GPT4Tools: Teaching Large Language Model to Use
Tools via Self-instruction

Rui Yang'*} Lin Song®*] Yanwei Li®>, Sijie Zhao?, Yixiao Ge?, XiuLi!, Ying Shan>
!Tsinghua Shenzhen International Graduate School, Tsinghua University
2Tencent Al Lab 2Chinese University of Hong Kong

rayyang0116@gmail.com ronnysong@tencent.com

1 GPT4Tools Dataset

Table 1: Summary of tool names. Gray tool names are from Visual ChatGPT [1]. Black tool names
are new in GPT4Tools.

Image Generation

Generate Image From User Input Text

Image Understanding
Detect the Given Object

Text Detection On Image

Generate Image Condition On Canny Image Segment the Image Detection
Generate Image Condition On Depth Get Photo Description Image Super-Resolution
Instruct Image Using Text Edge Detection On Image Crop the Given Object

Generate Image Condition On Sketch Image
Replace Something From The Photo
Generate Image Condition On Segmentations
Generate Image Condition On Pose Image

Generate Image Condition On Soft Hed Boundary Image

Generate Image Condition On Normal Map
Remove Something From The Photo
Generate 3D Asset From User Input Text

Predict Depth On Image
Line Detection On Image

Answer Question About The Image

Sketch Detection On Image
Pose Detection On Image
Hed Detection On Image

Predict Normal Map On Image

Segment the Given Object

Assess the Image Quality
Recognize Face
Detect Face

Distribution of Training Set

n2%

Distribution of Test Set

Detect the Give Object
Segment the Image

Get Photo Description

Generate Image From User Input Text

Edge Detection On Image

Generate Image Condition On Canny Image
Predict Depth On Image

Generate Image Condition On Depth
Answer Question About The Image

Instruct Image Using Text

Sketch Detection On Image

Generate Image Condition On Sketch Image.
Generate Image Condition On Segmentations
Pose Detection On Image

Generate Image Condition On Pose Image
Hed Detection On Image

Generate Image Condition On Soft Hed Boundary Image.
Predict Normal Map On Image.

Generate Image Condition On Normal Map
Line Detection On Image

Segment the given object

Remove Something From The Photo
Replace Something From The Photo
Negative Sample

Text Detection On Image

Detect Face

Recognize Face

Assess the Image Quality

Crop the Given Object

Image Super-Resolution

Detection

Generate 3D Asset From User Input Text

Figure 1: Data distribution of GPT4Tools. The purple piece refers to negative samples, while the

others are positive samples.

“Equal contribution. I Work done during an internship at Tencent.

Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1.1 Training Set

The training set of GPT4Tools has 71.4K instruction-following data, which includes 35.7K items
using tools. Note that these instruction-response pairs are generated from 41K items in ijr since
some actions require two tools. The instructional data in the training set involves 23 tools whose
names are shown in Table | (marked in gray). The distribution of these 23 tools is illustrated on the
left of Figure 1. We employ this training set to instruct the language model to invoke tools.

1.2 Evaluation Set.

The evaluation set consists of two parts: validation set and test set.

Validation. The validation set has 1170 samples in total, which includes the same tools as the training
set. The number of each tool is almost 50. This set contains some augmented samples as the training
set. Thus, it is utilized to verify the effectiveness of the language model in understanding tools after
fine-tuning with the training set.

Test. The test set includes 8 tools unseen by the training set. All unseen tool names are marked in
black and shown in Table 1, and their detailed definitions are shown in Table 2. The total number
of samples is 652, whose distribution is shown on the right of Figure 1. As this set only involves
single-turn samples, it is used to evaluate the zero-shot capability of invoking tools by the language
model.

