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ABSTRACT

Large language models (LLMs) must often respond to highly ambiguous user re-
quests. In such cases, the LLM’s best response may be to ask a clarifying question
to elicit more information. Existing LLMs often respond by presupposing a single
interpretation of such ambiguous requests, frustrating users who intended a differ-
ent interpretation. We speculate this is caused by current preference data labeling
practice, where LLM responses are evaluated only on their prior contexts. To ad-
dress this, we assign preference labels by simulating their expected outcomes in
future turns. This allows LLMs to learn to ask clarifying questions when it can
generate responses that are tailored to each user interpretation in future turns. On
open-domain QA datasets with multiple annotations, we evaluate systems based
on their ability to ask clarifying questions to recover each user’s interpretation and
expected answer. We compare systems trained using our proposed preference la-
beling methods against standard methods, which assign preferences based on only
prior context. Our method achieves a 5% improvement in F1 measured against the
answer set from different interpretations of each query, showing the value of mod-
eling future conversation turns. We further demonstrate that our method can be
used to train models to judiciously determine when to ask clarifying questions,
directly answering the question when clarification is unnecessary. In our exper-
iments, we find that our method achives a 3% improvement in accuracy of such
judgments over existing methods.

1 INTRODUCTION

Ambiguity is a hallmark of natural language that enables concise communication by allowing speak-
ers to exclude details that are inferable from the context (e.g., conversational, temporal, geographi-
cal) (Piantadosi et al., 2012). At times, however, the speaker’s intent is unclear despite the context,
and further interaction is necessary to clarify their intent. Asking clarifying questions is particularly
important for large language models (LLMs), which are tasked with serving a wide audience, often
without access to the personalized context available in human interactions. In this work, we develop
LLMs that can ask clarifying questions to resolve ambiguity in their users’ requests.

State-of-the-art LLMs (OpenAI, 2023; Gemini Team, 2024) often do not ask clarifying questions
when presented with an ambiguous request, and instead respond directly by assuming the user’s
intent (see an example in Figure 1). We speculate that this tendency stems from a shortcoming in
their RLHF training pipelines, which utilize annotated preference data (Ouyang et al., 2022). In
standard preference data collection, annotators are given a conversation history and are tasked with
ranking options for the next assistant turn (Bai et al., 2022; Wang et al., 2024). These annotation
schemes only consider preferences over single-turns of interaction, making it difficult for annotators
to assess the utility of a clarifying question. Furthermore, this can lead to biases where annotators
prefer responses with complete but presumptuous answers over incomplete clarifying questions.

We propose an alternative method for annotating double-turn preferences over clarifying questions
where annotators interact with the LLM by providing their responses to clarifying questions and ob-
serving the LLM’s subsequent responses. Each annotator then assigns preferences based on whether
the completed interaction successfully fulfilled the request. When comparing multiple clarifying
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Who is the highest paid 
football player?

[A] Direct-Answer (⚽):
rinit = As of 2024, the 
highest-paid football players 
are Cristiano Ronaldo…
Φ(rinit ) = False

[B] Direct-Answer (🏈):
rinit = The highest-paid 
football player in the NFL for 
2024 is Joe Burrow…
Φ(rinit ) = False 

[Turn 1] User’s Input Query: x Users {u1 ,u2 ,u3 }

Single-Turn
Preferences

r 1
next =

Joe Burrow…

[Turn 2] LLM (M) Predicts
Single-Turn Responses: M(x) = rinit 

r 2
next = r 3

next  = Cristiano Ronaldo…

[Turn 3] Users Respond with
Clarifying Answers: ψ(x, yi , rinit ) = ai

[Turn 4] LLMs Predict Next 
Response: M(x, rinit, , ai ) = r i

next 

[D] Clarifying Question (🗓?):
rinit = Are you asking about a 
specific time period?

Φ(rinit ) = True 

a1=About 🏈

 a2 =About ⚽.

r 1
next = r 2

next = r 3
next = Cristiano Ronaldo…

User u1 Intends to ask: Who is the 
highest paid football player 🏈?
Expects Answer: y1= Joe Burrow

User u2 Intends to ask: Who is the 
highest paid football player ⚽?
Expects Answer: y2 = Cristiano Ronaldo

Double-Turn
Preferences 

If Φ(rinit ) = True, then 
continue interaction 

User u3 Intends to ask: Who is the 
highest paid football player ⚽?
Expects Answer: y3 = Cristiano Ronaldo

a3 = About ⚽.

[C] Clarifying Question (🏈-or-⚽?):
rinit = Are you asking about American 
Football or Soccer?

Φ(rinit ) = True 

❌ ✅ ✅ ❌
✅ ❌ ✅ ✅

User 1
Users 2, 3

[A] [B] [C] [D]
Majority Best 
Response: [C]

❌ ✅ ❌ ❌
✅ ❌ ❌ ❌

User 1
Users 2, 3

[A] [B] [C] [D]
Majority Best 
Response: [A]

1 2 2
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F1 (R, { y1 , y2 , y3 })

[A] [B] [C] [D]

a1= Currently a3 = Currently

 a2 = Currently

Evaluation Metrics
1

0.8

Figure 1: Our interaction scenario and preference labeling schemes. We aim to build an LLM that
can interact with user to generate the final answer set R, containing an answer for each user, for
the input query x. In this example, we include two responses from state-of-the-art LLMs ([A] from
GPT-4 and [B] from Gemini, full responses in Appendix A), which both presuppose an interpreta-
tion of the word football. We also include two clarifying responses ([C] and [D]) where [C] correctly
disambiguates the two intended interpretations across all users. We depict two ways to assign pref-
erences on LLM’s initial output, single-turn and our proposed double-turn.

questions and direct answer responses, each annotator’s preferences are aggregated to identify the
response that maximizes preference across all annotators. We depict our proposed double-turn pref-
erence annotation method and compare against standard methods in Figure 1.

To demonstrate the benefits of training LLMs to ask clarifying questions with double-turn prefer-
ences, we experiment on open-domain QA (Chen et al., 2017). We develop an automatic evaluation
framework for evaluating clarifying questions that use simulated user interactions (Section 2). We
evaluate systems on two axes: efficiency measured by the number of model turns and effectiveness
measured by F1 score between the predicted answer set for each user and their expected gold answer.

Our experimental results show that training systems with double-turn preferences outperforms train-
ing with standard preferences annotation methods (Zhu et al., 2023), resulting in consistent 4-5%
improvement in F1 score over three base LLMs (Dubey et al., 2024; Mesnard et al., 2024). We also
demonstrate that double-turn preferences can be used to train systems that determine if clarification
is needed, or if the user’s question can be answered without additional interaction.

We summarize our contributions below:
• We establish an automatic framework for evaluating double-turn interaction involving clarifying

question. Our framework includes a user simulation model and automatic evaluation metrics
measuring the system’s ability to predict outputs that are tailored to each user efficiently.

