
SPIRE: Synergistic Planning, Imitation, and
Reinforcement for Long-Horizon Manipulation

Anonymous Author(s)

Abstract: Robot learning has proven to be a general and effective technique for1

programming manipulators. Imitation learning is able to teach robots solely from2

human demonstrations but is bottlenecked by the capabilities of the demonstra-3

tions. Reinforcement learning uses exploration to discover better behaviors; how-4

ever, the space of possible improvements can be too large to start from scratch.5

And for both techniques, the learning difficulty increases proportional to the length6

of the manipulation task. Accounting for this, we propose SPIRE, a system that7

first uses Task and Motion Planning (TAMP) to decompose tasks into smaller8

learning subproblems and second combines imitation and reinforcement learning9

to maximize their strengths. We develop novel strategies to train learning agents10

when deployed in the context of a planning system. We evaluate SPIRE on a11

suite of long-horizon and contact-rich robot manipulation problems. We find that12

SPIRE outperforms prior approaches that integrate imitation learning, reinforce-13

ment learning, and planning by 35% to 50% in average task performance, is 614

times more data efficient in the number of human demonstrations needed to train15

proficient agents, and learns to complete tasks nearly twice as efficiently. View16

https://sites.google.com/view/spire-corl-2024 for more details.17

Keywords: Reinforcement Learning, Manipulation Planning, Imitation Learning18

1 Introduction19

Reinforcement Learning (RL) is a powerful tool that has been widely deployed to solve robot ma-20

nipulation tasks [1, 2, 3, 4]. The RL trial-and-error process allows an agent to automatically discover21

solutions to a task and improve its behavior over time. However, in practice, it often relies on care-22

ful reward engineering to guide the exploration process [5, 6]. The exploration burden and reward23

engineering problem is even more challenging to overcome for long-horizon tasks, where an agent24

must complete several subtasks in sequence in order to solve the task [7].25

Imitation Learning (IL) from human demonstrations [8, 9] is a popular alternative to reinforcement26

learning. Here, humans teleoperate robot arms to collect task demonstrations. Then, policies are27

trained using the data. This alleviates the burden of reward engineering, since correct behaviors are28

directly specified through demonstrations. This paradigm has recently been scaled up by collecting29

large datasets with teams of human operators and robots and shown to be effective for different30

real-world manipulation tasks [10, 11, 12]. While these agents can be effective, they typically are31

imperfect, with respect to both success rates and control cost, and not robust to different deployment32

conditions, especially when it comes to long-horizon tasks [13].33

One way to integrate the benefits of both IL and RL is to first train an agent with IL and then finetune34

it with RL. This can help improve the IL agent and make it robust through trial-and-error , while also35

alleviating the need for reward engineering due to the presence of the demonstrations. Several works36

have used this paradigm successfully, but long-horizon manipulation still remains challenging due37

to the burden of exploration and long-term credit assignment [7].38

One effective approach for long-horizon manipulation is to leverage a hybrid control paradigm,39

where the agent is only responsible for local manipulation skills, instead of the full task [14, 15].40

An example is the HITL-TAMP system [14], where an agent is trained with IL on small contact-41

rich segments of each tasks, and the rest of the task is performed using Task and Motion Planning42

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

https://sites.google.com/view/spire-corl-2024

TAMP

Tele-op | BC

Section 1

RL fine-tune

Section 2 Section 3 Section 4

Task

Section 1 Section 2

Section 3 Section 4

Coffee
Preparation

Figure 1: SPIRE Overview. (Left) SPIRE first attempts to solve the task with a TAMP system. When the
TAMP planner encounters an action deemed too hard to plan, it then enters the handoff section and delegates
the action to a human teleoperator to manually complete it. We record the trajectories from the human operators
to build a demonstration dataset and train an IL policy with it. Finally, we train an RL policy to fine-tune the IL
policy via warmstarting and deviation constraining. (Right) A preview of the four handoff sections in Coffee
Preparation task.

(TAMP) [16]. Another related approach is PSL [15], which learns an agent using RL instead of IL on43

small segments, and uses motion planning to sequence the learned skills together. These approaches44

are effective for challenging long-horizon manipulation tasks, but they still often do not train perfect45

policies, suffering from some of the pitfalls of IL and RL. In this paper, we take inspiration from46

these approaches and create a hybrid control learning framework that allows for efficient imitation47

learning and RL-based finetuning of agents to address long-horizon manipulation tasks.48

We introduce Synergistic Planning Imitation and REinforcement (SPIRE), a system for solving49

challenging long-horizon manipulation tasks through efficient imitation learning and RL-based fine-50

tuning. SPIRE decomposes each task into local manipulation segments that are learned with a51

policy and segments handled by a TAMP system. The manipulation segments are first trained via52

imitation learning and then finetuned with reinforcement learning. Our approach on 9 challeng-53

ing manipulation tasks reaches an average success rate of 87.8%, vastly outperforms TAMP-gated54

IL [14] (52.9%) and RL [15] (37.6%). In the subset of tasks where SPIRE and IL both reach a high55

success rate, our method only uses 59% of the steps required by IL to complete the task. In Tool56

Hang, SPIRE fine-tunes an IL policy with only 10% success rate to 94%. We perform a thorough57

analysis of our method and also show that in many cases, a handful of demonstrations suffice for58

learning challenging tasks. Compared with IL, SPIRE improves the overall demo efficiency by 5.859

times in the evaluated subset of tasks.60

Our contributions are as follows:61

•We propose SPIRE, a hybrid learning-planning system that synergistically integrates the strengths62

of behavior cloning, reinforcement learning, and manipulation planning. SPIRE first learns a63

TAMP-gated policy with BC and then improves it with RL.64

• We introduce key insights to enable RL-based finetuning with sparse rewards in this regime, in-65

cluding a mechanism to warmstart the RL process using the trained BC policy, a way to constrain66

exploration to be close to the BC agent behavior, and a multi-worker TAMP framework to optimize67

the throughput of SPIRE’s RL process.68

• We evaluate SPIRE on a suite of long-horizon contact-rich tasks and find that it outperforms69

prior hybrid learning-planning approaches in terms of success rate averaged across tasks (87.8%,70

compared to 52.9% and 37.6%), execution efficiency (episodes are only 59% the length of the BC71

agent), and human demonstration efficiency (6× times less data required than BC to train similar72

agents).73

2 Related Work74

Hierarchical approaches for long-horizon tasks. Hierarchical approaches decompose the chal-75

lenging long-horizon tasks into easier-to-solve subtasks. RL based methods explore the division of76

sub-tasks with reusable skills [17, 18, 19, 20, 21]. [22, 23, 24, 25, 26] build hierarchical RL solutions77

with subpolicies and metacontrollers. Our work instead leverages a planner that provides guidance78

on which policies to learn as well as initial and terminal state distributions of tasks, compared to79