2 Prompt

Tool Prompt. The proposed GPT4Tools supports 31 tools, including 23 tools defined in Visual
ChatGPT [1] and 8 new tools. They are dependent on image generation models (e.g. ControlNet [2],
Stable Diffusion [3], InstructPix2Pix [4], and Shape-E [5]), and image understanding models (e.g.
SAM [6], BLIP [7], MMDetection [8], MMOCR [9], MMagic [10], Face Recognition !, Ground-
ingDINO [11], and others [12-29].). All tool names are summarized in Table 1, where black texts are
the newly defined tools. Detailed descriptions of the new tools are illustrated in Table 2, in which the
prompt defines the usage scenario of the tool and its arguments.

Generation Prompt. We encouraged the GPT-3.5 (gpt-3.5-turbo) [30] to generate instruction-
following data by utilizing the prompt outlined in Table 3. Subsequently, we filtered out noisy
instructions, as exemplified in Table 5. Based on the retained data, we performed augmentation
following the steps described in § 3, resulting in the tool-related dataset.

Tool-Usage Prompt. During replying to the user command, we encouraged the fine-tuned language
model to invoke tools by prompt shown in Table 4. In this prompt, the <image content> will be
replaced with the predicted image caption if the <user input> requires the image content as the
precondition.

3 Case Study

Noise During the Generation of Instructions. While ChatGPT [30] or GPT-4 [31] have demon-
strated the ability to generate high-quality data [32, 33], there still are some noises in the generated
data. For instance, Table 5 shows three kinds of cases with noise, including the sample with error
format, the sample with error arguments, and the sample assigned error tools. Therefore, a practical
and effective filtering step is necessary when using data generated by large language models.

Bad Cases of GPT-3.5. As shown in Table 7 and 8, the GPT-3.5 [30] invokes the wrong tools to
response the user command. Therefore, when using a language model as a controller to build a
generalist model, it is advisable to employ our GPT4Tools to enhance the accuracy of language model
actions further.

"https://github.com/ageitgey/face_recognition

https://github.com/ageitgey/face_recognition

Table 2: Details of new tools.

No. Tool Name Input Output Prompt
1 Text Detection On Image image path text on the im- Useful when you want to detect the text in the
age image. The input to this tool should be a string,
representing the image_path.
2 Detection image path bounding Useful when you want to detect all objects of the
boxes of ob- image, but not detect a certain object according to
jects the text. like: detect all the objects in this image,

or detect this image. The input to this tool should
be a string, representing the image_path.

3 Image Super-Resolution image path image path Useful when you want to enhance the resolution
and quality of low-resolution images. like: en-
hance this image, restore this image. The input to
this tool should be a string, representing the im-

age_path.
4 Generate 3D Asset From User text image path Useful when you want to generate an 3D assert
Input Text from a user input text and save it to a file. like:

generate a 3D assert of an object or something. The
input to this tool should be a string, representing
the text used to generate the 3D assert.

5 Crop the Given Object image path, ob- image path Useful when you want to crop given objects in

ject name the picture. The input to this tool should be a
comma separated string of two, representing the
image_path, the text description of the object to be
cropped.

6 Assess the Image Quality image path quality score Useful when you want to give a quality score for
the input image. like: assess a quality score for
this image, what is the quality score of this image,
or can you give a quality for this image. The input
to this tool should be a string, representing the
image_path.

7 Recognize Face image path text Useful when you only want to recognize faces in
the picture. like: recognize who appears in the
photo. The input to this tool should be a string,
representing the image_path.

8 Detect Face image path image path Useful when you only want to detect out or tag
faces in the picture. like: find all the faces that ap-
pear in the picture. tag someone in the picture. The
input to this tool should be a string, representing
the image_path.

Table 3: Generation Prompt. During generation, <caption> will be replaced with the ground-truth
caption and bounding boxes. Green words are the desired instructions.

Given an image whose image path is example.png. Image caption: <caption>. The image
caption includes detailed image description and each object paired with the bounding box
(21, y1, 22, y2). For the bounding box, (21, y1) refers to the top left, and (22, y2) refers to
the bottom right. 1 less than x2, and y1 less than y2.

Below are NV visual tools. Each tool is defined as "<tool name>: <usage scenario>, and
<arguments>". Please generate 1 visual instruction for each tool, so you need to generate N
visual instruction in total.