• We develop a double-turn preference annotation method for labeling preferences over clarifying
question and direct response that utilizes the outcomes in later turns of interaction.

• Our results on Open-Domain QA datasets (Kwiatkowski et al., 2019; Min et al., 2020) demon-
strate that training systems to ask clarifying questions using our double-turn preferences improves
QA performance over training with standard single-turn preferences. We also show that training
with double-turn preferences can teach models to judiciously decide when to ask for clarification.

Our evaluation paradigm and preference labeling scheme can further support future research in de-
veloping interactive LLM assistants. We release all code and data at https://github.com/
mikejqzhang/clarifying_questions.
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2 TASK: QA WITH SIMULATED USER INTERACTION

We chose to study open-domain QA, as it is both prevalent in real user-assistant interactions (Zhao
et al., 2024) and the scope of necessary clarification questions is not immediately identifiable from
the input or the task. For simplicity, we choose a well-studied short factoid QA setting (Kwiatkowski
et al., 2019; Min et al., 2020) where an answer to the question consists of a few tokens. Below, we
describe our task and evaluation metrics. Figure 1 contains an example of task scenario.

2.1 INTERACTION SCENARIO

Setting / Goal: We assume an input query x, which can be potentially ambiguous, and a set of k
users u1, ...uk who posed the input query x. Each i-th user ui has an disambiguated intent for query
(xi) and an expected gold answer (yi). Our goal is to build a system M that returns an answer set
R that can satisfy as many users as possible (by providing the expected answer yi for each user ui)
with the minimum number of interactions (measured by the number of model turns).

We will have a simple function ϕ(M(x)) that returns True if M(x) is a clarifying question, and
False otherwise. We further assume an oracle user simulation model ψ(x, rinit, yi) = ai, that takes
first turn input x, model’s initial output M(x), and i-th user’s targeted answer yi, that generates a
response to the model’s initial response M(x).

Dialogue Turns: In the initial turn, user poses the input query x. In the second turn, given the
input query x, the system M is to generate its initial response (rinit). Depending on whether rinit is a
question, it will trigger different dialogue trajectories.

• Double-turn Scenario If the initial response is a clarifying question (ϕ(rinit)=True), we continue
the conversation with the user simulation model. For each of i-th user, the evaluation system
generates a third turn (ai) with the user simulation model ψ(x, rinit, yi) = ai. For the fourth
turn, the system will take each of the k interaction traces (x, rinit, ai) to generate the fourth turn
response for i-th user M(x, rinit, ai) = r

i
next. The final output answer set from the system will be

a set of k answers R = {r1next, r
2
next, ...r

k
next}, where each rinext is a response for i-th user.

• Single-turn Scenario Otherwise if ϕ(rinit)=False, we will consider the model output R = {rinit}
as the final prediction. To allow a model that does not generate clarifying questions to generate
multiple answers, we sample multiple answers from the model, up to k answers. The final answer
set in this case will be R = {r1init, ...r

k
init}.

Existing QA models mostly generates an single answer to the initial input query x, even when the
query is ambiguous. Such systems that predict an answer without first confirming the user’s intent
may mislead users with incorrect answers and fail to serve the entirety of their user population. In
this work, we explore methods for QA-with-Clarification, where models can ask the user a clarify-
ing question q and observe the user’s response a before predicting an answer. A system can also
sometimes poses a clarifying question and sometimes directly answer (Zhang & Choi, 2023a).

Evaluations: We evaluate the system in two axis: efficiency and effectiveness. To measure effi-
ciency, we simply measure the average number of total turns from the system. For unambiguous
inputs, asking clarifying question is unnecessary. If the system can satisfy users without incurring
additional interaction, such system should be preferred.

To measure effectiveness, we use F1 between the model generated answer set (R) and the gold
reference answer set ({y1, ..yk}). When evaluating QA-with-Clarification systems, we additionally
enforce that answers must be correct for their corresponding clarifying answer. We hold QA-with-
Clarifications to this higher standard, as it aligns with our goal of to developing systems that can
identify different user interpretations of a query and accurately predict corresponding answers.

2.2 EVALUATION FRAMEWORK IMPLEMENTATION

Data: We will leverage existing open-domain QA datasets (Kwiatkowski et al., 2019; Min et al.,
2020) where each query is paired with annotated answers from multiple annotators.

Identifying clarifying question ϕ(⋅): We will use a very simple method, which takes the input
string and check whether it starts with “Clarifying Question:”.
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User Simulation Model ψ for Turn 3: We use GPT-4 as our oracle user simulation model (ψ).
We prompt GPT-4 with the input query x, clarifying question q, and target answer yi and task it
with generating a corresponding clarifying answer ((x, q, yi) → ai). We prompt GPT-4 to abstain
from providing a clarifying answer ai if it judges that none exists. This happens when the clarifying
question does not address the ambiguity in the query, hence we count the resulting target answer
prediction rinext as incorrect. We further ensure that the generated clarifying answers do not leak the
target answer by removing instances where the target answer yi appears in the predicted clarifying
answer ai, treating such examples the same as abstains from GPT-4 (full prompt in Appendix C).

3 FINE-TUNING LLMS TO ASK CLARIFYING QUESTIONS

We present our approach to build a model that can engage with users for a multi-turn interaction, ask
clarifying question when it can satisfy more users in the future turns. Following the standard RLHF
training pipeline (Ouyang et al., 2022), we first construct an instruction tuning dataset focusing on
clarifying responses as desired outputs. We then use this constructed dataset for supervised finetun-
ing (SFT), before performing preference learning between two possible responses. We first describe
our method for constructing this instruction tuning dataset before introducing our annotation scheme
for assigning preferences over clarifying questions.

3.1 PREFERENCE DATA GENERATION FROM USER-LLM INTERACTIONS

Our method for labeling preferences deviates from standard annotation methods (Bai et al., 2022;
Wang et al., 2024) in two ways. First, we simulate an additional interaction with the user and derive
reward from the LLM’s final response after the additional turn. Second, we expect multiple anno-
tators for each example. By using multiple human annotators to identify a set of expected answers,
we simulate each annotator’s interactions with the LLM and their preferences. While prior work has
explored using multiple annotator judgments in single-turn preference datasets (Wang et al., 2024;
Kopf et al., 2023), these works aggregate annotator judgments via majority choice to generate a
single preference label per example. This practice, however, can lead to adverse outcomes where
systems whose outputs are catered toward a single, majority accepted response (Fleisig et al., 2023;
Santy et al., 2023). In contrast, we use preferences across multiple annotators without removing
individual annotator judgments, helping us identify whether a clarifying question or direct-answer
response successfully accommodates the range of different annotator’s interpretations.

