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A APPENDIX

A.1 NATURAL LANGUAGE UNDERSTANDING

A.1.1 DATA

GLUE is a collection of nine NLU tasks. The benchmark includes question answering (Rajpurkar
et al.,[2016), linguistic acceptability (CoLA, |Warstadt et al.[2019), sentiment analysis (SST, [Socher
et al.|2013)), text similarity (STS-B, Cer et al.|2017)), paraphrase detection (MRPC, |Dolan & Brockett
2005), and natural language inference (RTE & MNLI, |Dagan et al.|2006; Bar-Haim et al.|[2006;
Giampiccolo et al.|2007} |Bentivogli et al.[2009; Williams et al|2018]) tasks. Details of the GLUE
benchmark, including tasks, statistics, and evaluation metrics, are summarized in Table@

All the texts were tokenized using wordpieces, and were chopped to spans no longer than 512 tokens.

A.1.2 TRAINING DETAILS

To fine-tune BERT-base and RoBERTa-large models on individual tasks, we append a task-specific
fully-connected classification layer to them as in Devlin et al.|(2018)).

Table[/| present the hyper-parameter configurations. We tune this set of hyper-parameters on a single
seed, and report the averaged results obtained with the same configuration over all seeds. For SAGE
experiments, We slightly tune /3y within a range of 0.1 on different seeds. We apply a linear weight
decay rate of 0.01 and a gradient norm clipping threshold of 1 for all experiments. All experiments
are conducted on Nvidia V100 GPUs.

Hyper-param \ Experiment \RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI
BERTgAsg, Adam le-5 le-5 le-5 le-5 le-5 le-5 2e-5 2e-5
BERTgAsg, Adam-SAGE le-4 8e-5 8e-5 3e-5 le-4 8e-5 4e5 5Se-5
Learning Rate BERTgase, Adamax le-4 le-4 le-4  Se-5 le-4 le-4 le-4 8e-5
ne BERTgse, Adamax-SAGE 3e-d  3e-d 2e-d 2e-d  Sed Sed 3ed 2e-4
RoBERTa; aArGe, Adamax 5e-5 5e-5 3e-5 le-5 5e-5 le-5 le-4 le-5
RoBERTay aArGe, Adamax-SAGE | 6e-5 2e-4 8e-5 2e-5 8e-5 3e5 2e4 8e-S
BERTgAse, Adam-SAGE 0.60 0.80 0.70 080 0.60 070 0.75 0.70
Bo BERTgAsE, Adamax-SAGE 065 0.80 075 070 075 070 0.75 0.85
RoBERTa, arge, Adamax-SAGE | 0.75 0.65 070 0.75 080 0.80 0.65 0.60
. BERTgAsE 16 8 32 32 32 32 32 32
Batch Size ROBERTa; arce 6 8 32 32 32 32 32 R
BERTgAsE 6 6 6 6 6 3 6 3
Epoch ROBERTAy ArGe 5 6 6 6 10 10 15 3
Dropout BERTgAsE 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3
P RoBERTay ArcE 01 01 0l 01 01 0l 00 03
BERTgAsE 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1
Warmup RoBERTay arcE 01 01 01 01 01 01 01 0.1

Table 7: Hyper-parameter configurations for GLUE experiments. “Epoch” refers to the total training
epochs; we adopt early-stopping strategy in practice. “Dropout” refers to classification layer dropout
ratio. “Warmup” refers to the ratio of learning rate linear warmup iterations to total training iterations.

A.1.3 EVALUATION RESULTS

Statistics of the dev set results. Table[8| shows the standard deviation of the dev set results.

Average score computation formula. For dev set results, we first obtain a score for each task by
averaging the scores of all metrics (e.g., Acc and F1) and test sets (e.g., MNLI-m and MNLI-mm)
within this task, then compute a task-average score. For test set results, we directly averages scores of
all reported metrics following [Devlin et al.| (2018).
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Model | Optimizer | RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI
| Adam-SAGE | 035 032 085 025 0.12 006 005 006
| Adamax-SAGE | 0.56 0.69 0.12 023 003 006 0.08 0.10
RoBERTararGe | Adamax-SAGE | 051 078 050 0.19 008 0.00 0.05 0.05

BERTgase

Table 8: Standard deviation of the dev set results.