2

bottom-up HiRL methods, which tend to be data inefficient. Notably this top-down breakdown may80

also be achieved with a Language Model which can provide a plan composed of steps and sub-goal81

targets [27, 28, 29, 30, 31, 15]82

Robot manipulation with demonstrations. Behavior cloning (BC) [32] learn a policy by directly83

mapping observations to actions, and is typically trained end-to-end using pre-collected pairs of ob-84

servation and behavior data. While this is seemingly a supervised learning problem, yet in the con-85

text of robotics which add challenges. BC datasets tend to contain data sampled from multimodal86

distributions, due to intra-expert variations. Recent work address this problem implicit models in-87

cluding those derived from energy-based models [33, 34] or diffusion models [35, 36, 37, 38, 39].88

Moreover, transformer based BC models that transformer-based categorical policies in carefully dis-89

cretized action spaces do a good job handling multimodal demonstrator distributions [40, 41, 42].90

Another challenge is the correlation in sequential data, which can lead to policies which are sus-91

ceptible to temporally correlated confounders [43]. Recently several works have set out to handle92

this by predicting action chunks. For example, the Action Chunking Transformer (ACT) line of93

work [44, 45] shows that a transformer trained as a CVAE [46] to output chunks of actions performs94

well for a wide variety of manipulation tasks, and diffusion policy [35] shows across the board im-95

provements when predicting action chunks. While, BC based methods combined with high-capacity96

models enable complex robotics tasks from demonstrations, yet challenges in robustness, and long-97

horizon generalization remain.98

RL with experts. Experts and their demonstrations can be used to improve RL learning in multiple99

ways, including acting as task specifications, improving exploration, and augmenting data. Inverse100

RL [47, 48, 49] learns a reward model for RL from demonstrations; [50] discuss the use of demon-101

strations to bootstrap the learning process, followed by reinforcement learning to refine the policy;102

[51] warmstarts RL with a Behavior Cloning policy and grounds the Q values of non-expert actions103

to reduce over-optimistic estimations; [52] augments the RL replay buffer with demonstrations;[53]104

uses state matching for reward computation in RL. [54] shares a similar setup with ours, where they105

also warmstart RL with a BC policy and use a masked BC loss the constrain the RL policy from106

deviating. [55, 56] propose to fine-tune a semi-expert initial policy by training a residual policy on107

top of it with RL. However most of these works were limited in evaluation in either low-dimensional108

state/action or single-stage MDP settings, while we focus on building image-based agents in multi-109

stage sequential tasks, which poses a qualitatively different challenge.110

3 Method111

Our approach Synergistic Planning Imitation and REinforcement (SPIRE) learns and deploys112

closed-loop visuomotor skills within a TAMP system (see Fig. 1). First we frame our problem113

as a policy learning problem across a sequence of Markov Decision Processes (Sec. 3.1). Next, we114

describe our approach for incorporating both classical and learned robot skills into TAMP (Sec. 3.2)115

to enable TAMP-gated learning. Next, we describe how we train an initial agent with TAMP-gated116

Behavioral Cloning (BC) (Sec. 3.3). We then propose an RL-based finetuning algorithm to improve117

the BC agent with RL (Sec. 3.4). Finally, we introduce a parallelized training scheduler that is able118

to intelligently manage dependencies among stages when conducting RL in our setting (Sec. 3.5).119

3.1 Problem Formulation120

In our setup, each robot manipulation task can be decomposed into a series of alternating TAMP121

sections and handoff sections, where TAMP delegates control to a trained agent π. These sections122

are TAMP-gated [14], as they are chosen at the discretion of the TAMP system, and typically involve123

skills that are difficult to automate with model-based planning. We wish to train an agent π to124

complete these handoff sections efficiently and reliably. We model our TAMP-gated policy learning125

problem as a series of Markov Decision Processes (MDPs), M := (S,A, T, {ri}, {pi0}, γ)Ni=1,126

where N is the number of MDPs (each corresponds to a TAMP handoff section), S and A are the127

state and action space, T is the transition dynamics, ri(s) and pi0 are the i-th reward function and128

initial state distribution, and γ is the discount factor. The start and end of each handoff section is129

3

𝜋!(𝑠)
𝑠"~	𝑝" 𝑠∗ ∈ 𝐺

RL Policy

𝜋!(𝑠)
𝑠"~	𝑝"

RL Policy

pick() insert() pick() hang()

…

pre eff pre eff

𝑠∗ ∈ 𝐺

Figure 2: SPIRE execution. SPIRE computes a TAMP plan but defers execution of certain contact-rich
skills, such as insert and hand, to learned agents – we call these handoff sections. The preconditions of each
handoff section define the initial state distribution of the agent, and the postconditions of each action correspond
to the termination states of the corresponding MDP for the handoff section.

chosen by TAMP, consequently, TAMP determines the initial state distribution pi0 for each handoff130

section, and the reward function ri(s), which is a sparse 0-1 success reward based on the successful131

completion of the section. Our goal is to train a stochastic policy π : S → ∆A that maximizes the132

expected return J(π) := E(i,τ)∼π
[∑

t=0 γ
trit

]
. We next describe the TAMP system.133

3.2 TAMP with Learned Skills134

Task and Motion Planning (TAMP) [16] is a model-based approach for synthesizing long-horizon135

robot behavior. TAMP integrates discrete (symbolic) planning with continuous (motion) planning136

to plan hybrid discrete-continuous manipulation actions. Essential to TAMP is a model of the ac-137

tions that a planner can apply and how these actions modify the current state. From such a model,138

TAMP solvers can search over the space of plans to find a sequence of actions and their associated139

parameters that satisfies the task.140

In SPIRE, we seek to learn a select set of TAMP actions that are impractical to manually model141

and then combine them with traditional actions through planning. In essence, our strategy is to learn142

policies π that control the system from TAMP precondition states to postcondition states.143