In our annotation scheme (depicted in Figure 2), annotators are provided an input query x with sev-
eral candidate clarifying question q and direct-answer responses ŷ. They respond to each clarifying
question by providing the clarifying answer that corresponds to their interpretation. We then show
annotators the model’s final output prediction, given each clarification. Annotators then assign their
preferences over clarifying questions and direct-answer responses based on whether the final out-
put matched their expected interpretation. We then aggregate these preferences to identify which
response was preferred by the most annotators.

To prevent systems from asking unnecessary clarifying questions, ties between direct-answer and
clarifying question responses are broken by favoring the direct-answer response. The final aggre-
gated preferences can then be used in conjunction with standard RL methods from human prefer-
ences for training. While this annotation scheme can be applied to human annotators, in this work we
use simulated user interactions for annotation, simulating different users’ interactions from existing
datasets with multiple annotations (discussed below in Section 4).

Simulating User Interaction To simulate different user interpretations of the input query, we
utilize datasets consisting of an input query x and a set of correct answer outputs {y1, ..., yk}. For
each query, we use the set of gold outputs to simulate k different users, one for each answer in
{a1, ..., ak} which are identified by multiple human annotators (we discuss how these annotations
are sourced in Section 4). We then simulate the behaviors of each of these users and their responses
to a proposed clarifying question q using a trained user-simulator model, which takes as input query
x, clarifying question q, and the user’s annotated answer yi and is trained to predict the user’s
clarifying answer (x, q, yi) → ai. While we use prompted GPT-4 to simulate clarifying answers
from users for evaluation, during training we use this trained user-simulator model to reduce costs
and to ensure that our systems do not overfit to a particular user-simulator method.
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Input Query
x = How many 
medals did the US 
win in the 2016 
olympics?

User 1 Clarifying A:
a1= All sports.

Output:
ŷ2=121

Output:
ŷ1=121 

User 2 Clarifying A:
a2= All sports.

User 1 Clarifying A:
a1= Gold Medals.

Output:
ŷ2=121

Output:
ŷ1=46

User 2 Clarifying A:
a2= All Medals.

Clarifying Question:
q1 = Which sport are 
you asking about?

Clarifying Question:
q2 = Are you asking 
about all medals or 
gold medals?

User 1 Expected 
Answer:
y1 = 46

User 2 Expected 
Answer:
y2 = 121

[T1] Users ask
Input Query (x)

[T2] LLM generates a
Clarifying Question (x) → q

or Direct-Answer (x) → ŷ

[T3] Simulate each
User’s Clarifying Answer

(x, q, yi ) → ai

[T4] LLM predicts 
an Output:

(x, q, ai ) → ŷi

User 1 (Expects y1 = 46)
q1  lead to ŷ1=121 → ❌
q2  lead to ŷ1=46 → ✅

User 2 (Expects y2 = 121)
q1  lead to ŷ1=121  → ✅
q2  lead to ŷ1=121 → ✅

Users Judge [T2] 
Options by comparing

EM( ŷi , yi )

x = How many 
bridges in the city 
of pittsburgh?

Clarifying Question:
q1 = Are you asking 
about all bridges or 
only ones in current 
use?

Direct-Answer:
ŷ2  = 446

User 1 Expected 
Answer:
y1 = 446

User 2 Expected 
Answer:
y2 = 446

User 1 Clarifying A:
a1= All bridges.

Output:
ŷ2=446

Output:
ŷ1=446 

User 2 Clarifying A:
a2= All bridges.

User 1 (Expects y1 = 121)
q1  lead to ŷ1=446 → ✅
ŷ2  lead to ŷ1=446 → ✅

User 2 (Expects y2 = 121)
q1  lead to ŷ1=446 → ✅
ŷ2  lead to ŷ1=446→ ✅

Aggregated Rankings
User 1 prefers q1

Both Users prefer q2

⇒ q2 is preferred overall

Aggregating Rankings
Both Users prefer q1 and ŷ2 . Ties favor the Direct-Answer Response. 

⇒  ŷ2  is preferred overall

Figure 2: Depiction of our preference annotation method. Here, simulated users provide their responses to
model-generated clarifying questions and determine preference based on which clarifying question or direct-
answer responses lead to their expected answer. We then aggregate preferences across users by selecting the
response that is preferred by the most users while minimizing the number of user interactions turns.

Answer Prediction / Assigning Preferences Conditioning on the simulated clarifying answer,
our LLM model predicts the output ŷi, (x, q, ai) → ŷi. As a last step, we aggregate annotator
preferences so that clarifying questions are ranked by their EM accuracy, evaluated against each
annotator’s expected answer: ∑k

i=1 EM(ŷi, yi)/k. To rank direct-answer responses, which only
predict a single answer ŷ, we similarly evaluate the EM accuracy of the predicted answer ŷ against
each annotator’s expected answer. To prevent systems from asking unnecessary clarifying questions,
we favor the direct-answer response in the case of ties. We then use these aggregated rankings to
determine the pairwise preference labels between responses for training.

4 EXPERIMENTAL SETTINGS

Models We use Llama2-7b (Touvron et al., 2023), Gemma-7b (Mesnard et al., 2024), and Llama3-
8b (Dubey et al., 2024) as our base LLMs. We forego using the instruction-tuned models due to data
leakage concerns, as such systems are finetuned on the entirety of NQ-Open. For training and
inference, we use 8-bit quantization (Dettmers et al., 2022) with LoRA (Hu et al., 2022; Dettmers
et al., 2024) (training details in Appendix C).

Data We perform our experiments on the NaturalQuestions (NQ-Open) (Kwiatkowski et al., 2019;
Lee et al., 2019) and AmbigQA (Min et al., 2020) datasets. In both of these datasets, each input
query x are associated with a set of possible output answers {y1, . . . , yk}. We describe each dataset
below, and provide details in Appendix A.

• NQ-Open is comprised of questions from Google search queries by real users. Each query is
annotated with answers from Wikipedia by up to five annotators; many questions (about 10% of
train and 42% of development set) in the dataset contain multiple distinct answers based on each
annotator’s judgment in interpreting the query and selecting the best answer span. The answers
sets identified by annotators for such examples can stem from a variety of ambiguities, from
formatting to ambiguities resulting in semantically distinct answers (examples in Appendix A).

• AmbigQA additionally annotates a subset of NQ-Open whether the question is ambiguous. If the
input is ambiguous, annotators then provide the additional answers to other possible interpreta-
tions of the query. This process identifies about 56% of all queries in NQ-Open as ambiguous,
and recovers 2.6x more answers to ambiguous questions.
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Direct Ans SFT 

Clarify DPO 
(Likelihood, Match)

Clarify-or-Direct 
Ans DPO

Base LLM

Clarify-or-Direct Ans 
SFT 

Ans-After-Clarify
SFT 

vs.

