(P,V) = 1

n′

∑n′

i=1 1(v
′
i = δ(f(π(U, u′

i)))). Our prob-
lem can be formulated as finding a set U∗ of m-subsets of
X such that the corresponding prompt P generated by the
prompt generator π maximizes the total validation accuracy.

U∗ = argmax
U∈S(X )m

A(π(U),V)

where S(X )is the set of all k-sized subsets of X (2)

We call this as multiple exemplar-subset selection (MESS)
formulation for finding the optimal prompt.

3



Sample Efficient Demonstration Selection for In-Context Learning

3.2. Top-m Arm Selection formulation for MESS

The MESS problem defined above cannot be solved effec-
tively using naive or heuristic search-based algorithms due
to two reasons: (1) the search space S(X )m is doubly expo-
nentially large in k and m (|S(X )| = O(|X |k), and (2) the
function A(P,V) is computationally expensive due to LLM
inference. In this section, we take a multi-armed bandit-
based approach to implicitly estimate the function A(P,V)
in a sample-efficient manner, minimizing the number of
queries to the LLM.

Let a ∈ {0, 1}n such that ∥a∥0 = k denote the 1-hot en-
coding for an exemplar subset of size k, chosen from the
potential exemplar set X (|X | = n). The multi-armed
bandit instance is constructed as arms ai ∈ S(X ) where
i ∈ {1, ..., |S(X )|}. Note that the number of arms is expo-
nential in both k and n. The reward for an arm a is given by
the accuracy A(π(a),V), where π is the prompt generated
by the subset corresponding to a, and V is the validation set.

We further assume that the reward for an arm a, ρ(a), can be
modeled as a linear function of its features, aligning with the
linear stochastic bandit setting (Abbasi-Yadkori et al., 2011).
Intuitively, given an arm a, the reward scoring function ρ(a)
should be a function of the similarity between the inputs
of the selected exemplars, ui, such that a(i) = 1, and the
validation exemplar u′

j ∈ V . In this work, we use a normal-

ized BERT-based similarity score, Simij =
ϕ(ui)

Tϕ(u′
j)

∥ϕ(ui)∥∥ϕ(u′
j)∥

,

where ϕ(u) is the sentence encoding vector obtained from
a pre-trained transformer model, e.g. SentenceBERT. Let,
α = {αi|i = 1, ..., n} denote the vector of linear coeffi-
cients, where each αi corresponds to the ith potential exem-
plar coefficient in the reward scoring function. Our linear
model for the reward of an arm a is given by:

ρ(a) ≡ ρ(a;α) =
1

n′

n′∑
j=1

n∑
i=1

(αia(i)Simij) = αTxa (3)

where xa(i) = a(i)
(

1
n′

∑n′

j=1 Simi,j

)
. Here, xa ∈ Rn

denotes the vector of features of the arm a, with non-zero
components only for the exemplars that are part of the arm
a. The observed reward is given by ρ̂(a;α) = ρ(a;α) + η,
where η is a subgaussian noise, i.e. E[eλη] ≤ exp(λ2ξ2/2),
for some variance ξ2. The MAB learning algorithm itera-
tively estimates the unknown coefficients (α̂t), such that the
empirical estimate of reward ρ̂t(a) ≡ ρ̂(a;αt) ≈ ρ(a;α)
for the high scoring arms a and a large time index t > τ .
Under the above multi armed bandit setup, we approximate
the problem of MESS as finding the set of top-m arms,
denoted as U∗ = {a1, ..., am}.

Under this stochastic linear bandits assumption, the prob-
lem of identifying top-m arms can be solved using the

Gap-index based algorithms (Xu et al., 2018; Réda et al.,
2021), which were unified under the GIFA framework
(Réda et al., 2021). The GIFA framework is a class of
iterative algorithms that maintain a set of estimated m-
best arms, Ut. In each iteration t, the most ambiguous
arm from Ut, say bt = argmaxb∈Ut

maxa∈Uc
t
Bt(a, b),

and the most ambiguous arm from U c
t (called the chal-

lenger arm), say ct = argmaxc∈Uc
t
Bt(c, bt), are com-

puted. The arm with the highest variance between bt and
ct is pulled, and the model parameters are updated. Here
Bt(a, b) is called the gap index between arms a and b. For
parameter updation, the design matrix V̂t+1 is computed as:
V̂t+1 = λIn +

∑
a∈S Naxax

T
a , where Na is the number of

times an arm a was pulled. The updated parameters α̂t+1

are computed as: α̂t+1 = (V̂t+1)
−1(

∑t+1
l=1 rlxal

), where
rl is the reward received by computing the accuracy of
the prompt generated by the current arm. The gap-index
between any two arms i, j is computed as: Bt(i, j) =
ρ̂t(i) − ρ̂t(j) + Wt(i, j), where the confidence term is
defined as: Wt(i, j) = Ct,δ(||xi||Σ̂λ

t
+ ||xj ||Σ̂λ

t
), where,

Ct,δ =

√
2 ln

(
1
δ

)
+N ln

(
1 + (t+1)L2

λ2N

)
+

√
λ
σ S, S and L

are constants, N is the total number of arms pulled, and
Σ̂λ

t = σ2(V̂t)
−1.

3.3. CASE: Challenger-arm sampling-based top-m arm
selection

Implementing gap-index-based schemes for top-m arm iden-
tification, for settings with exponentially large number of
arms is infeasible. The key problem is to identify the most
ambiguous arms in each iteration. We propose to mitigate
this problem using: (a) identify a low-regret subset Nt of m′

next-best arms after Ut, and (b) use a GIFA-based algorithm
to identify the top-m arms from the set Ut ∪Nt. The prob-
lem of combinatorial blowup of arms in the linear bandit
setting has been sparsely studied, with selective exploration
as one of the strategies (e.g. Algorithm 13, Chapter 23 of
(Lattimore & Szepesvári, 2020)). Since it is impractical to
explore all arms, the selective exploration scheme uniformly
samples arms from the unexplored set and then selects the
highest-scoring arms according to the current model. It then
pulls the selected arms to update the model parameters.

Algorithm 1 describes the proposed challenger-arm sam-
pling based exploration technique, called CASE. The set
of top-m subsets (arms), U0, is initialized to a random set
sampled from S. In lines 11 – 13, we compute the up-
dated Ut by moving the highest scoring arm from Nt−1

if its score is higher than that of the lowest scoring arm
in Ut−1, which is then moved to Nt−1. Using the selec-
tive exploration idea, CASE uniformly samples m′ arms
from (Ut ∪Nt−1)

c, to generate the set Mt, and then selects
the top-m′ arms from Mt ∪Nt−1 to generate the updated
Nt. Nt ∪ Ut is the high-reward selected set, from which
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we explore using the selection rule. We use the greedy
selection rule proposed in (Réda et al., 2021), where we
select the arm that minimizes the variance between st and
bt: a∗ = argmina∈Nt∪Ut

||xbt − xst ||(V̂t−1+xaxT
a )−1 . We

call the LLM (line 21 in Algorithm 1) after the selection
rule, where an arm (i.e., a set of exemplars) is sampled.
Specifically, A(π(a(t)),V) denotes the computation of ac-
curacy on the validation subset, which requires LLM to
generate predictions. This ensures that the LLM’s rationale
and output generation processes are explicitly integrated
into our algorithm. By doing so, we effectively leverage the
gap-index-based multi-arm bandit framework to optimize
exemplar selection for ICL using LLMs. Steps 17 and 18
in algorithm 1 compute the revised most ambiguous arms
bt ∈ Ut and st ∈ Nt. st is sampled challenger arm selected
from the selected set of next best arms Nt using the gap
index Bt(a, b) = ρ̂t(a) − ρ̂t(b) + Wt(a, b). Finally, the
revised parameters α̂t+1 are computed using the revised
design matrix V̂t+1 and the least squares estimation formu-
lae described in lines 22 and 23 of algorithm 1. Note that,
V̂t+1 can be computed from V̂t using the incremental update
formula V̂t+1 = V̂t + xat+1

xT
at+1

. Hence, (V̂t+1)
−1 can be

calculated in O(n2) time using the Sherman-Morrison for-
mula. We stop the updates when the convergence criteria for
switching the arms between Ut and Nt have been achieved,
i.e. Bt(st, bt) ≤ ϵ. The time complexity for each iteration
of our algorithm is O(mm′ + n2 + LLM_inference_time)
which is due to lines 17, 21 and 23. Next, we discuss some
theoretical results related to our method.

3.4. Sample Complexity bounds for the top-m selection

The ability of CASE to identify the top-m arms and cor-
rectly estimate the model parameters α rests on two argu-
ments. Firstly, the selective exploration strategy results in a
low regret set of arms Ut ∪NT . Specifically, we assume the
average regret (total regret / #iterations) of the set UT ∪NT

to upper bounded by ϵ. While we postpone a rigorous deriva-
tion of the regret bound for CASE to a later study, we justify
our assumption by using the SETC Algorithm (Algo 13 in
(Lattimore & Szepesvári, 2020)), which follows a similar
uniform exploration and commitment strategy in the linear
bandit setting. SETC has a regret bound of O(d

√
n log(n))

where n is the number of time steps. Hence, the algorithm
will achieve an average regret of at most ϵ after at most
exp(W ( ϵ2

C2d2 )) timesteps, where W is Lambert’s function,
and C is the constant for the regret bound.