3.3 TAMP-Gated Imitation Learning144

Algorithm 1 SPIRE
1: procedure SPIRE(G)
2: while True do
3: s← OBSERVE()
4: if s ∈ G then
5: return True
6: a⃗← PLAN-TAMP(s,G)
7: for a ∈ a⃗ do
8: if a.type = “RL” then
9: π ← a.policy
10: EXECUTE-POLICY(π)
11: break
12: else
13: τ ← a.trajectory
14: EXECUTE-TRAJECTORY(τ)

TAMP-Gated Data Collection. We collect an initial dataset145

of human demonstrations through TAMP-gated human tele-146

operation, where the human operator collects demonstrations147

for handoff sections when prompted by TAMP, to form the148

demonstration dataset D = {{(st, at)Hi
t=1, gi}}, where st ∈ S,149

at ∈ A and Hi is the horizon, and gi is the handoff section of150

the i-th trajectory. To improve the data collection efficiency,151

we replicate the task queuing system from [14].152

TAMP-Gated Behavioral Cloning. Given the dataset D, we153

train a Behavioral Cloning (BC) policy parameterized by ϕ to154

minimize the negative log-likelihood loss over the demonstra-155

tion dataset: ϕ∗=argminϕ E(s,a)∼D[− log πϕ(a|s)]. The trained BC agent πϕ may have substantial156

room for improvement, depending on the complexity of the task, and the number of demonstrations157

available for training. We next describe our RL-based finetuning procedure (Sec. 3.4) that allows158

this agent to be improved through reinforcement learning.159

3.4 RL Finetuning160

Given a trained BC agent πϕ, we wish to train an RL agent πθ to improve performance further. To161

avoid reward engineering, we only assume access to sparse 0-1 completion rewards for each hand-162

off section provided by TAMP (Sec. 3.1). However, exploration in sparse-reward settings has been163

shown to be challenging [57, 58, 59, 60], especially in continuous state and action spaces. Fortu-164

nately, we can use the BC policy trained in the previous section as a reference point for exploration165

– we want to restrict the behavior of the RL policy to be in a neighborhood of the BC policy. This166

4

is achieved by a) warmstarting the RL policy optimization using the BC policy, and b) enforcing a167

constraint on the deviation between the RL policy and the BC policy.168

Warmstarting RL optimization with BC. We tested two ways to warmstart the RL agent. Ini-169

tialization. One method is to initialize the weights of the RL agent with those of the trained BC170

agent, θ ← ϕ∗, where ϕ∗ = argminϕ LBC(ϕ), and subsequently finetune the weights with online171

RL objectives. Despite being easy to implement, this can be less flexible since it requires the agent172

structure of the RL and BC policies to match. Furthermore, researchers have found that retraining173

neural networks with different objectives can cause the network to lose plasticity [61], which can174

make the policy harder to optimize because of the objective shift from BC to RL. Residual Policy.175

An alternative way is to fix the BC policy as a reference policy and train a residual policy on top of176

it. Let the residual policy be π+
θ (s). The residual policy shares the same action space as the normal177

policy but is initialized to close to zero. The final action is defined as a summation of the reference178

action a ∼ πϕ∗(s) and the residual action a+ ∼ π+
θ (s). In practice, we only add the mean of the179

reference policy to the residual action instead of sampling the reference action.180

Constraining Deviation between BC and RL agents. The sparsity of reward signals produces181

high-variance optimization objectives, which can lead the RL policy to quickly drift away from BC182

and lose the exploration bonus from warmstarting. Therefore, it is critical to constrain the policy183

output to be close to the BC agent throughout the training process. We achieve this by imposing a184

KL-divergence penalty on the RL objective. We conclude our RL optimization objective as follows:185

JFT (θ) := J(πθ)−αDKL(πθ∥πϕ∗), where DKL(p∥q) := E(s,a)∼p

[
log p(a|s)

q(a|s)

]
and α is the weight186

for the penalty term.187

3.5 Multi-Worker Scheduling Framework188

Making our TAMP-gated framework compatible with modern reinforcement learning procedures189

requires addressing several challenges. First, TAMP can take dozens of seconds for a single rollout,190

which severely lowers the throughput of RL exploration. Second, the TAMP pipeline executes each191

section sequentially, which means that later handoff segments can only be sampled when previous192

handoff segments are completed successfully. This leads to an imbalance of episodes for the differ-193

ent handoff segments, and is potentially problematic for the RL agent. In light of these challenges,194

we propose a multi-worker TAMP scheduling framework to integrate TAMP into RL fine-tuning.195

The framework consists of three components – a group of TAMP workers that run planning in par-196

allel, a status pool that stores the progress of the workers, and a scheduler that distributes tasks197

to the workers and balances the initial states. We further describe how the framework allows for198

curriculum learning, and how the framework accelerates learning efficiency for RL training.199

Algorithm 2 Scheduler
1: procedure SCHEDULER(WORKERS, STATUSQUEUE, POLICY,

STRATEGY)
2: while True do
3: i, j ← STATUSQUEUE.pop()
4: if STRATEGY.accepts(j) then
5: while not WORKERS[i].done() do
6: sobs ← WORKERS[i].observe()
7: a← POLICY.act(sobs)
8: WORKERS[i].step(a)

9: else
10: WORKERS[i].reset()

TAMP workers. Each TAMP worker has200

an environment instance and repeatedly runs201

a TAMP planner. Upon reset, the TAMP202

worker initiates TAMP until a handoff sec-203

tion has been reached. It then sends a pair204

(#worker, #section) representing its ID205

and which handoff section it has entered to the206

status queue, indicating that it is ready to take207

RL agent actions. The worker then enters an208

idle state until it receives a command from the209

scheduler. Depending on the command, the worker either resets itself or starts interacting with the210

environment by exchanging actions and states with the scheduler. If the current section has been211

solved, the worker sends a success signal to the scheduler and runs TAMP until it reaches the next212

handoff section.213

Scheduler. (Algorithm 2) The scheduler is a centralized component that manages the TAMP work-214

ers. It also provides an environment abstraction to the single-threaded RL process. The scheduler is215

configured with a sampling strategy. Upon initialization, it first pops an item from the status queue.216

5

0 20 40 60 80 100
succ. rate (%)

Square
Square B.