Clarify DPO
(RM)

Double turn scoring

vs.
Single turn scoring

Clarify SFT 

vs.
Double turn scoring

vs.Clarify Responses
(x) → q   From Clarify SFT Model

Answer Responses
(x) → y  From Direct Ans SFT Model

Responses for Preference Learning

Supervised Fine-Tuning Data

Ans-After-Clarify:
(x, q, a) → y

Direct Ans: (x) → y

Clarify: (x) → q

User Simulator
(x, q, y) → a

User-Simulator
SFT 

Figure 3: Illustration of models in our study (right) and the data used for training them (left). Ans-After-
Clarify SFT model is used to generate responses for the fourth turn, User-simulator SFT model is used to
generate responses for the third turn. All other models generate responses for the 2nd turn.

We evaluate on AmbigQA test set (n=1960). In addition to evaluating over the Full test set, we ad-
ditionally report performance on splits of Unambiguous questions (788 questions with one answer
each) and Ambiguous questions (1,172 questions averaging 3.7 answers each).

Supervised Finetuning (SFT) Dataset Generation To generate examples for SFT training, we
prompt GPT-4 with an input query x and a set of feasible answers Y = {y1, . . . , yk} and task it
with proposing a clarifying question q that will help determine which answer the questioner expects.
Our prompt also tasks GPT-4 with predicting responses to the clarifying question for each one of
the feasible answers {(a1, y1), . . . , (ak, yk)}, if it determines one exists. We use the same GPT-4
prompt to construct all examples SFT training, and introduce two methods for generating feasible
answer sets Y for a given query x.

• Answers from Human Annotations: We use the ambiguous queries from the AmbigQA training
and development splits and their annotated answers as the feasible answer set Yhuman. Identifying
ambiguities and labeling all possible answers is a challenging task for annotators, and thus this
data can be expensive to collect. Furthermore, we hypothesize that what is ambiguous for an LLM
often deviates from what is ambiguous for humans.

• Answers from Model Predictions: We build feasible answer sets Ymodel for queries in the NQ-
Open training set using answer candidates proposed by a base LLM. Prior work has demonstrated
that base LLMs are well calibrated in open-domain QA tasks with few-shot prompting (Kadavath
et al., 2022; Cole et al., 2023). Drawing on these observations, we construct a feasible answer set
Ymodel by sampling 5-shot predictions from Llama-2-7b (Touvron et al., 2023). For each query,
we sample 5-shot prompt and generate its greedy answer with temperature T = 0.0 and sample
an answer with T = 1.0. We repeat the process 10 times per query and remove repeated answers
to generate a set of model-identified feasible answers. We further filter examples where none of
the feasible answers match any annotated answers from NQ-Open.

For each method of generating feasible answer sets (Yhuman and Ymodel), we generate an SFT dataset
of 4,400 input query and clarifying question pairs (x, q), which we split into training (4,000) and de-
velopment (400) splits. Between both datasets, this gives us a total of 19,807 (x, q, ai, yi) examples.
In Appendix A, we include examples and the exact prompts.

4.1 COMPARED SYSTEMS

Figure 3 summarizes all models used in our experiments. We have two types of models, model that
will be used at the second turn (which we refer as Turn 2 model) and model that will be used at
fourth turn (which we refer as Turn 4 model and notate as “Ans-After-Clarify” model in the figure).
The model that will be used at the second turn can ask clarification question or directly answer the
question. All models that are capable of asking clarification questions are paired with the same
Turn 4 model, which is trained over all generated SFT examples. We use a separate model for
performing this latter step to ensure that differences in performance only reflect the value of the
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clarifying question, and explore training joint models for both steps in Section 5. We describe each
of these below.

Direct Ans SFT This model is trained to predict the answer given the input query (x) → y. We
fine-tune base LLM with next-token prediction loss on the full set of question answer pairs (i.e.,
each (x, yi)) in our generated SFT training sets. We use this model under two inference settings:
(1) Greedy where we take the single greedy answer prediction and (2) Sampled where we sample
a set predicted answers from the LLM. We sample 20 answers from the model and select the top k
most frequent answers, where k matches the gold number of annotated answers.1

Clarify SFT This model is trained to ask clarifying question to input query. We finetune base LLMs
on our SFT datasets constructed with both human annotations and model predicted answers. In
Section 5, we provide ablation experiments training over each dataset to compare their utility.

Clarify DPO (RM, Likelihood, Match) These models are each fine-tuned from Clarify SFT model
with using DPO (Rafailov et al., 2023), a method for optimizing LLMs on preference data. It uses
the following loss for updating the policy LLM πθ based on the base reference policy πref , prompt
h, and preferred/rejected responses (rp, rr):

L(πθ, πref , rp, rr, h) = log σ(β log
πθ(rp∣h)
πref(rp∣h)

− β log
πθ(rr∣h)
πref(rr∣h)

)

where β is a hyperparameter and π(r∣h) is the predicted probability of generating r given the prompt
h. These models are provided the same response pairs sampled from Clarify SFT model,2 only
differing in how reward are assigned.

• RM: This uses off-the-shelf reward model to rank clarifying questions. We use the Starling-
RM-7B-alpha reward model (Zhu et al., 2023) which was finetuned on over 3.8M single-turn
preferences between the outputs from a variety of LLMs.

• Likelihood: In this method, clarifying questions are ranked by the summed likelihoods of gener-
ating each gold answer after observing the simulated users’ clarifying answers. Using likelihood
to score questions has been proposed in prior work studying clarifying question generation to
identify different user personas (Andukuri et al., 2024).

• Match: We rank clarifying questions by whether the predicted answer matches each user’s gold
answer after observing each simulated user’s clarifying answer, averaged over all simulated users.

Clarify-or-Direct Ans SFT / DPO We train a Clarify-or-Direct Ans SFT model on the union of all
data used to train our Clarify SFT and Direct-Ans SFT models above. To train our Clarify-or-Direct
Ans DPO model, wefurther train our Clarify-or-Direct Ans SFT model above using double-turn
preferences over clarifying question and direct-answer responses with the DPO learning objective.
To rank responses, we use answer matching as depicted in Figure 2. We perform DPO training over
pairwise comparisons from the same six candidate clarifying questions generated for our Clarify
DPO models above and the single greedy sampled direct-answer response generated from our Direct
Ans SFT model above.

5 RESULTS

We report our main results in Table 1, capturing the number of user turns in the conversation (# ↓)
and Answer F1. Overall, systems that are equipped to ask clarifying questions outperform Direct-
Ans models in effectiveness (Answer F1). Clarify-or-Answer methods strike a balance between
effectiveness and efficiency.