Secondly, once a low regret UT ∪ NT set is achieved,
the gap-index-based algorithm correctly identifies the top-
m arms from the set UT ∪ NT . Following (Réda et al.,
2021), we obtain a high probability (1 − δ) upper bound
for the sample complexity of CASE on the event E ≜⋂

t>0

⋂
i,j∈[K]

(
ρi − ρj ∈ [−Bt(j, i), Bt(i, j)]

)
, Let S⋆m

Algorithm 1 CASE
1: Input: X : set of all training exemplars, k: prompt size, S :

all k-subsets of X , a ∈ S: an arm or k-subset
2: Define: Ut: set of currently estimated top-m arms.
3: Nt: set of currently estimated next best-m′ arms.
4: bt: the most ambiguous arm from Ut

5: st: the most ambiguous sampled arm from Nt

6: Initialize: U0 ← set of random m arms from S,
t← 1, α⃗1 ← N (0, 1)

7: while Bt(st, bt) ≤ ϵ do
8: Construct Ut by replacing nt with potentially better arm ct
9: nt = argmina∈Ut−1

ρ̂t(a)

10: ct = argmaxa∈Nt−1
ρ̂t(a)

11: if ρ̂t(ct) ≥ ρ̂t(nt) then
12: Ut, Nt ← swap(nt, ct) from Ut−1, Nt−1

13: end if
14: Mt ← s′ ∼m′ (Ut ∪Nt−1)

c // Randomly sample
15: Nt←topm′(Mt∪Nt−1; ρ̂(t)) //Update Nt from Nt−1&Mt

16: Compute the revised most ambiguous arms for convergence
17: bt+1 = argmaxb∈Ut

maxa∈Nt [Bt(a, b)]
18: st+1 = argmaxs∈Nt

[Bt(s, bt+1)]
19: Pull selected arm, receive reward, and update parameters
20: at+1 ← selection_rule(Ut, Nt)
21: rt+1 = A(π(a(t)),V) // LLM inference call
22: V̂t+1=λIn+

∑
a∈S Naxax

T
a //λ regularized design matrix

23: α̂t+1 = (V̂t+1)
−1(

∑t+1
l=1 rlxal) // Least-squares estimate

24: t← t+ 1
25: end while
26: Output: UT : Set of m arms which have the highest reward

be the true set of top-m arms. We define the true gap of an
arm i as ∆(i) ≜ ρ(i) − ρ(m + 1) if i ∈ S⋆m, ρ(m) − ρ(i)
otherwise (∆(i) ≥ 0 for any i ∈ [K]).

Theorem 1. For CASE, on event E on which the algo-
rithm is (ε,m, δ)-PAC, stopping time τδ satisfies τδ ≤
inf{u ∈ ρ∗+ : u > 1 + Hε(µ)C2

δ,u + O(K)}, where,
for algorithm with the largest variance selection rule2 :

Hε(µ) ≜ 4σ2
∑

a∈[K]

max
(
ε, ε+∆a

3

)−2
,

Above theorem essentially adopts the result in Theorem
2 from (Réda et al., 2021) to the setting where we restrict
ourselves to arms in UT ∪NT . It mentions that the ϵ-optimal
top-m arms from UT∪NT are present in UT with prob. 1−δ,
if T > τδ . K is the size of UT ∪NT .

Proof Overview: The proof builds upon the proofs for clas-
sical Top-m linear bandits, LinGapE (Xu et al., 2018) and
LinGIFA (Réda et al., 2021) while additionally account-
ing for the challenger arms shortlist in Nt proposed in this
work. To prove it, one of the key components is the fol-
lowing lemma, which holds for any gap indices of the form
Bt(i, j) ≜ ρ̂t(i)− ρ̂t(j) +Wt(i, j) for i, j ∈ [K]2.

2or pulling both arms in {bt, ct} at time t
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Lemma 1. On the event E , for all t > 0,

Bt(st, bt)(t) ≤ min(−(∆(bt) ∨∆(st))

+2Wt(bt, st), 0) +Wt(bt, st)

, where a ∨ b = max(a, b).

Proof for Lemma 1 is provided in Appendix A.1. In sum-
mary, Theorem 1 and Lemma 1 together provide an upper
bound on the expected number of arm pulls required by
the algorithm, which translates to the number of LLM calls
needed when applying CASE to complex reasoning tasks.

4. Experiments and Results
We aim to address the following research questions:
RQ I. How sample efficient is CASE compared to state-
of-the-art exemplar selection and stochastic linear bandit
methods?
RQ II. Can CASE, choose task-level demonstration sam-
ples without sacrificing task performance, compared to state-
of-the-art exemplar selection methods?
RQ III. Can CASE work without exploration?

4.1. Experimental Setup

Synthetic Experiments For synthetic experiments, we
adopt a setup similar to (Réda et al., 2021) and present
results on simulated data. We set σ = 0.5, ϵ = 0, and
δ = 0.05 across all experiments. Each experiment is con-
ducted over 500 simulations. We explore various numbers
of arms K ∈ [7, 10, 20], and set the number of top arms to
be identified with the highest means as m = 3. We choose
a challenger set Nt of size 3 and feature dimension is 3.

TASK LEVEL EXEMPLAR SELECTION FOR ICL

Datasets and Metrics: We evaluate on well-known datasets
that require numerical and commonsense reasoning. For
numerical reasoning, we use GSM8K, FinQA, TabMWP
and AquaRAT; for commonsense reasoning, we use Strat-
egyQA. Detailed descriptions of the datasets are provided
in Appendix A.3. We report performance using the official
metrics: Exact Match (EM) and Cover-EM (Rosset et al.,
2021) for respective datasets.

Hyperparameters (LLMs): For LLMs, we set the temper-
ature to 0.3 to reduce randomness. To reduce repetition, we
apply a presence penalty of 0.6 and a frequency penalty of
0.8. The max_length for generation is set to 900.

Hyperparameters (CASE): We begin by clustering the
training set into 5 clusters. We then form the set of exemplar
subsets (S), by sampling one exemplar from each cluster
with replacement. This approach allows us to explore vari-
ous combinations of exemplars. Note that the training set
to form S are same across baselines for a fair comparison.

We set m = |Ut| = 10 to identify the top scoring subsets
(arms) and choose a challenger set Nt of size 5. We set the
number of validation examples V to, 20 and ϵ = 0.1.

Baselines: We compare against instance-level exemplar
selection methods, such as MMR (Ye et al., 2023b) and
KNN (Rubin et al., 2022), which use diversity and similarity-
based measures to select exemplars for each test example.
We configure MMR with λ = 0.5 to balance similarity
and diversity. We also evaluate against coreset selection
methods like Graphcut and Facility Location (Iyer & Bilmes,
2013). Finally, we compare with LENS (Li & Qiu, 2023)
and EXPLORA (Purohit et al., 2024), state-of-the-art task-
level exemplar selection approaches.

CASE Hybrid Variants: We also propose hybrid variants
of CASE, where we select instance-level exemplars subset
from the top-m subsets identified by CASE using KNN
or MMR, thereby reducing the search space. Our hybrid
approach scores entire subsets by aggregating the similarity
scores of each exemplar within the subset to the test instance,
thereby preserving the interactions between exemplars.

4.2. Performance of CASE Compared to Existing
Gap-Index-Based Approaches

To address RQ1, we conduct synthetic experiments follow-
ing the setup in Section 4.1. We evaluate metrics such as
average runtime, the average number of comparisons for
gap index computation, for multi-armed bandit (MAB) ap-
proaches including LinGapE, LinGIFA, and CASE. The
results for K = 20, m = 3, and N = 3 are shown in Figure
2. Other synthetic experiments are presented in Appendix
A.9. In Figure 2(a), we observe that CASE significantly
reduces the number of comparisons required for gap index
computations compared to state-of-the-art gap-index-based
MAB approaches like LinGapE, LinGIFA. This improve-
ment is largely due to the principled challenger arm sam-
pling strategy, pruning the space of possible challenger arms
(Nt), resulting in efficient gap index computations. The
efficiency gains stem from the fact that |Nt| < |U c

t |, where
existing gap-index frameworks use the entire U c

t to select
challenger arms. From Figure 2(b), we also observe that run-
time of CASE is lower when compared to LinGapE (about
5.6x) and LinGIFA (about 12x) due to lower number of
arm comparisons and gap-index computations. In Figures
2(c) and 2(d), we analyze the gap index (Bt(st, bt)) and
simple regret across rounds (averaged across simulations)
and observe that they approach 0 as the number of rounds
increases. This demonstrates that, CASE samples good
arms with our shortlist of Nt serving as a good approxima-
tion of challenger arms. CASE converges with much lower
gap index computations and has lower runtime compared to
existing state-of-the-art gap-index MAB algorithms.