The generated instructions should follow the format of"'<instruction>, [<tool name>,
<arguments>]". Each instruction must relate to the caption and can be solved by the tool.
You can not revise the "<tool name>", or add any other fake tools that are not defined. You
must keep the correct "<arguments>".

Tools:
<tool name>: <usage scenario>, <arguments>

Note that your generated visual instructions should be related to the image caption extremely.
Please generate complex and deceptive instructions as much as possible.

Table 4: Tool-Usage Prompt. During inference, <image content> will be replaced with the result
from image caption tools, and <user input> will be filled with the user command.

GPT4Tools can handle various text and visual tasks, such as answering questions and pro-
viding in-depth explanations and discussions. It generates human-like text and uses tools to
indirectly understand images. When referring to images, GPT4Tools follows strict file name
rules. To complete visual tasks, GPT4Tools uses tools and stays loyal to observation outputs.
Users can provide new images to GPT4Tools with a description, but tools must be used for
subsequent tasks.

Tools:
<tool name>: <usage scenario>, <arguments>

To use a tool, please use the following format:

Thought: Do I need to use a tool? Yes

Action: the action to take, should be one of <tool name list>
Action Input: the input to the action

Observation: the result of the action

When you have a response to say to the Human, or if you do not need to use a tool, you must
use the format:

Thought: Do I need to use a tool? No
AI: [your response here]

Follow file name rules and do not fake non-existent file names. Remember to provide the
image file name loyally from the last tool observation.

Previous conversation:

Human: Provide an image named. Description: <image content>
Al Received.

New input: <user input>

GPT4Tools needs to use tools to observe images, not directly imagine them. Thoughts and
observations in the conversation are only visible to GPT4Tools. When answering human
questions, repeat important information. Let’s think step by step.

Table 5: Cases of noise during the generation. (X) indicates the noise examples, while (¢) indicates
the corrected examples.

Error Format

(X) Segment the young boy swinging the bat [Segment the Given Object, "example.jpg, young
boy swinging the bat"] (The instruction is not separated by a comma.)

(v/) Segment the young boy swinging the bat, [Segment the Given Object, "example.jpg,
young boy swinging the bat"]

Error Arguments
(X) Make the image look like a painting, [Instruct Image Using Text, "painting"]
(v/) Make the image look like a painting, [Instruct Image Using Text, "example.png, painting"]

Error Tools

(X) Generate a real image of a cake and pie display from a sketch, [Generate Image Condition
On Canny Image, "example.png, sketch of a cake and pie display"]

(¢/) Generate a real image of a cake and pie display from a sketch, [Generate Image Condition
On Sketch Image, "example.png, sketch of a cake and pie display"]

4 Experiment Settings

We benchmark tool-usage ability of the language model using a self-built dataset. The fine-tuning
configuration is recorded in Table 6.

Table 6: Fine-tuning configuration.

Hyper-parameters Vicuna [34] & LLaMA [35] OPT [36]
optimizer AdamW [37] AdamW [37]
learning rate 3e-4 1.2e-4
warm steps 100 100
weight decay 0.0 0.0
optimizer momentum 51, $2=0.9, 0.999 51, $2=0.9, 0.999
batch size 512 512
epoch 3 3

max length 2048 2048
LoRA [38] attention dimension (r) 16 16
LoRA [38] scaling alpha («) 16 16
LoRA [38] drop out 0.05 0.05

Table 7: Incorrect example from GPT-3.5 (text-davinci-003) [30].

Instruction:

GPT4Tools can handle various text and visual tasks, such as answering questions and providing in-depth
explanations and discussions. It generates human-like text and uses tools to indirectly understand images.
When referring to images, GPT4Tools follows strict file name rules. To complete visual tasks, GPT4Tools uses
tools and stays loyal to observation outputs. Users can provide new images to GPT4Tools with a description,
but tools must be used for subsequent tasks.