Training with our double-turn preference labeling scheme consistently achives the best answer F1,
with our match method yielding the best results overall. We observe mixed results from training
with single-turn RLHF annotations from the Starling RM: yielding positive results with Llama2 as
the base LLM and minor increases/decreases in performance for Gemma and Llama3 when evalu-
ated over both ambiguous and unambiguous queries. These results support our claim that single-turn

1In rare cases (< 2%), there are less than k unique answers within the 20 samples.
2We sample six candidate clarifying questions (one with T = 0.0 and five with T = 1.0) and form prefer-

ence pairs among them.
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Table 1: Main results, separated by systems that never clarify (# Turns = 1), always clarify (# Turns
= 2), or can do both (# Turns ∈ [1, 2]). The shaded blocks represent systems that simulate future
turns. Our method (Clarify DPO w/ Match) yields the optimal results in Answer F1 at the cost of
always asking clarifying questions. Our method that selectively asks clarifying questions (Clarify-
or-Direct-Ans DPO strikes a balance between efficiency (# Turns) and effectiveness (Answer F1).
Bold results denote statistically significant differences from all other methods with the same base
model (over N = 10, 000 samples with p < 0.01).

Llama2 Llama3 Gemma
# Answer F1 (↑) # Answer F1 (↑) # Answer F1 (↑)

(↓) Unamb / Amb / All (↓) Unamb / Amb / All (↓) Unamb / Amb / All
Direct-Ans SFT

w/ Greedy 1 25.4 / 16.8 / 21.1 1 31.2 / 19.2 / 24.8 1 26.1 / 16.8 / 21.1
w/ Sampled 1 25.0 / 17.2 / 21.4 1 28.2 / 20.2 / 24.7 1 23.7 / 17.9 / 21.4

Clarify SFT 2 31.0 / 21.6 / 25.9 2 37.6 / 26.5 / 31.5 2 35.7 / 23.6 / 28.8
Clarify DPO

w/ RM 2 31.0 / 25.7 / 28.3 2 36.2 / 26.7 / 30.9 2 33.9 / 25.7 / 29.5
w/ Likelihood 2 30.2 / 23.9 / 27.2 2 43.5 / 29.6 / 359 2 37.3 / 26.8 / 31.5
w/ Match 2 38.3 / 28.2 / 32.8 2 42.9 / 3.17 / 36.5 2 40.7 / 28.6 / 33.9

Clarify-or-Direct-Ans
SFT 1.12 25.6 / 18.4 / 21.3 1.40 35.3 / 23.5 / 28.2 1.43 22.3 / 19.0 / 20.3
DPO 1.56 28.9 / 21.1 / 24.3 1.57 35.2 / 25.1 / 29.1 1.61 28.2 / 22.2 / 24.6

Table 2: Answer F1 results comparing training Clarify DPO (Ours) systems using SFT training on
clarifying questions generated from Yhuman or Ymodel answer sets or both.

SFT Data Llama2 (7b) Llama3 (7b) Gemma (7b)
Unamb Amb All Unamb Amb All Unamb Amb All

Human 28.8 23.6 25.9 40.1 30.9 34.9 37.9 27.4 32.3
Model 29.9 26.4 28.3 42.3 31.2 36.4 39.1 28.3 32.9
Both 38.3 28.2 32.8 42.9 31.7 36.5 40.7 28.6 33.9

RLHF annotation struggles to identify useful clarifying questions. In contrast, training with double-
turn preferences, where clarifying questions are assessed based on their later outcomes, demonstrates
consistent improvements in the LLM’s ability to generate useful clarifying questions, on both am-
biguous and unambiguous queries. This demonstrates that clarifying questions not only help models
disambiguate user intents for ambiguous queries, but also can help models recover correct answers
in general even for unambiguous queries. We include such example generations in Appendix D.

Ablations: Comparing Clarifying Question Generated with Human Annotated Answers vs.
Model Predicted Answers So far, we performed SFT training on the union of clarifying questions
generated from model-identified (Ymodel) and human-identified (Yhuman) feasible answer sets. Is
one of them more useful than the other? In Table 2, we compare performance using SFT examples
constructed from our Ymodel and Yhuman answer sets, after RLHF training with double-turn preference.

With Llama2 base model, we see clear improvements when using our model-ambiguity SFT dataset
over using our human-ambiguity dataset alone. These improvements even hold when evaluated
against the answer sets from AmbigQA, despite the fact that our human-ambiguity SFT dataset
was generated to distinguish between answers labeled in the AmbigQA training split. However, on
Gemma and LLama3, we find only minor improvements from training with model-ambiguity SFT
dataset. The model-ambiguity dataset was using feasible answer sets Ymodel from Llama2 predic-
tions. This gap suggests that constructing a model-ambiguity dataset that is specific to the base
model improves the resultant clarifying question quality.

A Joint Model for Asking Clarifying Questions and Predicting Answers Here,
Table 3: Answer F1 results comparing separate versus joint clar-
ifying question and answering models (Cl / Ans).

Llama2 (7b) Llama3 (7b) Gemma (7b)
Unamb Amb All Unamb Amb All Unamb Amb All

Separate 38.3 28.2 32.8 42.9 31.7 36.5 40.7 28.6 33.9
Joint 32.4 25.0 28.7 41.0 29.2 34.6 36.2 27.4 31.4

we experiment with using a sin-
gle LLM for both the clarifi-
cation (x → q) and answer
(x, q, ai → yi) conversation
turns. To create this joint model,
we take inspiration from prior
works demonstrating that aver-
aging the weights of multiple
finetuned models is a simple and effective approach to joining the capabilities of finetuned mod-
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els into a single LLM (Wortsman et al., 2022). We merge the LoRA parameter updates from our
clarification model (trained with preferences from full interactions) and the answer prediction mod-
els used in our main results (Table 1).

Table 3 compares the joint model against using separate LLMs for each conversation turn. Overall
performance degrades when using a joint model for both turns; however, we are still able to retain
most of the performance gains over Direct-Ans and QA-with-Clarification methods trained with
single-turn preferences. Future work may explore alternative training methods that mitigate the
performance degradation, such as using mixture-of-experts methods for LLMs (Jiang et al., 2024)
or improved multi-turn learning algorithms (Zhou et al., 2024b).

5.1 DETERMINING WHEN CLARIFYING QUESTIONS ARE NECESSARY

We further investigate our system’s ability to identify when clarifying questions are necessary. To
evaluate our Clarify-or-Answer model’s predictions, we report Direct-Answer Accuracy: Did the
the system correctly decide to directly answer the question when the question was unambiguous and
the greedy predicted direct-answer was correct. To determine whether the greedy predicted direct-
answer was correct, we decode our Clarify-or-Answer system’s greedy direct-answer prediction
for each input question. We also report Ambig Acc: the accuracy of a system’s clarify-vs-answer
predictions on the human ambiguous-vs-unambiguous labels.