Since, EXPLORA uses an exploration based setting for se-
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Figure 3: Sample efficiency of CASE compared to LENS and EXPLORA.

lecting ICL demonstrations, we compare number of LLM
calls per-iteration as shown in Figure 3a. We observe that
CASE requires 8 × less calls per-iteration on average per
iteration, proving to be extremely sample efficient. We also
compare the total number of LLM calls made by CASE,
EXPLORA and LENS (shown in Figure 3(b)) for the ap-
plication of exemplar selection for ICL. We observe that
CASE reduces LLM calls significantly compared to LENS
(about 6x to 10.5x). CASE is also sample efficient when
compared to EXPLORA requiring upto 7x less LLM calls
(reduces number of LLM calls from 9986 when using EX-
PLORA for TabMWP to 1420 in CASE & 3619 to 480
for GSM8K ) and also reduces the exemplar selection time
by 7x (shown in Figure 3(c)). We observe that the total
number of LLM calls for CASE is slightly higher than EX-
PLORA on AquaRat. This is primarily because EXPLORA
is heuristic and stops after 10 iterations, while CASE runs
till convergence criteria is met. However, as mentioned
earlier, per-iteration CASE requires 8x fewer calls than
EXPLORA rendering it more sample efficient. This effi-
ciency gains are due to extensive LLM calls by LENS for
all training samples. EXPLORA though more efficient than
LENS, employs a heuristic approach for arm pulls (LLM

calls with exemplar subsets) which results in exploration of
less significant exemplar subsets (arms) and is less sample
efficient. In contrast, CASE employs a novel challenger set
sampling mechanism dramatically reduces the number of
subsets (arms) that need to be explored and evaluated.

4.3. Performance Comparison on Exemplar Selection

To address RQ II, we compare CASE and its variants
against state-of-the-art exemplar selection methods. Ta-
ble 1 shows that CASE consistently outperforms random,
as well as Few-Shot COT (Wei et al., 2023) methods, which
rely on random or hand-picked samples without account-
ing for the interactions between exemplars and task-level
performance. We observe that smaller LLMs are unable
to fit more than 5 exemplars due to context length limits,
and their performance plateaus beyond this point (Table 2).
Hence, we employ 5-shot examples in our approach and all
baselines. Furthermore, classical coreset selection methods
like Graph Cut and Facility Location, perform worse or on
par with random selection as they were not designed for the
ICL paradigm. We also observe that CASE outperforms dy-
namic selection methods like KNN, PromptPG, and MMR.
We also report the performance of CASE on open-source
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Table 1: Results across datasets (we use 5-shot for all methods). Percentage improvements are reported over EXPLORA
(Purohit et al., 2024). † indicates statistical significance (t-test) over EXPLORA at 0.05 level and ‡ at 0.01 level over LENS.
Additionally, all CASE and it’s variants are statistically significant over LENS at 0.05 level and not indicated here.

Method GSM8K AquaRat TabMWP FinQA StrategyQA

GPT-3.5-turbo
Instance level
KNN (S-BERT) (Rubin et al., 2022) 53.07 52.75 77.95 52.65 81.83
MMR (Ye et al., 2023b) 54.36 51.18 77.32 49.87 82.86
KNN+SC (Wang et al., 2023b) 80.21 62.59 83.08 54.49 83.88
MMR+SC (Wang et al., 2023b) 78.01 59.45 81.36 50.74 83.88
PromptPG (Lu et al., 2023) - - 68.23 53.56 -
Task level
Manual Few-Shot COT (Wei et al., 2023) 73.46 44.88 71.22 52.22 73.06
Random 67.79 49.80 55.89 53.70 81.02
PS+ (Wang et al., 2023a) 59.30 46.00 - - -
GraphCut (Iyer & Bilmes, 2013) 66.19 47.24 60.45 52.31 80.00
FacilityLocation (Iyer & Bilmes, 2013) 68.61 48.43 67.66 36.79 81.63
Active-prompt (Diao et al., 2024) 71.20 51.57 - - 74.49
EXPLORA (Purohit et al., 2024) 77.86 53.54 83.07 59.46 85.71
LENS (Li & Qiu, 2023) 69.37 48.82 77.27 54.75 79.79
Our Approach
CASE 79.91(▲2.63%) ‡ 54.72(▲2.20%) 83.42(▲0.04%)‡ 59.72(▲0.43%) 84.49
Hybrid Variants (Ours)
CASE+KNN+SC 87.49(▲12.36%)†‡ 64.17(▲19.85%)†‡ 86.23(▲3.80%)‡ 64.25 (▲8.05%)†‡ 85.92‡
CASE+MMR+SC 85.60 (▲9.94%)†‡ 62.60(▲16.92%)†‡ 85.91(▲3.41%)‡ 63.47(▲6.74%)†‡ 84.69‡

GPT-4o-mini
LENS (Li & Qiu, 2023) 76.19 64.56 86.34 69.31 92.85
CASE 91.13 73.23 89.73 72.89 95.92

models like Mistral-7b and Llama2-7b (see Appendix A.4).
Beyond the efficiency gained during inference, task-level ex-
emplars demonstrate greater robustness (see Appendix A.5)
compared to dynamic methods. The independent selection
of exemplars in dynamic methods may result in negative
interactions or skill redundancy, where lexically different
exemplars may represent similar skills. To further support
the claim that CASE selects more representative task-level
exemplars, we conduct a qualitative analysis comparing ex-
emplars chosen by LENS and CASE (see Appendix A.8).
We find that CASE consistently selects exemplars with di-
verse skills required for solving tasks similar to EXPLORA,
while being significantly efficient, whereas LENS selects
exemplars with redundant skills. Hence, we observe that
CASE is competitive with EXPLORA in terms of task per-
formance while being significantly sample-efficient (upto
7x) which is the primary goal of our work. For CASE, we
evaluate the performance of gpt-3.5-turbo by re-using exem-
plars selected by smaller models, such as Llama2-7b (see
Appendix A.6, Figure 4). In Table 1 we show the results

Table 2: Different values of k for Manual k-shot COT.

Datasets GSM Aqua Tab Fin Strat

Zero-shot 67.02 38.15 57.10 47.51 59.75
1-shot 67.55 38.58 66.30 49.26 68.16
3-shot 68.99 41.33 70.50 51.93 70.00
5-shot 73.46 44.88 71.22 52.22 73.06
7-shot 68.84 44.88 70.09 52.26 70.61

of exemplar reuse from Mistral-7b. We observe that exem-
plars selected by CASE using smaller LLMs transfer well
to larger LLMs, promoting exemplar reuse and efficiency.

4.4. Ablation Studies

To answer RQ3, we conduct several ablation studies (shown
in Table 3), including one-time sampling of all exemplar
subsets and a variant of CASE without exploration, to high-
light the need for an exploration-based MAB approach. In
one-time sampling approach, we sample each subset once,
evaluate them on validation set, and select the subset with
lowest validation loss. Inference results using the selected
subset are presented in Table 3. We observe that one-time
sampling underperforms compared to CASE as it evaluates
all arms only once and lacks sufficient information to confi-
dently identify the best arms. This method tends to overfit
the validation set and leads to suboptimal selection without
incorporating exploration or exploitation mechanisms.

Table 3: Ablation studies: one-time sampling, w/o explo-
ration vs proposed exploration (CASE).

Datasets GSM Aqua Tab Fin Strat

One-time sampling 76.72 50.39 81.23 54.14 80.20
CASE (-exploration) 76.57 47.64 77.17 45.95 80.00
CASE ( from Llama) 77.79 56.30 83.65 57.72 82.24
CASE (from Mistral) 79.91 54.72 83.42 59.72 84.49
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Furthermore, we conduct an ablation where we fit the linear
model once on a set of S subsets (as shown in Table 3) and
select the subset with the highest mean for test set inference.
Unlike CASE, which models the top-m subsets in each
round, this ablation fits the linear model once for all subsets.
Since, this ablation is devoid of exploration mechanism
it does not result in confident estimation of top-m arms
resulting in suboptimal performance.

5. Conclusion
In this work, we propose an efficient exemplar subset se-
lection method that identifies highly informative exemplar
subsets for ICL. Our approach significantly reduces the
number of LLM calls, offering a clear advantage over state-
of-the-art methods in terms of sample efficiency without sac-
rificing task performance. Additionally, exemplars selected
using smaller LLMs can be reused for larger models. In
the future, we also plan to extend and apply CASE to adap-
tive retrieval methods scrnarios (Rathee et al., 2025b;a;c)
and question answering (Venktesh et al., 2025). Specifically,
using the challenger arm sampling techniques we could care-
fully choose relevant documents to re-rank from the first
stage retrieval given LLM signals to make robust prompts.
This is particularly useful for question that need quantita-
tive, numerical, and temporal matching (Wallat et al., 2025;
Venktesh et al., 2024). We also plan to derive a rigorous
regret bound for CASE, and the role of exemplars in ICL.