Tools:

> Get Photo Description: useful when you want to know what is inside the photo. receives image_path as

input. The input to this tool should be a string, representing the image_path.
> Answer Question About The Image: useful when you need an answer for a question based on an image.

like: what is the background color of the last image, how many cats in this figure, what is in this figure. The

input to this tool should be a comma separated string of two, representing the image_path and the question.
> Detect the Give Object: useful when you only want to detect or find out given objects in the pictureThe

input to this tool should be a comma separated string of two, representing the image_path, the text description

of the object to be found.

> Generate Image Condition On Pose Image: useful when you want to generate a new real image from both
the user description and a human pose image. like: generate a real image of a human from this human pose
image, or generate a new real image of a human from this pose. The input to this tool should be a comma
separated string of two, representing the image_path and the user description.

> Generate Image Condition On Sketch Image: useful when you want to generate a new real image from
both the user description and a scribble image or a sketch image. The input to this tool should be a comma
separated string of two, representing the image_path and the user description.

To use a tool, please use the following format:

Thought: Do I need to use a tool? Yes

Action: the action to take, should be one of [Get Photo Description, Answer Question About The Image,
Detect the Give Object, Generate Image Condition On Pose Image, Generate Image Condition On Sketch
Image]

Action Input: the input to the action

Observation: the result of the action

When you have a response to say to the Human, or if you do not need to use a tool, you must use the format:

Thought: Do I need to use a tool? No
Al: [your response here]

Follow file name rules and do not fake non-existent file names. Remember to provide the image file name
loyally from the last tool observation.

Previous conversation:

Human: Provide an image named examples/hybowtyx.png. Description: An open bathtub with sliding glass
shower door. A bathroom with gray walls and a clear sliding door. A handicap accessible shower and tub
with a glass door. A bathtub shower combination with a hand shower and cradle. An enclosed shower with a
window and bathtub. Understand the image using tools.

Al: Received.

New input: What objects are on the sink?

GPT4Tools needs to use tools to observe images, not directly imagine them. Thoughts and observations in the
conversation are only visible to GPT4Tools. When answering human questions, repeat important information.
Let’s think step by step.

Thought: Do I need to use a tool?

(X) Response:

Thought: Do I need to use a tool? Yes

Action: Get Photo Description

Action Input: examples/hybowtyx.png

Observation: The image contains a bathtub with a sliding glass shower door, a bathroom with gray walls, a
clear sliding door, a handicap accessible shower and tub with a glass door, a bathtub shower combination with
a hand shower and cradle, and an enclosed shower with a window and bathtub.

(¢/) The Ground-truth Response:

Thought: Do I need to use a tool? Yes

Action: Answer Question About The Image

Action Input: examples/hybowtyx.png, what objects are on the sink
Observation: [output_from_vqa_tool]

Table 8: Incorrect example from GPT-3.5 (text-davinci-003) [30].

Instruction:

GPT4Tools can handle various text and visual tasks, such as answering questions and providing in-depth
explanations and discussions. It generates human-like text and uses tools to indirectly understand images.
When referring to images, GPT4Tools follows strict file name rules. To complete visual tasks, GPT4Tools uses
tools and stays loyal to observation outputs. Users can provide new images to GPT4Tools with a description,
but tools must be used for subsequent tasks.

Tools:

> Text Detection On Image: useful when you want to detect the text in the image. The input to this tool should
be a string, representing the image_path.

> Remove Something From The Photo: useful when you want to remove and object or something from the
photo from its description or location. The input to this tool should be a comma separated string of two,

representing the image_path and the object need to be removed.
> Hed Detection On Image: useful when you want to detect the soft hed boundary of the image. like: detect

the soft hed boundary of this image, or hed boundary detection on image, or perform hed boundary detection
on this image, or detect soft hed boundary image of this image. The input to this tool should be a string,

representing the image_path.
> Answer Question About The Image: useful when you need an answer for a question based on an image.

like: what is the background color of the last image, how many cats in this figure, what is in this figure. The
input to this tool should be a comma separated string of two, representing the image_path and the question.