Coffee
Coffee B.
CoffeePrep

TPiece
TPiece B.
ToolHang

ToolHang B.
BC
RL
Ours

Episode Duration: BC [14] RL [15] Ours

Square 18.1 8.3 11.6
Square Broad 24.5 8.4 13.6
Coffee 63.1 15.0 38.4
Coffee Broad 80.6 25.7 61.3
Coffee Preparation 193.3 - 168.5
Three Piece 58.7 - 34.0
Three Piece Broad 62.2 - 38.1
Tool Hang 81.8 - 61.7
Tool Hang Broad 130.5 - 109.8

Figure 3: Full evaluation. Comparing the success rates (left) and the average duration (right) of successful
rollouts of HITL-TAMP-BC (BC), TAMP-gated Plan-Seq-Learn (RL), and SPIRE (Ours) across all 9 tasks.
Each datapoint is chosen from the best run out of 5 seeds and is averaged from 50 rollouts. SPIRE improves
the BC policy in terms of both success rate and average duration in all 9 tasks and reaches 80% success rate in
8. RL has an advantage in average duration in the easier set of tasks but fails to learn anything in the rest.

According to the sampling strategy, the scheduler either rejects this section, in which case it sends a217

resetting signal to the corresponding worker; or starts a new episode and interacts with the worker.218

The status queue is a FIFO queue that stores the availabilities of the TAMP workers. It supports219

single-thread reading from the scheduler and multi-thread writing from the TAMP workers through220

a simple locking mechanism.221

Curriculum Learning. The behavior of the scheduler depends on a sampling strategy, allowing222

it to function as a curriculum for the RL agent. We consider two strategies: permissive is the223

default strategy that allows all sections through, while sequential only accepts a section when the224

success rate of passing all the previous sections reaches a threshold. sequential allows controlling225

the initial state distribution during the early stages of training, to ensure the RL agent achieves226

proficience in each section sequentially before continuing onto the next section.227

Remarks on Efficiency. Suppose a TAMP planning process takes at most T seconds over the228

episode; each environment interaction step, counting communication latency, takes at least t sec-229

onds; and each handoff section is at least H steps. If the number of TAMP workers n ≥ T
tH , the230

proposed multi-worker TAMP scheduling framework reaches a throughput of at least 1/t frames per231

second. In comparison, the single-worker counterpart has a worst-case throughput of H
T+tH frames232

per second. Suppose that the planning process is slower than the handoff sections by a factor k (e.g.233

T = k · tH), then our framework is faster than the single-worker alternative by a factor of k + 1.234

4 Experiments235

Tasks. For evaluation, we follow [14] and choose a set of long-horizon manipulation tasks, namely236

Square, Coffee, Three Piece, and Tool Hang. We also include the broad variants of those tasks,237

where we use a broad object initialization region, and Coffee Preparation, which has the longest238

horizon with four handoff sections. See the appendix for more details.239

Environment Details. Observation space. For most tasks, we use a single 84 × 84 RGB image240

from the wrist-view camera. For Tool Hang, we use the front-view camera instead since the wrist-241

view is mostly occluded. For Tool Hang Broad and Coffee Preparation, we use both wrist-view242

and front-view cameras, as well as proprioception state (end-effector pose and gripper finger width).243

Action space. Actions are 7-dimensional (3-dim delta end-effector position, 3-dim delta end-effector244

rotation, 1-dim gripper actuation). Horizon. Each handoff section is limited to 100 steps (5 seconds245

with 20Hz control frequency) for all tasks, except for Tool Hang Broad, where the limit is 200 steps.246

Baselines. We compare our method with two baselines: HITL-TAMP-BC (BC), which is adapted247

from [14] to match our network structure; and TAMP-gated Plan-Seq-Learn (RL), which is adapted248

from [15] by replacing the LLM-based planning system with our TAMP system for fair comparison.249

We collected 200 human demonstrations for each task to train the behavior cloning policy. For RL,250

we use DrQ-v2 [62] as the base algorithm. See the appendix for more details.251

6

(a) Naive RL agent (b) SPIRE agent

Figure 4: Qualitative comparison. Rollouts of vanilla RL vs our method. The first agent attempts to close the
lid by knocking the coffee machine, while our agent follows the demonstrations and closes the lid with fingers.

Evaluation. We evaluate each trained agent for 50 rollouts and report the success rate and average252

completion steps in the successful rollouts. We train 5 seeds for each algorithm and report the best-253

performing agent (success rate-wise, tie-breaking with average steps) unless otherwise specified.254

4.1 Results255

SPIRE outperforms both TAMP-gated BC and RL. We compare our method with the TAMP-256

gated BC [14] and RL [15] baselines across all 9 tasks (see Fig. 3). SPIRE reaches 80% success257

rate in 8 out of 9 tasks, while BC and RL only reach 80% in 3 tasks each. In Tool Hang, our258

method reaches 94% success rate despite the BC counterpart only having 10%, which is over 9-times259

improvement. Remarkably, this low-performing BC agent is enough to help address the exploration260

burden (unlike RL, 0% success) and train a near-perfect agent. Across all 9 tasks, SPIRE averages261

a 87.8% success rate, while BC and RL only average 52.9% and 37.6% respectively.262

SPIRE produces more efficient agents than BC through RL fine-tuning. SPIRE agents have263

lower average completion times than their BC and RL counterparts (Fig. 3, right). Even in tasks264

such as Square, Square Broad, Coffee, Three Piece, where BC policies already have high success265

rates, our method improves the efficiency by only using an average of 59% completion time.266

SPIRE’s use of the BC agent helps address the RL exploration burden on challenging long-267

horizon tasks. Exploration in RL with sparse rewards is extremely challenging, especially for robot268

manipulation tasks for their continuous and high-dimensional observation and action space. Our269

method solves the initial exploration problem by anchoring policy learning around the BC agent.270

As shown in Figure 3, RL policies without utilizing BC only reach nonzero success rates in Square,271

Coffee and their Broad variants, all of which have only one handoff section and relatively shorter272

horizons. Even in Coffee Broad, RL encounters exploration difficulties due to the broader object273

distribution, resulting in only partially solving the task.274

Qualitatively, SPIRE can improve agent behavior without introducing undesirable behavior,275

unlike RL. Safety awareness has always been a critical matter in robotics learning. Safety con-276

straints can be hard to define with numerical values, which adds to the challenges of realizing safety277

in RL. We notice that in Coffee, RL policy has a much shorter completion time than our method.278