Table 4: Additional results for Clarify-or-Answer
method (Llama2 model). We include the percent
of questions directly answered (DA%), and evalu-
ate using F1, Direct-Answer (DA) Acc., and Am-
big (A) Acc.
Method (DA%) Ans F1 ↑ DA Acc ↑ A Acc ↑

Random (44%) 23.4 55.4 52.1
Ours (44%) 24.3 61.9 53.7
Ours w/ ProCoT (35%) 15.6 60.1 49.2
Ours w/ PPDPP (46%) 23.9 57.7 59.0

We compare our models predictions (C-or-A-
Pred) against a random baseline and two addi-
tional methods, ProCot and PPDPP. To com-
pute the random baseline, we fix the per-
cent of direct-answer responses (DA%) to our
model’s clarify-or-answer predictions and ran-
domly sample DA% of predictions to directly
answer, and predict clarifying questions for the
remaining queries. ProCot Deng et al. (2023a)
utilizes a CoT prompt to determine whether
or not the input is ambiguous and a clarifying
question is necessary. In practice, we use the instruction-tuned variants of each base model to make
these predictions, as we find irregular behavior when applying the CoT prompt to non-instruction
tuned models. PPDPP Deng et al. (2023b) proposes a method for training an auxiliary model to
predict how models should respond. Here, we train an additional copy of the base model make the
binary prediction of whether asking a clarifying question is necessary for the system recover more
all answers. ProCot and PPDPP do not train models to what questions to ask, and are only designed
to predict whether clarifying is necessary. To evaluate these baselines, we pass their predictions to
our trained Clarify-or-Answer model, which then generate the clarifying question of direct answer
according to the baseline’s predicitons. We include implementation details in Appendix B.

We report our results with Llama2 in Table 4 (results with other base models in Appendix B). Our
Clarify-or-Answer system’s predictions consistently outperforms all baselines across all metrics ex-
cept Ambig Accuracy. Despite using a stronger base model (instruction tuned variant instead of base
model), the prompt-based method (ProCot Prompt) performs the worst, as it is not trained in-domain.
Training a separate model for ambiguity prediction (PPDPP) performs well, showing almost 10%
higher ambiguity accuracy than our full model. However, our method still outperforms this model in
answer accuracy. This demonstrates that our method (1) more frequently asks clarifying questions
when it’s useful to do so; and (2) avoids asking for clarification on ambiguous questions when the
model is not able to successfully use the clarifying question. The relatively large gains on Direct-
Answer accuracy compared to F1 indicate that we can expect performance on end-task metrics to
further improve with better clarifying question generation.

6 RELATED WORK

Ambiguity in NLP Ambiguity has been studied extensively in NLP in across a variety of tasks.
In machine translation, works have studied instances where sentences in a source language have
multiple valid translations in a target language (Fernandes et al., 2021; Lopes et al., 2020; Voita et al.,
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2019). In natural language inference (NLI), Nie et al. (2020) collected a dataset of highly cross-
annotated examples that contain high disagreement in annotator judgments. Liu et al. (2023) then
found that these disagreements are often the result of ambiguity in the input. Recent work has studied
various sources of ambiguity, from entity-linking (Lee et al., 2024), co-reference ambiguities (Yuan
et al., 2023), to temporal and geographical contexts (Zhang & Choi, 2021).

Uncertainty in LLMs Several recent works have studied calibration in LLMs, looking specifically
at the effects of RLHF training. Specifically, whereas likelihoods for base LLMs (i.e., pretrained)
tend to be well-calibrated for a variety of tasks (Cole et al., 2023; Kadavath et al., 2022), this be-
havior is lost after RLHF finetuning (OpenAI, 2023). Additionally, Zhou et al. (2024a) investigated
uncertainty-expression via epistemic markers generated by LLMs and found evidence that standard
single-turn RLHF training encourages over-confidence in LLM responses. Band et al. (2024) trained
an LLM to generate long-form text that includes confidence statements about its own generation.
Zhang & Choi (2023b) studied when uncertainty in predictions are caused by lack of knowledge or
by lack of clarification.

Clarifying Question Prior works for training LLMs to ask clarifying questions have focused on
settings where the types of clarification required are fixed by the task (i.e., there is fixed set of rele-
vant input features (Wei et al., 2018; Kuhn et al., 2022)) or the input (e.g., reading-comprehension
tasks where the context contains multiple correct answers (Guo et al., 2021)). Such works have
studied clarifying question generation for a variety of tasks, including gauging social and moral
situations (Pyatkin et al., 2022) and image classification (Yu et al., 2019).

Closely related to our work, Andukuri et al. (2024) trained LLMs to ask clarifying questions to
resolve task ambiguity, where a single request may have multiple different indented tasks depending
on the user, after user simulation. Compared to their experimental setting of simulated user persona
for open-ended tasks, we address real-world open domain question answering task. Furthermore,
we leverage preference optimization framework while they focus on generating supervised fine-
tuning data by filtering low-quality clarifying questions. Hong et al. (2023) also uses LLM-simulated
dialogues for training. Recent work has also noted the scarcity of clarifying questions in responses
from existing LLMs, and have studied promoting methods for eliciting such responses with greater
frequency (Deng et al., 2023a; Shaikh et al., 2023). Li et al. (2023) found that clarifying questions
can be useful for learning individualized preferences.

7 LIMITATIONS AND FUTURE WORK

We only consider systems for one or two turn interactions and does not consider cases where asking
additional clarifying questions might be helpful after observing the user’s clarifying answer. Future
work might explore methods for extending our evaluation framework and double-turn preference
annotation methods to accommodate general multi-turn interactions with users. Furthermore, the
systems explored in this work also do not model dialogue acts (Stolcke et al., 2000) outside of
predicting a single answer or asking a clarifying question. At times, it might be more appropriate
for LLMs to generate responses for different behaviors (e.g., Overton responses containing multi-
ple answers if there are only a few possible interpretations. Long vs. short answers for complex
queries. Abstaining in lieu of predicting erroneous answers). Future work might consider how clar-
ifying questions should be used in conjunction with other strategies. Another important direction
is extending double-turn preference method for other tasks. Our evaluation framework is intended
to be easily adaptable, only requiring (1) multiple annotator labels for expected outputs and (2) an
changing end-task evaluation metric for the new setting.

8 CONCLUSION

We propose a method for training LLMs to ask clarifying questions with double-turn preferences and
an an automatic framework for evaluating systems that ask clarifying questions using user simulated
user interactions. Our QA results demonstrate that training systems to ask clarifying questions with
double-turn preferences improves performance over training with standard single-turn preference
labels and can be used to train models to judiciously decide when to ask for clarification.
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A DATASET DETAILS

In Table 5, we provide examples from AmbigQA and NQ-Open with differing answer sets. These
examples highlight instances where relying on a multiple annotators to provide the answer versus
relying on a single annotator to provide all possible answers yielded differing answer sets.

A.1 HUMAN AND MODEL AMBIGUITY SFT AND RLHF TRAINING DATASET DETAILS

In Table 8, we report dataset statistics for or two SFT datasets. Note that (x, q) pairs are used for
SFT training for our clarifying question asking (x→ q) systems. Additionally, the (x, q, a, y) pairs
are used for training our joint and separate systems for predicting QA answers given clarification
(x, q, a → y) as well as our user simulator models (x, q, y → a). We also use these pairs for
training our direct QA systems (x→ y), ignoring the clarifying question and answer. In Table 9, we
include several examples from each dataset, highlighting the differences in the ambiguities identified
in each.