To use a tool, please use the following format:

Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [Text Detection On Image, Remove Something From The Photo,

Hed Detection On Image, Crop Image, Answer Question About The Image]
Action Input: the input to the action
Observation: the result of the action

When you have a response to say to the Human, or if you do not need to use a tool, you must use the format:

Thought: Do I need to use a tool? No
Al: [your response here]

Follow file name rules and do not fake non-existent file names. Remember to provide the image file name
loyally from the last tool observation.

Previous conversation:

Provide an image named image/wuspouwe.png. Description: A man riding a snowboard down a snow covered
slope. A man is snowboarding down the snowy mountain. A person is snowboarding in a snowy wooded area.
A man in a red jacket snowboarding down a hill. A man is snowboarding alone with trees in the background.
Understand the image using tools.

Al: Received.

New input: What is the color of the man’s jacket?

GPT4Tools needs to use tools to observe images, not directly imagine them. Thoughts and observations in the
conversation are only visible to GPT4Tools. When answering human questions, repeat important information.
Let’s think step by step.

Thought: Do I need to use a tool?

(X) Response:

Thought: Do I need to use a tool? Yes
Action: Hed Detection On Image
Action Input: image/wuspouwe.png
Observation: The man’s jacket is red.

(¢) The Ground-truth Response:

Thought: Do I need to use a tool? Yes

Action: Answer Question About The Image

Action Input: image/wuspouwe.png, what is the color of the man’s jacket?
Observation: [output_from_vqa_tool]

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Visual chatgpt:
Talking, drawing and editing with visual foundation models. arXiv preprint arXiv:2303.04671,2023. 1, 2

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models, 2023.
2

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, pages 10674-10685, 2022. 2

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing
instructions. arXiv preprint arXiv:2211.09800, 2022. 2

Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463,2023. 2

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023. 2

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. BLIP: bootstrapping language-image pre-
training for unified vision-language understanding and generation. In /CML, volume 162 of Proceedings
of Machine Learning Research, pages 12888—-12900. PMLR, 2022. 2

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng,
Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu
Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change
Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 2

Zhanghui Kuang, Hongbin Sun, Zhizhong Li, Xiaoyu Yue, Tsui Hin Lin, Jianyong Chen, Huagiang Wei,
Yiqin Zhu, Tong Gao, Wenwei Zhang, Kai Chen, Wayne Zhang, and Dahua Lin. Mmocr: A comprehensive
toolbox for text detection, recognition and understanding. arXiv preprint arXiv:2108.06543, 2021. 2

MMagic Contributors. MMagic: OpenMMLab multimodal advanced, generative, and intelligent creation
toolbox. https://github.com/open-mmlab/mmagic, 2023. 2

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang,
Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499, 2023. 2

Jianfeng Wang, Lin Song, Zeming Li, Hongbin Sun, Jian Sun, and Nanning Zheng. End-to-end object
detection with fully convolutional network. In CVPR, 2021. 2

Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu Zhang, Xingang Wang, and Jian Sun. Learning
dynamic routing for semantic segmentation. In CVPR, 2020.

Lin Song, Shiwei Zhang, Gang Yu, and Hongbin Sun. Tacnet: Transition-aware context network for
spatio-temporal action detection. In CVPR, 2019.

Lin Song, Yanwei Li, Zeming Li, Gang Yu, Hongbin Sun, Jian Sun, and Nanning Zheng. Learnable tree
filter for structure-preserving feature transform. NIPS, 2019.

Shiwei Zhang, Lin Song, Changxin Gao, and Nong Sang. Glnet: Global local network for weakly
supervised action localization. IEEE Transactions on Multimedia, 22(10):2610-2622, 2019.

Lin Song, Yanwei Li, Zhengkai Jiang, Zeming Li, Hongbin Sun, Jian Sun, and Nanning Zheng. Fine-
grained dynamic head for object detection. NIPS, 2020.

Jianwen Jiang, Yu Cao, Lin Song, Shiwei Zhang, Yunkai Li, Ziyao Xu, Qian Wu, Chuang Gan, Chi Zhang,
and Gang Yu. Human centric spatio-temporal action localization. In ActivityNet Workshop on CVPR,
2018.