This is at the cost of ignoring safety concerns. We compare two rollouts of RL and our method279

in Figure 4. The RL-trained policy attempts to close the lid by knocking the coffee machine with280

the arm, which can potentially damage the robot and the coffee machine and even cause danger to281

humans; while our method preserves safety awareness by following the demonstration’s practice of282

closing the lid with its fingers.283

SPIRE can train proficient agents using just a handful of human demonstrations. BC methods284

can require several human demonstrations to train proficient agents, which can be a major drawback285

due to the cost of collecting this data [9]. We reduce the number of human demonstrations used286

by SPIRE to 10 and 50 (instead of 200 as in Fig. 3), and we plot the minimum of demonstrations287

needed to reach at least 80% success rate in Fig. 5. As the plot shows, SPIRE can successfully288

fine-tune a BC policy trained with as few as 10 demos in all evaluated tasks except for Tool Hang289

and Coffee Broad, for which 50 demos are enough. In the 7 tasks, our method needs 150 demos in290

total, while BC needs more than 870, a 5.8× improvement in efficiency.291

7

Sq
ua

re

Sq
ua

re
Br

oa
d

Co
ff

ee

TP
ie

ce

TP
ie

ce
Br

oa
d

To
ol

Ha
ng

Co
ff

ee
Br

oa
d

10

50

200+

mi
ni

mu
m

de
mo

s
BC
Ours

permissive sequential
0

25

50

75

100

su
cc
es

s
ra
te
 (

%)

Figure 5: Demo efficiency and sampling strategy ablation. (Left) Minimum number of demos needed to
reach at least 80% success rate. (Right) Success rates across 5 seeds in Tool Hang, comparing permissive
and sequential strategies. sequential has a lower variance but permissive has the better top-1 policy.

4.2 Ablation Study292

We conduct two ablative studies to investigate (1) the value of the KL-divergence penalty and (2)293

the value of curriculum learning, governed by the two scheduler sampling strategies permissive294

and sequential. In this section, we compare the performance distribution of the 5 runs instead of295

only the top-1 run for a more comprehensive evaluation.296

Value of divergence penalty. We ablate the divergence penalty on two representative tasks, Three297

Piece & Tool Hang (Table 6) and observe a drastic performance drop (84% to 17.6%, 74% to 0%).298

Task w/ (%) w/o (%)

Three Piece 84.0 (34.7) 17.6 (39.4)
Tool Hang 74.4 (11.8) 0.0 (0.0)

Figure 6: KL-divergence penalty ablation.
Mean and standard deviation (in parenthesis) of
success rates across the 5 seeds in Three Piece
and Tool Hang, with and without KL-divergence
penalty. In both tasks, the divergence penalty im-
proves the performance by a large margin.

The sparsity in rewards leads to high-variance opti-299

mization objectives for RL. As a result, even when300

warmstarted with BC, the RL policy can quickly de-301

viate from it, especially when the chance of reach-302

ing the reward signal is low. Therefore, constraining303

the policy close to BC throughout the training is crit-304

ical. We select two representative tasks, Three Piece305

and Tool Hang for this ablation. The result is shown306

in Figure 6. Without the divergence penalty, the RL307

policies deviated immediately and never returned.308

Value of curriculum learning. We compare the two sampling strategies in Tool Hang task. The309

result is shown in Figure 5. sequential strategy shows a much smaller variance compared with310

permissive. However, permissive produces the better top-1 seed performance. The main dif-311

ference between the two strategies is how the second section states emerge during training. For312

permissive, the second section states emerge gradually as the success rate of passing the first sec-313

tion gets higher, resulting in a more gentle distributional shift that leads to a higher overall success314

rate; for sequential, the shift is more abrupt, but it gains the advantage of fewer distraction states315

in the early stage, resulting in a more stable training process.316

5 Conclusion317

We presented SPIRE, an integrated approach for deploying RL, BC, and planning harmoniously.318

We showed how BC can be used to not only warm-start RL but also guide the RL process via319

focused exploration. We introduced a scheduling mechanism to improve RL data throughput and in-320

crease learning efficiency. Finally, we evaluated SPIRE in simulation against recent hybrid learning-321

planning baselines and found that SPIRE results in more successful and efficient policies.322

Limitations. We focus on tasks that center around object-centric manipulation of rigid objects in323

table-top environments. We assume that a human teleoperator can demonstrate the learned skills to324

warmstart RL. The TAMP component assumes that the state is observable and comprised of rigid325

objects, possibly connected with articulation. Our method is most effective on tasks that involve326

quasi-static components, as these are most effectively modeled and addressed by TAMP systems.327

To simplify RL training, we only considered Markovian policies; however, using neural network328

architectures with history, such as RNNs, may boost performance [9].329

8

References330

[1] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,331

M. Kalakrishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based332

robotic manipulation. In Conference on robot learning, pages 651–673. PMLR, 2018.333

[2] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and334

K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv335

preprint arXiv:2104.08212, 2021.336

[3] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S. Sukhatme, F. Ramos, D. Fox, and Y. Narang.337

Industreal: Transferring contact-rich assembly tasks from simulation to reality. arXiv preprint338

arXiv:2305.17110, 2023.339

[4] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,340

K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand341

manipulation from simulation to reality. In 2023 IEEE International Conference on Robotics342

and Automation (ICRA), pages 5977–5984. IEEE, 2023.343

[5] D. Silver, S. Singh, D. Precup, and R. S. Sutton. Reward is enough. Artificial Intelligence,344