For RLHF training, we use examples from the NQ-Open training set after removing examples used
to generate our SFT datasets from NQ-Open. This leaves us with 70,904 remaining input questions,
which we split into training and develpent splits (64,584 and 6,320).

B ADDITIONAL EXPERIMENTS

B.1 CLARIFY-OR-ANSWER BASELINES

Here, we describe the additional baselines introduced in Section 5.1.

Proactive chain-of-thought (ProCoT) prompt Deng et al. (2023a) presents a chain-of-thought
prompt method for instructing LLMs to first determine whether or not an input question is ambigu-
ous before generating a direct-answer or clarifying question response. The need for instruction-
following abilities for this baseline necessitates using the instruction-tuned variants of each base
model. Therefore, performance of this approach may be inflated due to the stronger base model.

Plug-and-Play Dialogue Policy Planner (PPDPP) Deng et al. (2023b) proposes a SFT and RL
methods for training a separate model predicting the proper dialogue act for the next assistant turn.
Because their method is not designed to train systems to generate responses, only to decide which
type or response to predict, we train a separate PPDPP model from our base LLM via SFT. This
system is trained over the SFT training sets over the gold dialogue act: clarify if the question is
ambiguous or directly answer otherwise. We do not include their RL method, as the authors report
comparable performance with and without additional RL training. We found training to be hyper
parameter sensitive, with the suggested hyperparameter training systems to always select a single
option. Using this trained system, we then use its predictions to determine whether to predict a
clarifying question or direct-answer response using our Clarify-or-Direct Ans DPO model.

B.2 ADDITIONAL RESULTS

In Table 6, we report the additional results comparing different methods for determining when clar-
ifying questions are necessary with additional base models (Llama3 and Gemma). We find that the
ProCot Chain-of-Thought prompt yields degenerate behavior when used with the instruction tuned
Gemma and Llama3 models, failing to ever predict to directly answer a question. When looking at
the other methods, we find similar trends to the results from Llama2 discussed in Section 5.1.

C EXPERIMENTAL DETAILS

We perform all experiments on a single machine with 8 A40 (48GB) GPUs using the transformers
library (Wolf et al., 2020) and the AdamW optimizer (all training runs completed within 24 hours).
During SFT training, we train all models with a learning rate of 5e-5 and batch size of 32. Training
was performed for up to 5 epochs, evaluating on our development set after each epoch and selecting
using the best performing checkpoint.
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Question NQ-Open Annotations AmbigQA Annotations
Answers Is Ambiguous? Answers

Who is singing in the {“Ray Charles”, No {“Jamie Foxx”}
background of gold digger? “Jamie Foxx”}
How much does a 2004 {“1,162 - 1,315 kg”, No {“2,562–2,900 lb”}
chevy cavalier weight? “2,562 - 2,900 lb” }
What season does meredith {“Season 7”} Yes {“Season 5”,
and derek get married “Season 7”}
in grey’s anatomy?

When did the soviet union {“29 August 1949”} Yes {“29 August 1949”,
test its first atomic bomb? “7:00 a.m”}
When did the soviet union {“29 August 1949”} Yes {“29 August 1949”,
test its first atomic bomb? “7:00 a.m”}

Table 5: QA examples differing labeled answer sets form NQ-Open and AmbigQA.

Table 6: Llama3 Results for Clarify-or-Answer methods. For each model, we include the percent of
questions directly answered (DA%), and evaluate using F1, Direct-Answer Acc., and Ambig Acc.

Base Model Method (DA%) Ans F1 Direct-Answer Acc Ambig Acc

Llama3
Random (43%) 24.5 55.6 51.1
Ours (43%) 25.1 59.2 54.0
PPDPP (60%) 22.2 45.3 53.4

Gemma
Random (38%) 23.6 60.0 52.1
Ours (38%) 24.6 64.1 54.3
PPDPP (54%) 21.7 50.8 56.7

For DPO training, we merge LoRA checkpoints from our SFT-only baseline and train using a KL
regularization factor of 0.1 and a learning rate of 5e-6 in all experiments. For training was per-
formed for up to 2 epochs until loss converges on development data, selecting the best performing
checkpoint on development data. For Llama2-7b based methods, we train with a batch size of 32,
evaluating every 750 steps. For Gemma-7b based methods we train with a batch size of 16, evaluat-
ing every 1500 steps.

For performing additional SFT training to create our joint models for asking clarifying questions and
answering with clarification, we merge LoRA checkpoints again and use the same hyperparameters
used for standard SFT training listed above.

D EXAMPLE OUTPUTS

We include examples of models successfully using clarifying questions to predict the target answers
for ambiguous (in Table 14) and unambiguous test queries (in Table 13).

E LICENSING

The transformers library is licensed under Apache License 2.0. AmbigQA does not list any license;
however NaturalQuestions, the dataset which it is based on, is under Apache License 2.0. Llama2
is licensed under the LLAMA 2 Community License Agreement. Gemma is licensed under the
Gemma Terms of Use. We license all our created assets under CC BY-NC-SA 4.0.
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Input Query: Who is the highest paid football player?

GPT-4 Response (104 words):
As of 2024, the highest-paid football players are Cristiano Ronaldo and Karim Benzema, both
earning around C200 million per year. Ronaldo plays for Al Nassr, and Benzema is with Al
Ittihad, both in the Saudi Pro League.

Following them, N’Golo Kanté and Neymar each earn approximately C100 million annually,
also playing in the Saudi Pro League for Al Ittihad and Al Hilal, respectively. Kylian Mbappé
is the highest-paid player outside the Saudi Pro League, with a salary of C70 million at Paris
Saint-Germain.

These figures reflect the significant financial influence of the Saudi Pro League, which has at-
tracted many top players with lucrative contracts.

Gemini Response (30 words):
The highest-paid football player in the NFL for 2024 is Joe Burrow, the quarterback for the
Cincinnati Bengals. He earns a whopping $55 million per year according to his contract.

Claude-3 Sonnet Response (112 words):
As of 2023, the highest paid football (soccer) player in the world is Kylian Mbappé of Paris
Saint-Germain. His reported annual salary is around C72 million (approximately $78 million).
Some other top highest-paid football players in 2023 include:

2. Lionel Messi (Paris Saint-Germain) - Around C41 million per year
3. Neymar (Paris Saint-Germain) - Around C36.5 million per year
4. Kevin De Bruyne (Manchester City) - Around C25 million per year
5. Robert Lewandowski (Barcelona) - Around C23.5 million per year

However, player salaries can fluctuate frequently with new contracts, bonuses and endorsements.
Mbappé’s new deal with PSG from 2022 made him the highest paid at the reported C72 million
annual wages.

Table 7: LLM responses to the input query. All responses were generated on May 21st, 2024.