Impact Statement
Our work focuses on efficient exemplar selection to enhance
in-context learning, emphasizing both efficiency and sus-
tainability. By improving sample efficiency, our approach
reduces the number of calls to LLMs, thereby lowering
computational costs and minimizing the energy demands
associated with LLM inference. While we employ LLMs,
we primarily use them for Question Answering on publicly
available benchmarks and do not use any private informa-
tion. We also would like to highlight that LLMs are known
to hallucinate and may result in factually inaccurate answers
at times, though we try to mitigate this in our approach by
providing relevant context and by generating rationales.
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A. Appendix
A.1. Proof of lemma 1

Proof. We primarily follow the proof structure of GIFA
framework (Réda et al., 2021) with some modifications
required for CASE due to the shortlist Nt and our swapping
rule to compute Ut. Let S⋆m be the true set of top-m arms
and (S∗

m)c denote the true set remaining worst arms. To
prove Lemma 1, we introduce the following property,

Property 1: For bt ∈ Ut and st ∈ Nt it holds that ρ̂t(bt) ≥
ρ̂t(st). Hence, it follows that Bt(st, bt) = ∆̂t(st, bt) +
Wt(bt, st) ≤ Wt(bt, st) as ∆̂t(st, bt) < 0 From property
1, we can establish that Bt(st, bt) ≤Wt(bt, st). Hence, to
show that

Bt(st, bt) ≤ −(∆(bt) ∨∆(st)) + 3Wt(bt, st)

we consider the following scenarios:

(i) bt ∈ S⋆m and st /∈ S⋆m: In that case,

∆(bt) = ρ(bt)− ρ(m+ 1);∆(st) = ρ(m)− ρ(st)

As event E holds,

Bt(st, bt) = −Bt(bt, st) + 2Wt(bt, st)

≤ ∆(st, bt) + 2Wt(bt, st)

As st /∈ S⋆m,
ρ(st) ≤ ρ(m+ 1)

∆(st, bt) ≤ ρ(m+ 1)− ρ(bt) = −∆(bt)

But as bt ∈ S⋆m, it also holds that ρ(bt) ≥ ρ(m), and
∆(st, bt) ≤ ρ(st)− ρ(m) = −∆(st). Hence,

Bt(st, bt) ≤ −(∆(bt) ∨∆(st)) + 2Wt(bt, ct)

≤ −(∆(bt) ∨∆(st)) + 3Wt(bt, ct).

(ii) bt /∈ S⋆m and st ∈ S⋆m :

∆(st) = ρ(st)− ρ(m+ 1);∆(bt) = ρ(m)− ρ(bt)

By Property 1,

Bt(st, bt) ≤Wt(bt, st)

≤ ∆̂t(bt, st) +Wt(bt, st) = Bt(bt, st)

as ρ̂t(bt) ≥ ρ̂t(st). Further, as E holds,

Bt(bt, st) = −Bt(st, bt) + 2Wt(bt, st)

≤ ∆(bt, st) + 2Wt(bt, st)

As bt /∈ S⋆m, ρ(bt) ≤ ρ(m + 1) and hence ∆(bt, st) ≤
ρ(m + 1) − ρ(st) = −∆(st) As st ∈ S⋆m, ρ(st) ≥ ρ(m)
and hence ∆(bt, st) ≤ ρ(bt)− ρ(m) = −∆(bt). Hence,

Bt(st, bt) ≤ −(∆(bt) ∨∆(st)) + 2Wt(bt, ct)

≤ −(∆(bt) ∨∆(st)) + 3Wt(bt, ct).

(iii) bt /∈ S⋆m and st /∈ S⋆m: We state that there exists a
b ∈ S⋆m that belongs to Nt. At any time t,

Mt ← s′ ∼m′ (Ut ∪Nt−1)
c

Nt ← topm′(Mt ∪Nt−1; ρ̂(t−1))

Due to the above sampling approach adopted for Nt which
captures the next m’ arms with the highest means, we posit
that Nt captures at least one arm in S⋆m. Assuming the event
E holds and b ∈ S⋆m,

Wt(bt, st) ≥ Bt(st, bt) ≥ Bt(b, bt)

st by the definition is one of the most ambiguous arms
with largest gap to bt Bt(st, bt) ≥ Bt(b, bt). Hence,
Bt(st, bt) ≥ Bt(b, bt). From this and event E it follows

Bt(st, bt) ≥ Bt(b, bt) ≥ ρ(b)− ρ(bt) ≥ ρ(m)− ρ(bt)

. Hence Wt(bt, st) ≥ Bt(st, bt) ≥ ∆(bt). Using event E ,

Bt(st, bt) ≤ ∆(st, bt) + 2Wt(bt, st) = (ρ(st)− ρ(m))+

(ρ(m)− ρ(bt)) + 2Wt(bt, st)

From above Eq and since Bt(st, bt) ≥ ∆(bt),

Bt(st, bt) ≤ −∆(st) + ∆(bt) + 2Wt(bt, st)

≤ −∆(st) + 3Wt(bt, st)

Also from Property 1 and Wt(bt, st) ≥ ∆(bt), it holds that

Bt(st, bt) ≤Wt(bt, st) = −Wt(bt, st) + 2Wt(bt, st)

≤ −∆(bt) + 2Wt(bt, st) ≤ −∆(bt) + 3Wt(bt, st)

Hence Bt(st, bt) ≤ −(∆(bt) ∨∆(st)) + 3Wt(bt, ct).

(iv) bt ∈ S⋆m and st ∈ S⋆m: Then there exists a s /∈ S∗
m

and s ∈ Ut In that case,

∆(bt) = ρ(bt)− ρ(m+ 1);∆(st) = ρ(st)− ρ(m+ 1)
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Also by definition of bt and st, it holds that Bt(st, bt) =
maxi∈Ut maxj∈Nt [Bt(j, i)] Since there exists s ∈ Ut and
st ∈ Nt,

Bt(st, bt) = max
i∈Ut

max
j∈Nt

[Bt(j, i)] ≥ max
j∈Nt

Bt(j, s)

≥ Bt(st, s) ≥ ρ(st)− ρ(s) ≥ ρ(st)− ρ(m+ 1)

As ρ(st) − ρ(m + 1) = ∆(st), Bt(st, bt) ≥ ∆(st) By
property 1, Bt(st, bt) ≤Wt(bt, st). Hence,

∆(st) ≤ Bt(st, bt) ≤Wt(bt, st)

On event E it follows that Bt(st, bt) ≤ ρ(st) − ρ(bt) +
2Wt(bt, st) as (B(st, bt) ≤Wt(bt, st). Then ρ(st)− ρ(bt)
can be expressed as ρ(st)− ρ(m+ 1) + ρ(m+ 1)− ρ(bt).
hence,

Bt(st, bt) ≤ ρ(st)− ρ(m+ 1) + ρ(m+ 1)− ρ(bt)

+2Wt(bt, st) ≤ ∆(st)−∆(bt) + 2Wt(bt, st)

We already know that Bt(st, bt) ≥ ∆(st) resulting in,

(a) Bt(st, bt) ≤ −∆(bt) + 3Wt(bt, st)

Now to prove Bt(st, bt) ≤ −∆(st) + 3Wt(bt, st), we rely
on property 1,

B(st, bt) ≤Wt(bt, st) ≤ −Wt(bt, st) + 2Wt(bt, st)

As Wt(bt, st) ≥ ∆(st), −Wt(bt, st) ≤ −∆(st). Hence,

(b) B(st, bt) ≤Wt(bt, st) ≤ −Wt(bt, st) + 2Wt(bt, st)

≤ −∆(st) +Wt(bt, st) ≤ −∆(st) + 3Wt(bt, st)

From (a) and (b) Bt(st, bt) ≤ −(∆(bt) ∨ ∆(st)) +
3Wt(bt, ct).

A.2. Proof Structure for Theorem 1

Proof. Combining Lemma 4 with stopping rule
Bt(st, bt) ≤ ϵ following Lemma 8 in (Réda et al.,
2021) directly yields

Nat(t) ≤ 4σ2C2
δ,t max

(
ε,

ε+∆at

3

)−2

where Nat
(t) is the number of times arms a is sampled.This

is equivalent to the sample complexity term Hε(µ) in Theo-
rem 1. Hence, maximum number of samplings on event E
is upper-bound by infu∈R∗+{u > 1 + Hε(µ)C2

δ,u}, where

Hε(µ) ≜ 4σ2
∑

a∈[K] max
(
ε, ε+∆a

3

)−2
.

A.3. Datasets Description

An overview of the dataset statistics and examples are shown
in Table 4.

FinQA: Comprises financial questions over financial re-
ports that require numerical reasoning with structured and
unstructured evidence. Here, 23.42% of the questions only
require the information in the text to answer; 62.43% of
the questions only require the information in the table to
answer; and 14.15% need both the text and table to answer.
Meanwhile, 46.30% of the examples have one sentence or
one table row as the fact; 42.63% has two pieces of facts;
and 11.07% has more than two pieces of facts. This dataset
has 1147 questions in the evaluation set.

AquaRat: It comprises 100,000 algebraic word problems
in the train set with dev and test set each comprising 254
problems. The problems are provided along with answers
and rationales providing the step-by-step solution to the
problem. An examples problem is shown in Table 4.

TabMWP: It is a tabular-based math word problem-solving
dataset with 38,431 questions. TabMWP is rich in diversity,
where 74.7% of the questions in TabMWP belong to free-
text questions, while 25.3% are multi-choice. We evaluate
on the test set with 7686 problems.

GSM8K: This dataset consists of linguistically diverse math
problems that require multi-step reasoning. The dataset
consists of 8.5K problems and we evaluate on the test set of
1319 questions.

StrategyQA: To prove the generality of our approach for
reasoning tasks, we evaluate on StrategyQA (Geva et al.,
2021), a dataset with implicit and commonsense reasoning
questions. Since there is no public test set with ground truth
answers, we perform stratified sampling done on 2290 full
train set to split into 1800 train and 490 test.

Metrics: For TabMWP and StrategyQA we employ cover-
EM (Rosset et al., 2021; Press et al., 2023), a relaxation of
Exact Match metric which checks whether the ground truth
answer is contained in the generated answer. This helps
handle scenarios where LLM generates "24 kilograms" and
the ground truth is "24". For other numerical reasoning
datasets, we employ Exact match.