299:103535, 2021.345

[6] A. Y. Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,346

page 2, 2000.347

[7] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning,348

3:9–44, 1988.349

[8] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel. Deep imitation350

learning for complex manipulation tasks from virtual reality teleoperation. arXiv preprint351

arXiv:1710.04615, 2017.352

[9] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,353

Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations354

for robot manipulation. In Conference on Robot Learning (CoRL), 2021.355

[10] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-356

man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv357

preprint arXiv:2212.06817, 2022.358

[11] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and359

S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.360

arXiv preprint arXiv:2109.13396, 2021.361

[12] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:362

Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-363

ing, pages 991–1002. PMLR, 2022.364

[13] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-365

tion to no-regret online learning. In Proceedings of the fourteenth international conference366

on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-367

ceedings, 2011.368

[14] A. Mandlekar, C. Garrett, D. Xu, and D. Fox. Human-in-the-loop task and motion planning369

for imitation learning. In 7th Annual Conference on Robot Learning, 2023.370

[15] M. Dalal, T. Chiruvolu, D. Chaplot, and R. Salakhutdinov. Plan-seq-learn: Language model371

guided rl for solving long horizon robotics tasks. 2024.372

9

[16] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.373

Integrated task and motion planning. Annual review of control, robotics, and autonomous374

systems, 4:265–293, 2021.375

[17] P. Dayan and G. E. Hinton. Feudal reinforcement learning. In NIPS, 1992.376

[18] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for377

temporal abstraction in reinforcement learning. Artif. Intell., 112:181–211, 1999.378

[19] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. AAAI, 2017.379

[20] A. S. Vezhnevets, S. Osindero, T. Schaul, N. M. O. Heess, M. Jaderberg, D. Silver, and380

K. Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. ICML, 2017.381

[21] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.382

In NeurIPS, 2018.383

[22] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. B. Tenenbaum. Hierarchical deep reinforce-384

ment learning: Integrating temporal abstraction and intrinsic motivation. In NIPS, 2016.385

[23] D. Lyu, F. Yang, B. Liu, and S. M. Gustafson. Sdrl: Interpretable and data-efficient deep386

reinforcement learning leveraging symbolic planning. In AAAI, 2019.387

[24] J. Rafati and D. C. Noelle. Learning representations in model-free hierarchical reinforcement388

learning. AAAI, 2019.389

[25] S. Sohn, H. Woo, J. Choi, and H. Lee. Meta reinforcement learning with autonomous inference390

of subtask dependencies. ICLR, 2020.391

[26] R. Costales, S. Iqbal, and F. Sha. Possibility before utility: Learning and using hierarchical392

affordances. ICLR, 2022.393

[27] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,394

Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint395

arXiv:2303.03378, 2023.396

[28] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and397

A. Garg. Progprompt: program generation for situated robot task planning using large language398

models. Autonomous Robots, 47(8):999–1012, 2023.399

[29] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-400

ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.401

Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,402

S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,403

P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,404

M. Yan, and A. Zeng. Do as i can and not as i say: Grounding language in robotic affordances.405

In arXiv preprint arXiv:2204.01691, 2022.406

[30] N. Yoshikawa, M. Skreta, K. Darvish, S. Arellano-Rubach, Z. Ji, L. Bjørn Kristensen, A. Z.407

Li, Y. Zhao, H. Xu, A. Kuramshin, et al. Large language models for chemistry robotics.408

Autonomous Robots, 47(8):1057–1086, 2023.409

[31] M. Skreta, Z. Zhou, J. L. Yuan, K. Darvish, A. Aspuru-Guzik, and A. Garg. RePLan: Robotic410

Replanning with Perception and Language Models. arXiv e-prints, art. arXiv:2401.04157, Jan.411

2024. doi:10.48550/arXiv.2401.04157.412

[32] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in413

neural information processing systems, 1, 1988.414

10

http://dx.doi.org/10.48550/arXiv.2401.04157

[33] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-415

datch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning, pages416

158–168. PMLR, 2022.417

[34] D. Jarrett, I. Bica, and M. van der Schaar. Strictly batch imitation learning by energy-based418

distribution matching. Advances in Neural Information Processing Systems, 33:7354–7365,419

2020.420

[35] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:421

Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.422

[36] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy. arXiv preprint423

arXiv:2403.03954, 2024.424

[37] L. Chen, S. Bahl, and D. Pathak. Playfusion: Skill acquisition via diffusion from language-425

annotated play. In Conference on Robot Learning, pages 2012–2029. PMLR, 2023.426

[38] Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki. Chaineddiffuser: Unifying427

trajectory diffusion and keypose prediction for robotic manipulation. In 7th Annual Conference428

on Robot Learning, 2023.429

[39] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior430

synthesis. arXiv preprint arXiv:2205.09991, 2022.431

[40] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k432

modes with one stone. Advances in neural information processing systems, 35:22955–22968,433

2022.434

[41] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto. From play to policy: Conditional435

behavior generation from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022.436

[42] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto. Behavior generation437

with latent actions. arXiv preprint arXiv:2403.03181, 2024.438

[43] G. Swamy, S. Choudhury, J. A. Bagnell, and Z. S. Wu. Causal imitation learning under tem-439

porally correlated noise, 2022.440

[44] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation441

with low-cost hardware, 2023.442

[45] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with443

low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.444

[46] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep condi-445

tional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-446

nett, editors, Advances in Neural Information Processing Systems, volume 28. Curran As-447

sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/448

2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.449

[47] J. Ho and S. Ermon. Generative adversarial imitation learning. In Neural Information Process-450

ing Systems, 2016.451

[48] J. Ho, J. K. Gupta, and S. Ermon. Model-free imitation learning with policy optimization.452

ArXiv, abs/1605.08478, 2016.453

[49] C. Finn, P. F. Christiano, P. Abbeel, and S. Levine. A connection between generative454

adversarial networks, inverse reinforcement learning, and energy-based models. ArXiv,455

abs/1611.03852, 2016.456

11

https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

[50] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J. Valasek, and N. R. Waytowich. Integrating457

behavior cloning and reinforcement learning for improved performance in dense and sparse458

reward environments. In Proceedings of the 19th International Conference on Autonomous459

Agents and MultiAgent Systems, pages 465–473, 2020.460

[51] T. Hester, M. Vecerı́k, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, A. Sendonaris, G. Dulac-461

Arnold, I. Osband, J. P. Agapiou, J. Z. Leibo, and A. Gruslys. Learning from demonstrations462

for real world reinforcement learning. ArXiv, abs/1704.03732, 2017.463

[52] M. Vecerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. M. O. Heess, T. Rothörl,464

T. Lampe, and M. A. Riedmiller. Leveraging demonstrations for deep reinforcement learning465

on robotics problems with sparse rewards. ArXiv, abs/1707.08817, 2017.466

[53] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one467

minute of demonstrations. arXiv preprint arXiv:2303.01497, 2023.468

[54] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming explo-469

ration in reinforcement learning with demonstrations. 2018 IEEE International Conference on470