A.2 NEURAL MACHINE TRANSLATION
A.2.1 DATA

Table 0] shows the number of sentence pairs in each dataset. We use the standard newstest-2013 and
newstest-2014 as dev and test set for WMT’ 16 En-De. We follow [Ott et al.| (2019)) to split the dev/test
sets for IWSLT’ 14 De-En.

All datasets are encoded using byte-pair encoding (BPE, [Sennrich et al.| (2016)). We preprocess
IWSLT’ 14 De-En data following fairseﬁ and adopt the preprocessed WMT’ 16 En-De from Googleﬂ

Data | Train Dev  Test

IWSLT’14 De-En | 160K 7283 6750
WMT’16 En-De | 4.5M 1061 1019

Table 9: The number of parallel sentences in NMT datasets.

A.2.2 TRAINING DETAILS

We adopt the Transformer-base model for both datasets. For INSLT’ 14 De-En, we share the decoder
and encoder output embeddings. For WMT’ 16 En-De, we share all the embeddings.

Table [T0|presents the hyper-parameter configurations for the best models. We apply a linear weight
decay rate of 1 x 10~* and a label smoothing ratio of 0.1 for all experiments. All experiments are
conducted on Nvidia V100 GPUs.

For IWSLT’ 14 De-En, we report the BLEU score of the best checkpoint using a beam size of 5 and
length penalty of 1. For WMT’16 En-De, we report the average of the last 10 checkpoints with a
beam size of 4 and length penalty of 0.6.

Hyper-param | Experiment |IWSLT’14 De-En WMT’16 En-De

Learning Rate :gam_s AGE ?e:g ;e:g
am e e
Bo | Adam-SAGE | 0.8 0.4
Batch size | Both | 4096 32768
Epoch | Both | 60 40
Dropout | Both | 0.3 0.1
Warmup | Both | 8000 4000

Table 10: Hyper-parameter configurations for NMT experiments. “Warmup” refers to the learning
rate linear warmup iterations.

8https://github.com/pytorch/fairseq/blob/master/examples/translation
*https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/datasets/wmt.html
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A.3 IMAGE CLASSIFICATION
A.3.1 DATA

For CIFAR100, we apply random cropping and random horizontal flipping to the training data.

A.3.2 TRAINING DETAILS

Table [TT] present the hyper-parameter configurations for the best models. All experiments are
conducted on Nvidia V100 GPUs.

Hyper-param | Experiment | CIFAR100 ImageNet
Learmnine Rate ViT-B/32, SGD-SAGE 0.02 0.05
& ViT-L/32, SGD-SAGE 0.02 0.08
3 ViT-B/32, SGD-SAGE 0.95 0.95
0 ViT-L/32, SGD-SAGE 0.85 0.95
Training Steps | All | 10000 20000
Dropout All | 00 0.0

Table 11: Hyper-parameter configurations for ViT experiments on CIFAR100 and ImageNet.

A.4 SUPPLEMENTS FOR METHOD AND ANALYSIS

A.4.1 ADAM-SAGE ALGORITHM

Algorithm 2 Adam-SAGE (® denotes Hadamard product and @ denotes Hadamard division)

Input: Model parameters @ € R”’; Data D; Learning rate schedule 7(-); Total training iteration T’;
Moving average coefficient Sy, 51, B2.
1: Initialize f(o)’ m© v =0 eR’.
2: fort=1,....,T do
3: Sample a minibatch b*) from D.
4:  Compute gradient ) = Vg L(b®), @1).
5: Compute sensitivity 1) = |@®) @ ¢(t)].
6:  m =BmY 4+ (1 p)g")
7 v® = Byl 4 (1 — By)(g™)?
8 I = BoIU=D 4 (1 — B)I®.
9: m® =m® /(1 - p)
10: 50 =o®)(1- By
1 IO =TW /(1= )
. U0 = | o),
13:  Update @(+) = @1 — O (U® 4 ) © ) o (I + €) © (VIO + €)) @ g,
14: end for

A.4.2 IMPLEMENTATION DETAILS FOR SECTION

Figure 2] experiments: Due to the extremely large model size, we only sample 110K parameters per
layer (in total 12 x 110K parameters) to calculate the distribution. We select the hyper-parameters that
yield the best generalization performance on the BERT-base model, and we evaluate the sensitivity of
each parameter using the entire training set.