A.4. Results using Alternate Open Source LLMs

We also report the performance of exemplars from CASE on
open-source models like Mistral-7b and LLama2-7b. The
results are shown in Table 6. We observe that the abso-
lute performance across baselines and CASE is lower for
smaller LLMs like Llama2 and Mistral-7b when compared
to gpt-3.5-turbo or gpt-4o-mini. We observe that this is due
to the scale of the Language models as Mistral and LlAMA2
models have 7 billion parameters while gpt-3.5-turbo is of
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Dataset #Train #Test Example Question Description
The red car is 40% cheaper than the blue car. multi-step

GSM8K (Cobbe et al., 2021) 7473 1319 The price of the blue car is $100. How much arithmetic word
do both cars cost? problems
John found that the average of 15 numbers is multi-step

AquaRat (Ling et al., 2017) 97467 254 40. If 10 is added to each number then the arithmetic word
mean of number is? problems
A newspaper researched how many grocery stores Table based

TabMWP (Lu et al., 2023) 23059 7686 there are in each town. What is the mean of numerical
the numbers? reasoning
what is the percentage change in the the gross Table and Text

FinQA (Chen et al., 2022b) 6251 1147 liability for unrecognized tax benefits during based numerical
2008 compare to 2007? reasoning
Does the United States Secretary of State multi-step

StrategyQA (Geva et al., 2021) 1800 490 answer the phones for the White House? reasoning

Table 4: Overview of the Complex QA datasets used in this study.

much larger scale and the emergent capabilities like ICL,
reasoning capabilities are more pronounced in large scale
models (Wei et al., 2022).

However, we still observe that CASE leads to reasonable
performance gains over other static exemplar selection meth-
ods across the smaller open-source LLMs. We also observe
that CASE is competitive with instance-level/dynamic ex-
emplar selection methods.

Our main experiments are carried out in an exemplar reuse
setup where exemplar selection is done using small open
source LLMs and transferred to larger LLMs. This is done
to reduce the LLM inference cost during exemplar selection.
This setup also leverages the reasoning and emergent capa-
bilities of large scale LLMs. This philosophy is inspired
from the work µP (Yang et al., 2022) where the language
model hyperparameters are tuned using smaller LM and
transferred to a larger LM for the task under consideration.

A.5. Robustness of exemplars selected by CASE

We compare the robustness of CASE to other exemplar se-
lection methods. We measure standard deviation of perfor-
mance across different subsets of the evaluation set through
10-fold cross validation, as shown in Table 5. We observe
that in 3 out of 4 datasets, exemplars chosen by CASE has

Datasets GSM8K AquaRat TabMWP FinQA StrategyQA

Zero-Shot COT ±5.18 ±7.08 ±1.84 ±4.50 ±4.19
Few-Shot COT ±4.48 ±12.03 ±1.66 ±4.76 ±5.67
KNN ±3.76 ±5.49 ±1.27 ±4.17 ±4.85
MMR ±4.00 ±10.53 ±1.68 ±6.10 ±5.70
Graph Cut ±6.38 ±8.18 ±2.03 ±5.29 ±7.62
Facility Location ±4.23 ±6.71 ±1.74 ±4.94 ±5.93
LENS ±5.04 ±6.67 ±1.59 ±5.81 ±3.98
CASE ±3.47 ±6.86 ±0.88 ±3.72 ±2.91

Table 5: Comparison of robustness of CASE to other ap-
proaches. We report standard deviation (lower is better)
with scores from different splits of the evaluation set.

less variance in task performance when compared to other
exemplar selection methods. Exemplars selected through
instance-level approaches are not optimized for the task
but rather on a per-test-example basis. Consequently, this
leads to greater variance in final task performance. Hence,
CASE helps select exemplars for the task which are more
robust than other static methods or instance-level selection
methods.

A.6. Exemplar Reuse by CASE

For CASE, we evaluate the performance of gpt-3.5-turbo us-
ing exemplars selected by smaller models, such as Llama2-
7b and Mistral-7b. Figure 4 shows the exemplars selected
from Llama2-7b using CASE reused for gpt-3.5-turbo. In
Table 1 we present the results of exemplar reuse from
Mistral-7b for CASE. We observe that exemplars selected
by CASE using smaller LLMs perform well with larger
LLMs, promoting both exemplar reuse and efficiency.

A.7. Prompts

We also demonstrate the instructions issued to the LLM
for different tasks discussed in this work, along with some
exemplars selected using CASE. An example of prompt

GSMAqua Tab Fin Strat
0

50

100

150

Ta
sk

Pe
rf

or
m

an
ce

CASE

CASE+SC

CASE+KNN+SC

CASE+MMR+SC

Figure 4: Reuse, Llama2 to gpt-3.5-turbo.
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Method GSM8K AquaRat TabMWP FinQA StrategyQA

Mistral-7B

Instance-level
KNN (Rubin et al., 2022) 28.00 23.16 45.3 9.06 78.27
MMR (Ye et al., 2023b) 28.97 18.11 47.61 10.11 79.95
Task-level
Zero-shot-COT (Kojima et al., 2023) 7.42 18.89 38.96 1.74 35.37
Manual Few-shot COT 22.36 14.90 41.93 3.22 62.55
LENS (Li & Qiu, 2023) 26.08 14.17 41.82 5.14 76.12
Our Approach
CASE 32.6 21.2 45.55 11.24 77.75

Llama2-7B

Instance-level
KNN (Rubin et al., 2022) 22.51 23.62 43.02 10.37 76.35
MMR (Ye et al., 2023b) 21.60 21.65 41.66 12.20 76.32
Task-level
Zero-shot-COT (Kojima et al., 2023) 6.14 6.29 12.64 1.67 53.27
Manual Few-shot COT 19.26 20.47 23.62 2.87 64.29
LENS (Li & Qiu, 2023) 17.06 19.29 33.20 6.62 73.06
Our Approach
CASE 21.91 24.02 44.69 9.59 77.55

Table 6: Results across datasets on MISTRAL-7B and LLAMA-2-7B (5-shot exemplars).

construction for FinQA is shown in Figure 9. We also
showcase example prompts for AquaRat (Figure 8), GSM8K
(Figure 7), TabMWP (Figure 10) and StrategyQA (Figure
11).

A.8. Exemplar Qualitative Analysis

We provide a qualitative analysis of exemplars and compare
the exemplars selected using CASE with exemplars selected
using LENS (Li & Qiu, 2023), the recent state-of-the-art
approach. The final set of exemplars chosen by LENS vs
CASE for the AquaRat dataset is shown in Table 7. We ob-
serve that Question 4 and Question 5 in the set of exemplars
chosen by LENS are redundant in that they are very similar
problems that require similar reasoning steps and are also
similar thematically. Both the questions are centered on the
theme of work and time and are phrased in a similar manner.
Hence, they do not add any additional information to solve
diverse problems the LLM may encounter during inference.
However, we observe that the exemplars chosen by CASE
are problems that require diverse reasoning capabilities and
are also different thematically.

We also compare the exemplars chosen by CASE with
LENS for the FinQA dataset. We observe that the exemplars
chosen by CASE comprises diverse set of problems. We
also observe that CASE also contains exemplars that require

composite numerical operations with multi-step reasoning
rationales to arrive at the solutions, whereas LENS mostly
has exemplars with single-step solutions.

The exemplars chosen by LENS compared to CASE for
TabMWP are shown in Table 10. We observe that exemplar
1 and exemplar 3 chosen by LENS are redundant, as they
represent the same reasoning concept of computing median
for a list of numbers. However, we observe that CASE
selects diverse exemplars, with each exemplar representing
a different reasoning concept. We also demonstrate the
exemplars for GSM8K and StrategyQA in Table 9 and Table
11 respectively.

A.9. Synthetic Experiments - Efficiency and
Convergence Analysis

We further present the results for synthetic experiments for
scenarios where K = 7,m = 3, N = 3 and K = 10,m =
3, N = 3 in Figures 5 and 6. We observe that in both the
cases, CASE drastically reduces the number of gap-index
computations and comparison based operations (comparing
arms). For instance, for K = 10,m = 3 scenario, on aver-
age across 500 simulations CASE only requires 20366.84
comparisons, whereas LinGapE requires 948206.10 com-
parisons and LinGIFA requires 2180251.73 comparisons.
This is due to the shortlist of challenger arms Nt maintained
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Figure 5: Top-m arm identification by CASE, LinGIFA and LinGapE for K=7, m=3, N=3. (a) Average number of
comparisons across simulations (b) Average runtime (in seconds) (c) Gap Index (Bt(st, bt)) comparison and (d) Simple
regret comparison for each round across simulations
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Figure 6: Top-m arm identification by CASE, LinGIFA and LinGapE for K=10, m=3, N=3. (a) Average number of
comparisons across simulations (b) Average runtime (in seconds) (c) Gap Index (Bt(st, bt)) comparison and (d) Simple
regret comparison for each round across simulations

by the proposed approach CASE. We also observe that this
results in significant reduction in time (approx. 6x lower
compared to LinGIFA and 2.5x compared to LinGapE for
K = 10 case) due to low number of comparisons. We ob-
serve that the gap index and simple regret approaches 0 in
a similar trend for all algorithms. This demonstrates that
CASE converges with much lower gap index computations
and has lower runtime compared to existing state-of-the-art
gap index algorithms.
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GSM8K Prompt

Instruction:You are a helpful, respectful and honest assistant helping solve math word
tasks requiring reasoning. Follow the given examples and solve the tasks in step by
step manner.