Robotics and Automation (ICRA), pages 6292–6299, 2017.471

[55] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E. Solowjow, and472

S. Levine. Residual reinforcement learning for robot control. 2019 International Conference473

on Robotics and Automation (ICRA), pages 6023–6029, 2018.474

[56] T. Silver, K. R. Allen, J. B. Tenenbaum, and L. P. Kaelbling. Residual policy learning. ArXiv,475

abs/1812.06298, 2018.476

[57] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning477

with deep predictive models. ArXiv, abs/1507.00814, 2015.478

[58] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and479

P. Abbeel. #exploration: A study of count-based exploration for deep reinforcement learning.480

NIPS, 2017.481

[59] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kapturowski, O. Tieleman,482

M. Arjovsky, A. Pritzel, A. Bolt, and C. Blundell. Never give up: Learning directed exploration483

strategies. ICLR, 2020.484

[60] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. First return then explore.485

Nature, 590 7847:580–586, 2021.486

[61] Z. Abbas, R. Zhao, J. Modayil, A. White, and M. C. Machado. Loss of plasticity in continual487

deep reinforcement learning. ArXiv, abs/2303.07507, 2023.488

[62] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved489

data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.490

12

A Overview491

The Appendix contains the following content.492

• Policy Learning Details (Appendix B)): details on hyperparameters used493

• Ablation: SPIRE without TAMP (Appendix C): ablation study on the effect of removing494

TAMP-gating and directly running BC and RL fine-tuning495

• Comparison to Additional Methods (Appendix D): comparison to other RL methods that496

leverage demonstrations497

• Tasks (Appendix E): details on tasks used to evaluate SPIRE498

• Variance Across Seeds (Appendix F): discussion on the variance of results across different499

seeds and how results are presented500

13

B Policy Learning Details501

Table 1: DrQ-v2 hyperparameters.

Network structure CNN
Learning rate 1e-4

Discount 0.99
Batch size 256

n-step returns 3
Action repeat 1
Seed frames 4000
Feature dim 50
Hidden dim 1024
Optimizer Adam

Hyperparameters. The base RL algorithm for all our experiments is DrQ-v2 [62]. The specific502

hyperparameters are in Table 1.503

Observation. For most tasks, we use one 84 × 84 RGB image from the wrist camera as the only504

observation. For Tool Hang, we use a front-view camera instead since the wrist-view is heavily505

occluded. For Tool Hang Broad and Coffee Preparation, we use both camera views plus proprio-506

ception state (end-effector pose and gripper finger width). We use the default CNN structure from507

DrQ-v2 to encode the image observations. For tasks with multiple observations, we first encode508

the image observations each with an independent CNN network, then concatenate the CNN outputs509

alongside the low-dimensional observations such as proprioception states to form the feature vector.510

Action. All our tasks share a 7-dimensional (6-DOF delta movement of the end-effector and 1511

dimension for finger control) continuous action space. The action is modeled as a normal distribution512

with a scheduled standard deviation.513

14

Table 2: Comparing the success rates of Square and Square Broad with and without TAMP.

Task BC RL Ours

Square w/ TAMP 98% 100% 100%
Square w/o TAMP 2% 0% 94%

Square Broad w/ TAMP 100% 100% 100%
Square Broad w/o TAMP 0% 0% 0%

C Ablation: SPIRE without TAMP514

We provide an additional ablation study on the high-level planner, TAMP. To do so, we treat the515

whole task as one handoff section. The agent only receives a reward of one if it completes the whole516

task. We collect 200 full demonstrations in Square, train a BC policy, and apply SPIRE to fine-517

tune the BC policy. Since the trajectory becomes longer and the robot now needs to handle object518

transportation, a single local wrist-view becomes insufficient. We thus include both the wrist view519

and the global front view, as well as the robot proprioception states in the observation for the w/o520

TAMP variant. The result is shown in Table 2.521

Even though the w/o TAMP variant has more information from observations, the BC and RL policies522

are significantly worse than the w/ TAMP counterpart. The increased horizon makes the BC policy523

easier to drift away to regions less frequently visited in demonstrations and makes RL exploration524

much harder. In Square, despite the low starting quality, SPIRE still fine-tunes BC to reach a 94%525

success rate, demonstrating the effectiveness of RL fine-tuning. However, when the initialization526

range increases in Square Broad, even SPIRE fails to find an acceptable policy.527

In conclusion, TAMP (1) confines the agent-controlled section to a small local area, reducing the528

need for global information, and (2) decreases the horizon (11.6 w/ TAMP, 101.7 w/o TAMP in529

Square) for the learned agent, reducing compounding errors and exploration difficulty.530

15

D Comparison to Additional Methods531

In each handoff section from TAMP, SPIRE utilizes the demonstrations by training a behavior532

cloning agent and using RL to fine-tune it. There are alternative methods to combine expert demon-533

strations and RL, which can be readily plugged in as replacements to SPIRE. In this section, we534

make connections from our method to GAIL [47]. The discriminator-based IRL reward in GAIL535

serves the same purpose as our KL penalty term - preventing the current policy from deviating from536

the expert policy. We draw further connection by showing that our KL penalty is the same as the IRL537

reward function in GAIL with an alternative discriminator objective and a different reward form.538

Let πE be the expert policy. The IRL reward function in GAIL is − log(1 − D(s, a)), where D :539

S ×A → [0, 1] is the discriminator that maximizes540

J(D) := Eτ∼π[log(1−D(s, a))] + Eτ∼πE
[log(D(s, a))] (1)

If we use an alternative objective:541

Ĵ(D) := Es∼πE ,a∼Unif[−D(s, a)] + Eτ∼πE
[log(D(s, a))] (2)

The alternative objective discriminates πE from a fixed policy rather than the current learned policy542

π. Assume πE has full support, then maximizing Ĵ(D) is equivalent to maximize for every s ∈ S:543

Ĵs(D) :=Ea∼Unif[−D(s, a)] + Ea∼πE(·|s)[log(D(s, a))] (3)

=−
(∫

D(s, a) da

)
+

(∫
πE(a | s) log(D(s, a)) da

)
(4)

=−
(∫

D(s, a) da

)
+

(∫
πE(a | s) log πE(a | s) da

)
+

(∫
πE(a | s) log

D(s, a)