Figure [] experiments: Following previous experiment’s practice, we randomly sample 110K parame-
ters per layer (in total 12 x 110K parameters), and for visualization purposes, we plot 60 randomly
selected iterations. We adopt the learning rate corresponding to the best training performance for
both SAGE and the baselines.
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A.4.3 IMPLEMENTATION DETAILS FOR SECTION

Plotting the parameter sensitivity distribution throughout training can be computational expensive.
The distribution varies significantly throughout training and often fails to provide a meaningful
visualisation. As a result, we compute the structured sensitivity score instead of the parameter
sensitivity score. Specifically, we compute a single sensitivity score for each Transformer weight
block © at iteration t using the structured counterpart of the parameter sensitivity metric widely
adopted in the existing structured pruning literature (Michel et al.;,[2019; |Liang et al.l 2021)). Following
common structured pruning practice, we split Transformer models into 12 feed-forward weight
modules and 12 multi-head attention weight modules, and plot the average and variance of the
sensitivity of these modules’ sensitivity scores throughout the training.

We present the results obtained with the hyper-parameters that yield the best generalization perfor-
mance on the BERT-base model for both Adamax (Baseline) and Adamax-SAGE (SAGE).

A.4.4 ABLATION STUDY

To further interpret the role of the parameter sensitivity I and the local temporal variation U, we
conduct an ablation study on these two factors. Specifically, we check five variants of Eq. {@):

Variant 1. nj(.t) = (1"

Variant 2. 77](;) =T 4 &)/ U +¢)
Variant 3. nj(t) =Y +
Variant 4. n](t) =@ /T 4 ¢)
Variant 5. " = (U

For Variants 1,2 and 3, we aim to check the performance of giving a high/low-sensitive parameter a

high/low, instead of low/high learning rate. Specifically, we place (f](-t) + €) in the numerator, so that
the learning rates increase for the high sensitive parameters and decrease for low sensitive parameters.

For Variants 4 and 5, we aim to check the performance of eliminating the influence of one of these
factors. Specifically, we fix the local temporal variation term to 1 in Variant 4 and fix the sensitivity
term to 1 in Variant 5.

A.4.5 HYPER-PARAMETER STUDY

We investigate the influence of hyper-parameters learning rate and 3y on the performance of SAGE
(Figure[§). As can be seen, SAGE requires a larger learning rate than the baselines to offset the small
scale of the modulation term (the optimal baseline learning rate lies in 5 x 107> ~ 1 x 10~% for
MNLL 5 x 10~% ~ 7 x 10~% for IWSLT 14 De-En and 0.1 ~ 0.2 for CIFAR10). Furthermore,
switching to a larger learning rate requires a lower 3y to maintain the same level of performance.

35.1 92.5

- 35.0 92.0
© 850 /\ B39 o
é’ =] é’ 91.57 Learning Rate
/\/ m 348 0.3
84.87 Learning Rate Learning Rate 91.0 0.4
2e-4 347 8e-4 : 0.5

4.6 3e-4 346 le-3 0.6

0.6 0.7 0.8 0.9 o 0.76 0.78 0.80 0.82 0.84 ()0'%).3 0.4 0.5 0.6 0.7 0.8
Bo Bo Bo
MNLI IWSLT 14 De-En CIFAR 10

Figure 8: Parameter study on learning rate and ;.

All five variants show no clear gain upon the baseline on both RTE and SST-2 datasets after careful
hyper-parameter tuning. Specifically, we observe that the Variants 1 and 3 converge very fast at the
early stage of training, and then quickly start overfitting. In Variants 2 and 4, the training collapses
due to gradient explosion or vanishing.
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Variant Name | Learning Rate Modulating Term | RTE SST-2
Adam 1 63.5 92.9
Adam-SAGE | (U +¢)/(I\" +¢) 73.3 93.5
Variant 1. IV + (U +¢) 63.5 91.2
Variant 2. (fj(-t) +¢€)/ (U;t) +¢) Unconverged Unconverged
Variant 3. IV +e 63.8 91.1
Variant 4. 1/ (j}t) +e€) Unconverged Unconverged
Variant 5. UP +e 63.8 91.1

Table 12: Ablation study on parameter sensitivity and local temporal variations.

Corpus | Task | #Train | #Dev | #Test | #Label | Metrics
Single-Sentence Classification (GLUE)
CoLA Acceptability | 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy
Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k | 391k 2 Accuracy/F1
MRPC | Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k | 5.7k | 5.7k 2 Accuracy
Text Similarity (GLUE)
STS-B | Similarity | 7k [ I.5k | 1.4k | 1 | Pearson/Spearman corr

Table 13: Summary of the GLUE benchmark.
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