Exemplars :
[Question]: The red car is 40% cheaper than the blue car. The price of the blue car is $100. How much do both cars cost?
[Explanation]: The red car is 40/100 ∗ 100 = 40 cheaper than the blue car.
That means, that the red car costs 100− 40 = 60.
So both cars cost 100 + 60 = 160
[Answer]: 160
. . .

Test Input : Question: Explanation: [INS] Answer: [INS]

Figure 7: Prompt for GSM8K

AQUA Prompt

Instruction:You are a helpful, respectful and honest assistant helping solve math word
tasks requiring reasoning. Follow given examples and solve the tasks in step by
step manner.

Exemplars :
[Question]: John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of the number is?
[Options]: A) 50, B) 45, C) 65, D) 78, E) 64
[Explanation]: (x0 + x1 + ...x14)/15 = 40,
new_mean = 40 + 10 = 50
[Answer]: The option is A
. . .

Test Input : Question: Options: Explanation: [INS] Answer: [INS]

Figure 8: Prompt for AquaRat

FinQA Prompt

Instruction:You are a helpful, respectful and honest assistant helping solve math word
tasks requiring reasoning, using the information from given table and text.

Exemplars :
Read the following table, and then answer the question:
[Table]: beginning balance as of december 1 2007 | 201808
gross increases in unrecognized tax benefits 2013 prior year tax positions | 14009
gross increases in unrecognized tax benefits 2013 current year tax positions | 11350
ending balance as of november 28 2008 | 139549
[Question]: what is the percentage change in the the gross liability for unrecognized tax benefits during 2008 compare to 2007?
[Explanation]: x0 = 139549− 201808,
ans = x0/201808
[Answer]: -30.9%
. . .

Test Input: Read the table and answer the question: Table: Question: Explanation: [INS] Answer: [INS]

Figure 9: Prompt for FinQA
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Sample Efficient Demonstration Selection for In-Context Learning

TabMWP Prompt

Instruction:You are a helpful, respectful and honest assistant helping to solve math
word problems or tasks requiring reasoning or math, using the information from the
given table. Solve the given problem step by step providing an explanation for your
answer.

Exemplars :
[Table]: Town | Number of stores
Mayfield | 9
Springfield | 9
Riverside | 6
Chesterton | 5
Watertown | 2
[Question]: A newspaper researched how many grocery stores there are in each town. What is the range of the numbers?
[Explanation]: Read the numbers from the table. 9, 9, 6, 5, 2
First, find the greatest number. The greatest number is 9.
Next, find the least number. The least number is 2.
Subtract the least number from the greatest number: 9− 2 = 7
[Answer]: The range is 7
. . .
. . .

Test Input : Table: Question:
Explanation: [INS] Answer: [INS]

Figure 10: Prompt for TabMWP

StrategyQA Prompt

Instruction:You are a helpful, respectful and honest assistant helping to solve
commonsense problems requiring reasoning. Follow the given examples that use
the facts to answer a question by decomposing into sub-questions first and then
predicting the final answer as "Yes" or "No" only.

Exemplars :
[Facts]: The role of United States Secretary of State carries out the President’s foreign policy. The White House has multiple
phone lines managed by multiple people.
[Question]: Does the United States Secretary of State answer the phones for the White House?
[Sub-question 1]: What are the duties of the US Secretary of State?
[Sub-question 2]: Are answering phones part of #1?

[Answer]: No
. . .
. . .

Test Input : Facts: Question:
Sub-question: [INS] Answer: [INS]

Figure 11: Prompt for StrategyQA
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Sample Efficient Demonstration Selection for In-Context Learning

Method Exemplars

LENS Question: A cat chases a rat 6 hours after the rat runs. cat takes 4 hours to reach the rat. If the average speed
of the cat is 90 kmph, what s the average speed of the rat?
Options: [’A)32kmph’, ’B)26kmph’, ’C)35kmph’, ’D)36kmph’, ’E)32kmph’]
Rationale: Cat take 10 hours and rat take 4 hours...then Distance is 90*4.so speed of rat is (90*4)/10 =
36kmph Answer: D
Question: A business executive and his client are charging their dinner tab on the executive’s expense
account.The . . . ?
Options: [’A)69.55$’, ’B)50.63$’, ’C)60.95$’, ’D)52.15$’, ’E)53.15’]
Rationale: let x is the cost of the food 1.07x is the gross bill after including sales tax 1.15* 1.07x=75 Answer:
C
Question:John and David were each given X dollars in advance for each day they were expected to perform
at a community festival. John eventually,. . . ?
Options: ’A)11Y’, ’B)15Y’, ’C)13Y’, ’D)10Y’, ’E)5Y’ Rationale: . . . Answer: A
Question:A contractor undertakes to do a piece of work in 40 days. He engages 100 men at the beginning
and 100 more after 35 days and completes the work in stipulated time. If he had not engaged the additional
men, how many days behind schedule would it be finished??
Options: ’A)2’, ’B)5’, ’C)6’, ’D)8’, ’E)9’ Rationale: [(100× 35)+(200× 5)] men can finish the work in 1
day therefore 4500 men can finish the work in 1 day. 100 men can finish it in 4500

100 = 45 days. This is 5 days
behind Schedule Answer: A
Question: A can do a job in 9 days and B can do it in 27 days. A and B working together will finish twice
the amount of work in ——- days?
Options: ’A)22 days’, ’B)18 days’, ’C)22 6/2 days’, ’D)27 days’, ’E)9 days’ Rationale: 1/9 + 1/27= 3/27 =
1/9 9/1 = 9*2 =18 day Answer: B

CASE Question: In a 1000 m race, A beats B by 50 m and B beats C by 100 m. In the same race, by how many
meters does A beat C?
Options: ’A)156 m’, ’B)140 m’, ’C)145 m’, ’D)169 m’, ’E)172 m’ Rationale: By the time A covers 1000 m,
B covers (1000 - 50) = 950 m. By the time B covers 1000 m, C covers (1000 - 100) = 900 m. So, the ratio of
speeds of A and C = 1000/950 * 1000/900 = 1000/855. So, by the time A covers 1000 m, C covers 855 m. So
in 1000 m race A beats C by 1000 - 855 = 145 m. Answer: C
Question: Count the numbers between 10 - 99 which yield a remainder of 3 when divided by 9 and also
yield a remainder of 2 when divided by 5? Options: ’A)Two’, ’B)Five’, ’C)Six’, ’D)Four’, ’E)One’
Rationale: Numbers between 10 - 99 giving remainder 3 when divided by 9 = 12, 21, 30, 39, 48, 57, 66, 75,
84, 93. The Numbers giving remainder 2 when divided by 5 = 12, 57 = 2 Answer: A
Question: A train running at the speed of 60 km/hr crosses a pole in 3 seconds. Find the length of the
train. Options: ’A)60’, ’B)50’, ’C)75’, ’D)100’, ’E)120’ Rationale: Speed = 60*(5/18) m/sec = 50/3 m/sec.
Length of Train (Distance) = Speed * Time (50/3) * 3 = 50 meter. Answer: B
Question: If n is an integer greater than 7, which of the following must be divisible by 3?
Options: ’A)1. n (n+1) (n-4)’, ’B)2. n (n+2) (n-1)’, ’C)3. n (n+3) (n-5)’, ’D)4. n (n+4) (n-2)’, ’E)5. n (n+5)
(n-6)’ Rationale: We need to find out the number which is divisible by three, In every 3 consecutive integers,
there must contain 1 multiple of 3. So n+4 and n+1 are same if we need to find out the 3’s multiple. replace
all the numbers which are more than or equal to three . . . Answer: D
Question: A merchant gains or loses, in a bargain, a certain sum. In a second bargain, he gains 280 dollars,
and, in a third, loses 20. In the end he finds he has gained 120 dollars, by the three together. How much did
he gain or lose bv the first ? Options: ’A)80’, ’B)-140’, ’C)140’, ’D)120’, ’E)None’
Rationale: In this sum, as the profit and loss are opposite in their nature, they must be distinguished by
contrary signs. If the profit is marked +, the loss must be -. Let x = the sum required. Then according to the
statement x + 280 - 20 = 120. And x = -140. Answer: B

Table 7: Qualitative analysis of exemplars for AquaRat dataset selected by LENS vs CASE. Rationale is not completely
shown for some questions to conserve space. However, in our experiments all exemplars include rationales.
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Sample Efficient Demonstration Selection for In-Context Learning