πE(a | s)
da

)
(5)

=−
(∫

D(s, a) da

)
+H(πE(· | s)) +

(∫
πE(a | s) log

D(s, a)

πE(a | s)
da

)
(6)

≤−
(∫

D(s, a) da

)
+H(πE(· | s)) +

(∫
πE(a | s)

(
D(s, a)

πE(a | s)
− 1

)
da

)
(7)

=−
(∫

D(s, a) da

)
+H(πE(· | s)) +

(∫
D(s, a) da

)
−

(∫
πE(a | s) da

)
(8)

=H(πE(· | s))− 1 (9)

where H is the entropy. (7) holds since log x ≤ x− 1 for all x > 0, and only equates when x = 1,544

i.e., D̂(s, a) = πE(a | s). Since (9) is a constant, the maximum of Ĵ(D) can be taken when (7)545

equates, which means the optimal solution of Ĵ(D) is D̂(s, a) = πE(a | s). Our KL penalty then is546

equivalent to using an IRL reward of log(D̂(s, a)) = log πE(a | s).547

16

Sec 1

Sec 1

Sec 1

Sec 2

Sec 2

Sec 1

Sec 1 Sec 2 Sec 3

Figure 7: Handoff sections of every task. The tasks from top to bottom are: Square, Three Piece, Tool Hang,
Coffee, Coffee Preparation.

E Tasks548

We describe the nine tasks in the main paper in more detail.549

Square and Square Broad. The robot must pick up a nut and place it onto a peg. This task550

has 1 handoff section, where the learned agent places the nut. The Broad version increases the551

initialization range of both the nut and the peg.552

Three Piece and Three Piece Broad. The robot must assemble a structure by inserting one piece553

into a base and placing another piece on top of the first. This task has 2 handoff sections, where the554

learned agent places the two pieces. The Broad version increases the initialization range of all three555

pieces including the base.556

Tool Hang and Tool Hang Broad. The robot must first insert a L-shaped piece into a base to557

assemble a frame, then hang a wrench off of the frame. This task has 2 handoff sections, where the558

learned agent inserts the L-shaped piece and hangs the wrench. The Broad version increases the559

initialization range of all three pieces (base, L-shaped hook, and wrench).560

Coffee and Coffee Broad. The robot must pick up a coffee pod, insert it into a coffee machine, and561

close the lid. This task has 1 handoff section where the learned agent inserts the pod and closes the562

lid. The Broad version increases the initialization range of the pod and the coffee machine.563

Coffee Preparation. This is an extended version of Coffee. The robot must place a mug onto the564

coffee machine, open the lid, open the drawer where the coffee pod is placed, pick up the pod, insert565

17

the pod into the coffee machine, and finally close the lid. This task has 3 handoff sections where the566

learned agent (1) places the mug and opens the lid, (2) opens the drawer, and (3) inserts the pod and567

closes the lid.568

See Figure 7 for an illustration of all the handoff sections.569

18

Table 3: Mean and standard deviation (in parenthesis) of success rates out of 5 seeds.

BC RL [15] Ours

Square 92.4 (5.5) 83.6 (36.7) 99.2 (1.8)
Square Broad 96.4 (4.1) 100.0 (0.0) 96.4 (5.4)
Coffee 96.8 (4.1) 40.0 (52.1) 88.0 (26.8)
Coffee Broad 41.6 (6.7) 23.2 (12.1) 84.4 (8.3)
Three Piece 63.6 (6.7) 0.0 (0.0) 84.0 (34.7)
Three Piece Broad 25.2 (7.7) 0.0 (0.0) 78.4 (5.0)
Tool Hang 9.2 (4.6) 0.0 (0.0) 54.0 (46.8)

6.5

7.5

8.5

9.5

0 200k 400k 600k 800k 1M

(a) Deviation from BC

-500

-400

-300

-200

-100

0

0 200k 400k 600k 800k 1M

(b) Policy gradient loss

0

0.01

0.02

0.03

0 200k 400k 600k 800k 1M

(c) Reward

Figure 8: Comparing the (a) Deviation from BC, (b) policy gradient loss, and (c) reward training curves of a
successful run (marked as grey) and a failed run (marked as red) in Tool Hang.

F Variance Across Seeds570

In Figure 3, we show the best run out of 5 seeds. Here we provide the mean and standard deviation571

of the success rates in Table 3. We observe that although SPIRE still outperforms BC in terms of572

mean success rate in most of the tasks, our method exhibits unusually high variances in some of the573

tasks, for example, Coffee, Three Piece, and Tool Hang. In those tasks, one or more runs result in a574

performance significantly lower than the rest. Specifically,575

• In Coffee, one run has 40% success rate, while the rest are all 100%;576

• In Three Piece, one run has 22% success rate, while the rest are at least 98%;577

• In Tool Hang, one run has 0% success rate and one has 6%, while the rest are at least 82%.578

Reinforcement learning methods are known to have high variances, especially in sparse reward579

settings. SPIRE partially alleviates this problem by enforcing the KL penalty for deviating from an580

anchor policy. However, in practice, such deviation can still happen.581

Figure 8 compares the training curve of a successful run (with 88% final success rate) and a failed582

run (with 0% final success rate). The policy in the failed run drastically deviated from the BC policy583

early on in the training. This is likely related to the unusually large policy gradient loss, which the584

KL penalty term was unable to match and failed to constrain the policy.585

In our experiments, such an abrupt decrease in policy gradient loss happens frequently, with varying586

scales and timing, causing the training results to have high variance. Using an adaptive weight of587

the KL penalty might be a potential solution, which we wish to investigate in future work.588

We do not believe 5 seeds are enough to quantitatively reflect the chance of such sudden deviation589

happening. An alternative solution would be to compare only the results where such deviation did590

not happen, which is why we chose to report the top-1 performing seed in our main paper.591

19

	Introduction
	Related Work
	Method
	Problem Formulation
	TAMP with Learned Skills
	TAMP-Gated Imitation Learning
	RL Finetuning
	Multi-Worker Scheduling Framework

	Experiments
	Results
	Ablation Study

	Conclusion
	Overview
	Policy Learning Details
	Ablation: SPIRE without TAMP
	Comparison to Additional Methods
	Tasks
	Variance Across Seeds