Lin Song, Yanwei Li, Zhengkai Jiang, Zeming Li, Xiangyu Zhang, Hongbin Sun, Jian Sun, and Nanning
Zheng. Rethinking learnable tree filter for generic feature transform. NIPS, 2020.

Lin Song, Songyang Zhang, Songtao Liu, Zeming Li, Xuming He, Hongbin Sun, Jian Sun, and Nanning
Zheng. Dynamic grained encoder for vision transformers. NIPS, 2021.

https://github.com/open-mmlab/mmagic

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]
(32]

(33]

[34]

[35]

(36]

(371
[38]

Jinrong Yang, Lin Song, Songtao Liu, Zeming Li, Xiaoping Li, Hongbin Sun, Jian Sun, and Nanning
Zheng. Dbg-ssd: Dynamic ball query for efficient 3d object detection. arXiv preprint arXiv:2207.10909,
2022.

Rui Yang, Hailong Ma, Jie Wu, Yansong Tang, Xuefeng Xiao, Min Zheng, and Xiu Li. Scalablevit:
Rethinking the context-oriented generalization of vision transformer. In European Conference on Computer
Vision, pages 480-496. Springer, 2022.

Songyang Zhang, Lin Song, Songtao Liu, Zheng Ge, Zeming Li, Xuming He, and Jian Sun. Workshop on
autonomous driving at cvpr 2021: Technical report for streaming perception challenge. arXiv preprint
arXiv:2108.04230, 2021.

Rui Yang, Lin Song, Yixiao Ge, and Xiu Li. Boxsnake: Polygonal instance segmentation with box
supervision. arXiv preprint arXiv:2303.11630, 2023.

Chunming He, Kai Li, Yachao Zhang, Longxiang Tang, Yulun Zhang, Zhenhua Guo, and Xiu Li. Cam-
ouflaged object detection with feature decomposition and edge reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22046-22055, 2023.

Xuchong Zhang, Hongbin Sun, Shigiang Chen, Lin Song, and Nanning Zheng. Nipm-swmf: Toward
efficient fpga design for high-definition large-disparity stereo matching. IEEE Transactions on Circuits
and Systems for Video Technology, 29(5):1530-1543, 2018.

Chunming He, Kai Li, Yachao Zhang, Guoxia Xu, Longxiang Tang, Yulun Zhang, Zhenhua Guo, and Xiu
Li. Weakly-supervised concealed object segmentation with sam-based pseudo labeling and multi-scale
feature grouping. arXiv preprint arXiv:2305.11003, 2023.

Chunming He, Kai Li, Yachao Zhang, Yulun Zhang, Zhenhua Guo, Xiu Li, Martin Danelljan, and Fisher Yu.
Strategic preys make acute predators: Enhancing camouflaged object detectors by generating camouflaged
objects. arXiv preprint arXiv:2308.03166, 2023.

Chunming He, Kai Li, Guoxia Xu, Jiangpeng Yan, Longxiang Tang, Yulun Zhang, Xiu Li, and Yaowei
Wang. Hqg-net: Unpaired medical image enhancement with high-quality guidance. arXiv preprint
arXiv:2307.07829,2023. 2

OpenAl. Chatgpt. https://openai.com/blog/chatgpt/, 2023. 2, 6,7
OpenAl. Gpt-4 technical report, 2023. 2

Fabrizio Gilardi, Meysam Alizadeh, and Maél Kubli. Chatgpt outperforms crowd-workers for text-
annotation tasks. arXiv preprint arXiv:2303.15056, 2023. 2

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with gpt-4.
arXiv preprint arXiv:2304.03277, 2023. 2

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chat-
bot impressing gpt-4 with 90%* chatgpt quality. https://lmsys.org/blog/2023-03-30-vicuna/,
2023. 5

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023. 5

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022. 5

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In /CLR, 2019. 5

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022. 5

https://openai.com/blog/chatgpt/
https://lmsys.org/blog/2023-03-30-vicuna/