Method Exemplars

LENS Table: | increase ( decrease ) | average yield | 2.75% ( 2.75 % ) | volume | 0.0 to 0.25 | energy services | 2013 |
fuel recovery fees | 0.25 | recycling processing and commodity sales | 0.25 to 0.5 | acquisitions / divestitures
net | 1.0 | total change | 4.25 to 4.75% ( 4.75 % ) |
Question: what is the ratio of the acquisitions / divestitures net to the fuel recovery fees as part of the expected
2019 revenue to increase
Rationale: ans=( 1.0 / 0.25 ) Answer: The answer is 4
Table: ( in millions ) | 2009 | 2008 | 2007 | sales and transfers of oil and gas produced net of production
andadministrative costs | -4876 ( 4876 ) | -6863 ( 6863 ) | -4613 ( 4613 ) | . . .
Question: were total revisions of estimates greater than accretion of discounts?
Rationale: . . . Answer: The answer is yes
Table: | 2007 | 2008 | change | capital gain distributions received | 22.1 | 5.6 | -16.5 ( 16.5 ) | other than
temporary impairments recognized | -.3 ( .3 ) | -91.3 ( 91.3 ) | -91.0 ( 91.0 ) | net gains ( losses ) realized onfund
dispositions | 5.5 | -4.5 ( 4.5 ) | -10.0 ( 10.0 ) | net gain ( loss ) . . .
Question: what percentage of tangible book value is made up of cash and cash equivalents and mutual fund
investment holdings at december 31 , 2009? Rationale: ( 1.4 / 2.2 ) Answer: The answer is 64%
Table: in millions | 2009 | 2008 | 2007 | sales | 5680 | 6810 | 6530 | operating profit | 1091 | 474 | 839 |
Question: north american printing papers net sales where what percent of total printing paper sales in 2009?
Rationale: x0=( 2.8 * 1000 ), ans=( x0 * 5680 ) Answer: The answer is 49%
Table: in millions | december 312015 | december 312014 | total consumer lending | 1917 | 2041 | total
commercial lending | 434 | 542 | total tdrs | 2351 | 2583 | nonperforming | 1119 | 1370 | . . .
Question: what was the change in specific reserves in alll between december 31 , 2015 and december 31 ,
2014 in billions? Rationale: ( .3 - .4 ) Answer: The answer is -0.1

CASE Table: in millions | total | balance december 31 2006 | $ 124 | payments | -78 ( 78 ) | balance december 31 2007
| 46 | additional provision | 82 | payments | -87 ( 87 ) | balance december 31 2008 | 41 | payments | -38 ( 38 ) |
balance december 31 2009 | $ 3 |
Question: in 2006 what was the ratio of the class a shares and promissory notes international paper contributed
in the acquisition of borrower entities interest Rationale: ans=( 200 / 400 ) Answer: 0.5
Table: | 2018 | 2017 | 2016 | allowance for other funds used during construction | $ 24 | $ 19 | $ 15 | allowance
for borrowed funds used during construction | 13 | 8 | 6 |
Question: by how much did allowance for other funds used during construction increase from 2016 to 2018?
Rationale: x0=( 24 - 15 ),ans=( x0 / 15 ) Answer: 60%
Table: ( dollars in millions ) | 2001 ( 1 ) | 2000 | 1999 ( 2 ) | change 00-01 | adjusted change 00-01 ( 3 ) |
servicing fees | $ 1624 | $ 1425 | $ 1170 | 14% ( 14 % ) | 14% ( 14 % ) | management fees | 511 | 581 | 600 | -12
( 12 ) | -5 ( 5 ) | foreign exchange trading | 368 | 387 | 306 | -5 ( 5 ) | -5 ( 5 ) | processing fees and other | 329 |
272 | 236 | 21 | 21 | total fee revenue | 2832| 2665 | $ 2312 | 6 | 8 | Question: what is the growth rate in total fee
revenue in 2001? Rationale: x0=( 2832 - 2665 ),ans=( x0 / 2665 ) Answer: 6.30%
Table: | increase (decrease) | average yield | 2.75% (2.75 %) | volume | 0.0 to 0.25 | energy services | 2013 |
fuel recovery fees | 0.25 | recycling processing and commodity sales | 0.25 to 0.5 | acquisitions / divestitures
net | 1.0 | total change | 4.25 to 4.75% ( 4.75 % ) | Question: what is ratio of insurance recovery to incremental
cost related to our closed bridgeton landfill Rationale: ans=(40.0/12.0) Answer: 3.33
Table: $ in millions | as of december 2018 | as of december 2017 | fair value of retained interests | $ 3151 | $
2071 | weighted average life ( years ) | 7.2 | 6.0 | constant prepayment rate | 11.9% ( 11.9 % ) | 9.4% ( 9.4 % ) |
impact of 10% ( 10 % ) adverse change | $ -27 ( 27 ) | $ -19 ( 19 ) | impact of 20% ( 20 % ) adverse change | $
-53 ( 53 ) | $ -35 ( 35 ) | discount rate | 4.7% ( 4.7 % ) | 4.2% ( 4.2 % ) | impact of 10% ( 10 % ) adverse change
| $ -75 ( 75 ) | $ -35 ( 35 ) | impact of 20% ( 20 % ) adverse change | $ -147 ( 147 ) | $ -70 ( 70 ) | Question:
what was the change in fair value of retained interests in billions as of december 2018 and december 2017?
Rationale: ans=( 3.28 - 2.13 ) Answer: 1.15

Table 8: Qualitative analysis of exemplars for FinQA dataset selected by LENS vs CASE. Rationale is not completely
shown for some questions to conserve space. However, in our experiments all exemplars include rationales.
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Sample Efficient Demonstration Selection for In-Context Learning

Method Exemplars

LENS Question: Michael wants to dig a hole 400 feet less deep than twice the depth of the hole that his father dug.
The father dug a hole at a rate of 4 feet per hour. If the father took 400 hours to dig his hole . . . ?
Rationale: Since the father dug a hole with a rate of 4 feet per hour, if the father took 400 hours digging the
hole, he dug a hole 4*400 = 1600 feet deep. . . . Michael will have to work for 2800/4 = 700 hours. Answer:
700
Question: When Erick went to the market to sell his fruits, he realized that the price of lemons had risen by 4
for each lemon. The price of grapes had also increased by half the price that . . . ?
Rationale: The new price for each lemon after increasing by 4 is 8 + 4 = 12 For the 80 lemons, . . . Erick
collected 140 ∗ 9 = 1260 From the sale of all of his fruits, Erick received 1260 + 960 = 2220. Answer: 2220
Question:James decides to build a tin house by collecting 500 tins in a week. On the first day, he collects 50
tins. On the second day, he manages to collect 3 times that number. . . . ?
Rationale: On the second day, he collected 3 times the number of tins he collected on the first day, which is
3 ∗ 50 = 150 tins. . . . he’ll need to collect 200/4 = 50 tins per day to reach his goal.
Answer: 50
Question: Darrel is an experienced tracker. He can tell about an animal by the footprints it leaves behind.
Based on the impressions, he could tell the animal was traveling east at 15 miles/hour . . . ?
Rationale: If we let x be the amount of time, in hours, it will take for Darrel to catch up to the coyote, . . . If
we subtract 1 x from each side, we get x=1, the amount of time in hours. Answer: 1
Question: Martha needs to paint all four walls in her 12 foot by 16 foot kitchen, which has 10 foot high
ceilings . . . If Martha can paint 40 square feet per hour, how many hours will it take her to paint kitchen?
Rationale: There are two walls that are 12’ by 10’ and two walls that are 16’ by 10’ . . . how many hours she
needs to finish: 1680 sq ft / 40 sq ft/hour = 42 hours Answer: 42

CASE Question: Each class uses 200 sheets of paper per day. The school uses a total of 9000 sheets of paper every
week. If there are 5 days of school days, how many classes are there in the school?
Rationale: Each class uses 200 x 5 = 1000 sheets of paper in a week. Thus, there are 9000/1000 = 9 classes in
the school. Answer: 9
Question: If Jenna has twice as much money in her bank account as Phil does, and Phil has one-third the
amount of money that Bob has in his account, and Bob has $60 in his account, how much less money does
Jenna have in her account than Bob? Rationale: If Phil has one-third of the amount that Bob does, so he has
$60/3= $20 in his account. Since Jenna has twice as much money as Phil, so she has $20*2= 40 in her account.
Since Bob has $60 in his account, so he has $60-$40=$20 more than Jenna. Answer: 20
Question:Carlos bought a box of 50 chocolates. 3 of them were caramels and twice as many were nougats.
The number of truffles was equal to the number of caramels plus 6. . . . If Carlos picks a chocolate at random,
what is the percentage chance it will be a peanut cluster? Rationale: First find the number of nougats by
doubling the number of caramels: 3 caramels * 2 nougats/caramel = 6 nougats. Then find the number of
truffles by adding 7 to the number of caramels: 3 caramels + 6 = 9 . . . Answer: 64
Question: Janet has 60 less than four times as many siblings as Masud. Carlos has 3/4 times as many siblings
as Masud. If Masud has 60 siblings, how many more siblings does Janet have more than Carlos? Rationale: If
Masud has 60 siblings, and Carlos has 3/4 times as many siblings as Masud, Carlos has 3/4*60=45 siblings.
Four times as many siblings as Masud has is 4*60=240. Janet has 60 less than four times as many siblings as
Masud, a total of 240-60=180 siblings. . . . 180-45=135 Answer: 135
Question: Gavin has had 4 dreams every day for a year now. If he had twice as many dreams last year as he
had this year, calculate the total number of dreams he’s had in the two years. Rationale: If Gavin has been
having 4 dreams every day for a year now, he has had 4*365 = 1460 dreams this year. Gavin had twice as
many dreams last as he had this year, meaning he had 2*1460 = 2920 dreams last year. The total number of
dreams he has had in the two years is 2920+1460=4380 dreams. Answer: 4380