SFT Dataset
Train Dev

(x, q) (x, q, a, y) (x, q) (x, q, a, y)
Human-Identified Ambiguity 4000 8781 400 889
Model-Identified Ambiguity 4000 9189 400 948

Table 8: SFT Dataset Statistics.
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Question (x) Clarifying Question (q) Clarifying Answers (ai) Answers
(yi)

where were the olympic
games held in greece

Are you asking about the an-
cient Olympic Games or the
modern Olympic Games?

Ancient Olympic Games /
Modern Olympic Games

Olympia /
Athens

who won the red army
or the white army

Are you asking about the Rus-
sian Civil War or a specific bat-
tle?

Russian Civil War / Specific
battle

The Red
Army / the
white army

who wrote ob la di ob la
da

Are you asking about the pri-
mary composer or the co-
writer?

Primary composer / Co-writer Paul Mc-
Cartney
/ John
Lennon

original singer of how
am i supposed to live
without you

Are you asking about the origi-
nal singer who first recorded the
song or the singer who popular-
ized it?

The original singer who first
recorded the song / The singer
who popularized the song

Laura
Branigan
/ Michael
Bolton

Table 9: Randomly sampled Model-Ambiguity SFT dataset examples.

Question (x) Clarifying Question (q) Clarifying Answers (ai) Answers
(yi)

Who played thanos in
gardians of the galaxy?

Are you asking about the ac-
tor who provided the voice for
Thanos, or the actor who physi-
cally portrayed him on screen?

The actor who provided the
voice for Thanos. / The actor
who physically portrayed him
on screen.

Isaac C.
Singleton
Jr. / Sean
Gunn

Where in the bible is
the story of samuel?

Are you asking for the specific
book and verses where the story
of Samuel is found, or are you
asking for the general section of
the Bible where the story is lo-
cated?

I’m asking for the specific book
and verses. / I’m asking for the
general section of the Bible.

1 Samuel
1:1–28 /
Hebrew
Bible

Most amount of points
scored in an nba game?

Are you asking about the most
points scored by a single player
in a game or the highest com-
bined score in a game?

Most points scored by a sin-
gle player / Highest combined
score in a game

100 / 370

Who has the highest
instagram followers in
the world?

Are you asking about the in-
dividual with the most follow-
ers on Instagram, or the account
with the most followers over-
all?

The individual with the most
followers / The account with the
most followers overall

Cristiano
Ronaldo /
Instagram

Table 10: Randomly sampled Human-Ambiguity SFT dataset examples.
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You will be given a question and several possible responses.
Possible responses may be correct due to an ambiguity in the question or when the question was asked.
Provide a clarifying question to determine which possible response is correct.
If one or zero of the possible responses are correct, respond with “None”.
Provide your output in the following format:

Clarifying Question: [Clarifying Question]
1. Clarifying Answer: [First Clarifying Answer]
1. Response: [Copied Response for First Clarifying Answer]
2. Clarifying Answer: [Second Clarifying Answer]
2. Response: [Copied Response for Second Clarifying Answer]
...

Question: {question}
Possible Responses:
{answers}

Table 11: Prompt used for generating our Human and Model Ambiguity SFT datasets with GPT-4.

Pretend that you are a user asking an AI assistant a question.
In response to your question, the AI assistant has asked you a clarifying question to help it determine
which answer you expect.
For each of the following expected answers, provide a clarifying answer to the AI assistant’s clarifying
question that indicates you are expecting that answer.
All clarifying answers should be a concise sentence or phrase and should not contain the expected
answer.
If there is no possible clarifying answer, respond with “None.” instead.
Provid your response in the following format:

Clarifying Answer 1: [Clarifying Answer for Expected Answer 1]
Clarifying Answer 2: [Clarifying Answer for Expected Answer 2]
...

Question: {question}
Clarifying Question: {clarify q}
{answers}

Table 12: GPT-4 prompt used for simulating user clarifying answers during evaluation. All evalua-
tions were carried out using the GPT-4 version gpt-4-0613.
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Table 13: Example predictions where asking clarifying questions helped recover the correct answer
to an unambiguous test query. Clarifying question predictions are taken from our LLama2-7B-based
Clarify DPO (Ours) model trained with double-turn preferences. We also include the predicted
LLama2-7B-based Direct-Ans SFT model predictions.

Question (x) Pred Clarifying Question
(q)

GPT-4 Clarifying An-
swers (ai)

Clarify
DPO
Pred Ans.
(ŷi)

Direct-
Ans SFT
Pred Ans.
(ŷi)

Gold Ans
(yi)

When does telltale’s
guardians of the galaxy
episode 3 come out?

Which platform are you
asking about for Tell-
tale’s Guardians of the
Galaxy Episode 3?

I’m asking about the re-
lease date on all plat-
forms.

August
22 , 2017

October
17, 2017

August
22 , 2017

When did gods not dead
3 come out

Which “God’s Not Dead
3” are you referring to?
The first, second, or third
installment?

I’m asking about the re-
lease date on all plat-
forms.

March 30
, 2018

April 2,
2018

March 30
, 2018

When did the sea of mon-
sters movie come out?

Which “Percy Jackson
and the Sea of Mon-
sters” movie are you ask-
ing about? The one re-
leased in 2013 or the one
released in 2022?

The one released in 2013. August 7 ,
2013

March 26,
2010

August 7 ,
2013

Who won the nobel prize
for peace in 2014?

Which individual or or-
ganization won the Nobel
Peace Prize in 2014?

The individuals who won Kailash
Satyarthi
and
Malala
Yousafzai

Kailash
Satyarthi

Kailash
Satyarthi
and
Malala
Yousafzai

How many islands are in-
cluded in the federated
states of micronesia?

Which specific islands
are you referring to?

I’m referring to all the is-
lands and islets that make
up the country.

607 is-
lands and
islet

600 607 is-
lands and
islet

Table 14: QA-with-Clarification predictions on unambiguous test queries from our LLama2-7B
model trained with double-turn preferences. We include examples where clarifying questions helped
the model recover multiple annotated answers.

Question (x) Pred Clarifying Question (q) GPT-4 Clarifying Answers (ai) Pred & Gold Ans. (ŷi, ŷi)
How many starbucks ? As of which date are you As of the end of 2018. (28,218, 28,218)
are there around the asking about the number As of the end of 2004. (6,000, 4,962)
world of Starbucks stores around As of the end of 2016. (23,768, 23,768)

the world? As of the end of 2017. (25,000, 30,000)

Who sang the original Which version of “Do You The version that was a (The Contours, The Contours)
do you love me? Love Me” are you referring hit in the 1960s.

to? The original song by
The Contours or the cover The version from the (Topol, Topol)
by The Partridge Family musical Fiddler on the Roof.

When did the queen Which specific queen are you Queen Victoria (20 June 1837, 20 June 1837)
became queen of referring to? Queen Elizabeth II (6 February 1952, 6 February 1952)
england? Queen Anne (8 March 1702, 1 May 1707)
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