Table 9: Qualitative analysis of exemplars for GSM8K dataset selected by LENS vs CASE. Rationale is not completely
shown for some questions to conserve space. However, in our experiments all exemplars include rationales.
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Sample Efficient Demonstration Selection for In-Context Learning

Method Exemplars

LENS Table: | Name | Age (years) | Jessica | 2 | Dalton | 7 | Kelsey | 5 | Lamar | 8 | Alexis | 2 Question: A girl
compared the ages of her cousins. What is the median of the numbers? Rationale: Read the numbers from the
table: 2, 7, 5, 8, 2. First, arrange the numbers from least to greatest: 2, 2, 5, 7, 8. Now find the number in the
middle. The number in the middle is 5. The median is 5. Answer: 5
Table: | City | Number of houses sold | Melville | 878 | New Hamburg | 871 | Charles Falls | 881 | Pennytown |
817 Question: A real estate agent looked into how many houses were sold in different cities. Where were
the fewest houses sold? Rationale: Find the least number in table. . . . The least number is 817. Now find the
corresponding city. Pennytown corresponds to 817. Answer: 817
Table: | Day | Number of new customers | Saturday | 2 | Sunday | 2 | Monday | 9 | Tuesday | 4 | Wednesday | 10
| Thursday | 3 | Friday | 6 Question: A cable company analyst paid attention to how many new customers it
had each day. What is the median of the numbers? Rationale: . . . Find the number in the middle. The number
in the middle is 4. The median is 4. Answer: 4
Table: | Day | Number of cups | Friday | 8 | Saturday | 4 | Sunday | 10 | Monday | 6 | Tuesday | 6 | Wednesday |
1 | Thursday | 0 Question: Nancy wrote down how many cups of lemonade she sold in the past 7 days. What is
the range of the numbers? Rationale: Read the numbers from the table: 8, 4, 10, 6, 6, 1, 0. . . . Subtract the
least number from the greatest number: 10-0=10. The range is 10. Answer: 10
Table: | Price | Quantity demanded | Quantity supplied |$700 | 9,800 | 22,600 |$740 | 8,000 | 22,800 |$780 |
6,200 | 23,000 |$820 | 4,400 | 23,200 |$860 | 2,600 | 23,400 Question: At a price of $860, is there a shortage or
a surplus? Rationale: At price of $860, quantity demanded is less than quantity supplied. . . . So, there is a
surplus. Answer: surplus

CASE Table: Number of siblings | Frequency 0 | 19 1 | 12 2 | 13 3 | 9
Question: The students in Mr. Robertson’s class recorded the no. of siblings that each has. How many students
have fewer than 2 siblings? Rationale: Find the rows for 0 and 1 sibling. Add the frequencies for these rows.
19 + 12 = 31, 31 students have fewer than 2 siblings. Answer: 31
Table: | Apples | Peaches Organic | 2 | 7 Non-organic | 7 | 3 Question: Brittany conducted a blind taste test
on some of her friends in order to determine if organic fruits tasted different than non-organic fruits. Each
friend ate one type of fruit. What is the probability that a randomly selected friend preferred organic and tasted
peaches? Rationale: Let A be the event "the friend preferred organic" and B be the event "the friend tasted
peaches" . . . Answer: Jul-19
Table: dance performance ticket | $29.00 play ticket | $32.00 figure skating ticket | $41.00 ballet ticket | $37.00
opera ticket | $76.00 orchestra ticket | $58.00 Question: How much money does Hannah need to buy a ballet
ticket and 7 orchestra tickets? Rationale: Find the cost of 7 orchestra tickets. $58.00 * 7 = $406.00 . Now find
the total cost. $37.00 + $406.00 = $443.00. Hannah needs $443.00. Answer: 443
Table: Price | Quantity demanded | Quantity supplied $665 | 15,500 | 16,200 $855 | 13,700 | 17,300 $1,045 |
11,900 | 18,400 $1,235 | 10,100 | 19,500 $1,425 | 8,300 | 20,600 Question: Look at the table. Then answer the
question. At a price of $1,045, is there a shortage or a surplus? Rationale: At the price of $1,045, the quantity
demanded is less than the quantity supplied. There is too much of the good or service for sale at that price. So,
there is a surplus. Answer: surplus
Table: Comfy Pillows Resort | 4:15 A.M | 2:30 P.M | 10:00 P.M Skyscraper City | 4:45 A.M | 3:00 P.M | 10:30
P.M Pleasant River Campground | 5:15 A.M | 3:30 P.M | 11:00 P.M Rollercoaster Land | 5:45 A.M | 4:00 P.M |
11:30 P.M Floral Gardens | 6:45 A.M | 5:00 P.M | 12:30 A.M Chickenville | 7:15 A.M | 5:30 P.M | 1:00 A.M
Happy Cow Farm | 7:45 A.M | 6:00 P.M | 1:30 A.M
Question: Look at the following schedule. Marshall got on the train at Rollercoaster Land at 5.45 A.M. What
time will he get to Floral Gardens? Rationale: Find 5:45 A.M. in the row for Rollercoaster Land. That column
shows the schedule for the train that Marshall is on. Look down the column until you find the row for Floral
Gardens. Marshall will get to Floral Gardens at 6:45 A.M. Answer: 6:45 A.M.

Table 10: Qualitative analysis of exemplars for TabMWP dataset selected by LENS vs CASE. Rationale is not completely
shown for some questions to conserve space. However, in our experiments all exemplars include rationales.
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Sample Efficient Demonstration Selection for In-Context Learning

Method Exemplars

LENS Facts: Penguins are native to the deep, very cold parts of the southern hemisphere. Miami is located in the
northern hemisphere and has a very warm climate.
Question: Would it be common to find a penguin in Miami?
Rationale: Where is a typical penguin’s natural habitat? What conditions make #1 suitable for penguins? Are
all of #2 present in Miami? Answer: No
Facts: Shirley Bassey recorded the song Diamonds are Forever in 1971. Over time, diamonds degrade and
turn into graphite. Graphite is the same chemical composition found in pencils.
Question: Is the title of Shirley Bassey’s 1971 diamond song a true statement? Rationale: What is the title to
Shirley Bassey’s 1971 diamond song? Do diamonds last for the period in #1? Answer: No
Facts: The first six numbers in the Fibonacci sequence are 1,1,2,3,5,8. Since 1 is doubled, there are only five
different single digit numbers. Question: Are there five different single-digit Fibonacci numbers?
Rationale: What are the single-digit numbers in the Fibonacci sequence? How many unique numbers are in
#1? Does #2 equal 5? Answer: Yes
Facts: Katy Perry’s gospel album sold about 200 copies. Katy Perry’s most recent pop albums sold over
800,000 copies. Question: Do most fans follow Katy Perry for gospel music? Rationale: What type of music
is Katy Perry known for? Is Gospel music the same as #1? Answer: No
Facts: The Italian Renaissance was a period of history from the 13th century to 1600. A theocracy is a type of
rule in which religious leaders have power. Friar Girolamo Savonarola was the ruler of Florence, after driving
out the Medici family, from November 1494 âC 23 May 1498. Question: Was Florence a Theocracy during
Italian Renaissance? Rationale: When was the Italian Renaissance?When did Friar Girolamo Savonarola rule
Florence? Is #2 within the span of #1? Did Friar Girolamo Savonarola belong to a religious order during #3?
Answer: Yes

CASE Facts: U2 is an Irish rock band that formed in 1976. The Polo Grounds was a sports stadium that was
demolished in 1964. Question: Did U2 play a concert at the Polo Grounds? Rationale: When was U2 (Irish
rock band) formed? When was the Polo Grounds demolished? Is #1 before #2? Answer: No
Facts: The capacity of Tropicana Field is 36,973. The population of Auburn, NY is 27,687. Question: Can
you fit every resident of Auburn, New York, in Tropicana Field? Rationale: What is the capacity of Tropicana
Field? What is the population of Auburn, NY? Is #1 greater than #2? Answer: Yes
Facts: Door to door advertising involves someone going to several homes in a residential area to make sales
and leave informational packets. . . . Question: During the pandemic, is door to door advertising considered
inconsiderate? Rationale: What does door to door advertising involve a person to do? During the COVID-19
pandemic, what does the CDC advise people to do in terms of traveling? . . . Does doing #1 go against #2 and
#3? Answer: Yes
Facts: Mosquitoes cannot survive in the climate of Antarctica. Zika virus is primarily spread through mosquito
bites. Question: Do you need to worry about Zika virus in Antarctica? Rationale: What animal spreads the
Zika Virus? What is the climate of Antarctica? Can #1 survive in #2? Answer: No
Facts: Bob Marley had 9 children. Kublai Khan had 23 children. Many of Bob Marley’s children became
singers, and followed his themes of peace and love. The children of Kublai Khan followed in his footsteps and
were fierce warlords. Question: Could Bob Marley’s children hypothetically win tug of war against Kublai
Khan’s children? Rationale: How many children did Bob Marley have? How many children did Kublai Khan
have? Is #1 greater than #2? Answer: No

Table 11: Qualitative analysis of exemplars for StrategyQA dataset selected by LENS vs CASE. Rationale is not completely
shown for some questions to conserve space. However, in our experiments all exemplars include rationales.
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