A Q-value convergence

We here show that if a tabular agent converges to a policy ., in a continuous NDP then (); converges
to ¢, assuming that the agent updates its ()-values in an appropriate way. To prove this we will use
the following lemma:

Lemma 10. Let ((;, 0y, F}) be a stochastic process where (i, 6y, Fy : X — R satisfy

St+1(x) = (1 = Gel®e)) - 6¢(we) + Gele) - Fi()

withxy € X andt € N. Let P; be a sequence of increasing o-fields such that (y and dy are Py-
measurable and (;, 6; and Fy_1 are P;-measurable, t > 1. Then 0; converges to 0 with probability 1
if the following conditions hold:

1. X is finite.

2. Ci(xy) € 10,1) and Nz # 4 : G (z) = 0.

3.3, G(xe) = coand Y, (i(x4)? < oo with probability 1.

4. Var{Fy(x;) | P} < K(1 + £||6¢|00)? for some K € R and k € [0,1).

9

. NE{F: | Pi}Hloo < E||0¢]lco + ¢t where ¢, — O with probability 1 as t — cc.

where ||.|| is a (potentially weighted) maximum norm.
Proof. See Singh et al. (2000). O

We say that a (Q-value update rule is appropriate if it has the following form;

Qit1(ar | s¢) — (1 —ow(ar, st)) - Qelar | s¢) + aelar, s¢) - (e + v - Vee1(Se41)),

where ¥ (s) is an estimate of the value of s, and if moreover

lim E [ﬁt(s) — max Qi(a|s)| =0.

t—o0

Q-learning is of course appropriate. Moreover, SARSA and Expected SARSA are also both appropri-
ate, if the agent is greedy in the limit. Note that since R is bounded, Q;(a | s) has bounded support.
This means that if for all § > 0, P(Q¢(m(s) | s) < max, Qi(a | s) —d) — 0ast — oo, then
Eo~r, [Qt(a] 8)] = max, Q:(a | s) ast — oo.

Theorem 11. In any continuous NDP (S, A, T, R, ), if a tabular agent converges to a policy 7o,
then Q) converges to qr__, if the following conditions hold:

1. The agent updates its Q-values with an appropriate update rule.

2. The update rates oy (a,s) are in [0,1), and for all s € S and a € A we have that
> ai(a, s) = occand -, au(a, s)* < oo with probability 1.

Note that condition 2 requires that the agent takes every action in every state infinitely many times
Proof. Let

*+ X=5x4

* Gi(a,5) = ai(a, )

di(a,8) = Qu(a|s) = gr(a]s)

* Fi(a,s) =1+ v0e1(St41) — gro (@] )

Since S and A are finite, and since R is bounded, we have that condition 1 and 4 in Lemma 10 are
satisfied. Moreover, assumption 2 of this theorem corresponds to condition 2 and 3 in Lemma 10. It
remains to show that condition 5 is satisfied, which we can do algebraically:
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IB{F: | P}l

=max |E|r; + y0(s¢41) — Gn., (a | 3)} ‘
— max |E[r, -l-’}/H}lE}XQt(aI | $t41) — @u (@ | 8) + y0e(Se41) — ’}/H}ZE,%XQt(a/ ‘ sﬁl)} ’

-+ max

s,a

<max E|r Jr’YHla%tXQt(a' | $t41) — @roo(a | 5)] E[’Y’@t(stﬂ) — ymax Qi(a | $t+1)}|

Note that the second term in this expression is bounded above by

]E[@t(s) — max Q(a | 5)} ‘

max
s

Let us use k; to denote this expression. Since the ()-value update rule is appropriate we have that
ki — 0 ast — oco. We thus have:

= max E[r; + ymax Qu(a’ | s41) = drc (a | 8)]| + ke

We can now expand the expectations, and rearrange the terms:

=max
s,a

S P(T(s,0,m) =)

s’es
(E[R(s, a,s',m)] + vy max Qy(a’ | 8’))

— Z P(T(s,a,m0) = ")

s'eS

(E[R(s, a,s', Too)] +ymax gr, (| s’)) + ki
a

D> P(T(s,a,7m0) = 5')

s'eS

(E[R(s, a,s’,m)| + e Qu(d | s)—

=max
s,a

E[R(s,a, s Too)] — 7 mAX G, (a" ] 3’))

+ Z (IP’(T(&a,m) =s')—

s'esS

P(T (s, a, 7o) = s/)) X |+

where X = E[R(s, a, s, 7)]+ymax, Q:(a’ | ). Letd:(s, a) be the second term in this expression,
and let by(s,a,s’) = E[R(s,a,s’,m)] — E[R(s,a,s’,m)]. Since m; — 7o, and since T" and R
are continuous, we have that b;(s, a, s’) — 0 and d:(s,a) — 0 as t — oo (for any s, a, and s"). We
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thus have:

> P(T(s,a,m00) = )

s'es

= max
s,a

(7 max Qi(a’ | ') — ymaxq,_(a' | s')+
a’ a’

be(s,a, s’)) +di(s,a)| + k¢

< WH;iX‘Qt(a | 8) = gno (@] 8)’+

max |b;(s,a,s") + di(s,a) + k;
s,a,s’
= 7 max 6(8,&)’ + e =70t + ct

where ¢; = maxg o ¢ |b1(s,a,8") + di(s,a) + kt’. This means that

[E{F: | Pi}lloo < lI0tlloc + ¢t

where v € [0,1) and ¢; — 0 as ¢ — oo. Thus by lemma 10 we have that Q; converges to ¢,__. [

B Proof of Theorem 2

Theorem 2. Let A be a model-free reinforcement learning agent, and let 7, and QQ; be A’s policy
and Q-function at time t. Let A satisfy the following in a given NDP:

o Ais greedy in the limit, i.e. for all 6 > 0, P (Q¢(m(s))<max, Q¢(a | s) — ) = 0ast — oo
o A’s Q-values are accurate in the limit, i.e. if 74 — Too ast — 00, then Q¢ — qr_ ast — 0.

Then if A’s policy converges to T, then wy, is strongly ratifiable on the states that are visited
infinitely many times.

Proof. Let m;y — 7o and hence (); — ¢, . For strong ratifiability, we have to show that for
all actions o’ and states s, if a’ is suboptimal (in terms of true ¢ values) given m, in s, then
Too(d' | 8) = 0.

If @’ is suboptimal in this way, then there is § > 0 s.t.
qr(d' | 8) <maxgq,_(a]|s)—d.
a
Thus, since ¢y — ¢, it is for large enough ¢,

J

Qe 9) < maxQula | 9) - 5.

By the greedy-in-the-limit condition, m;(a’ | s) — 0. Because m; — 7o, it follows that 7, (a’ |
s) =0, as claimed.

C Proof of Theorem 3

Lemma 12 (Kakutani’s Fixed-Point Theorem). Let X be a non-empty, compact, and convex subset
of some Euclidean space R™, and let ¢ : X — 2% be a set-valued function s.t. ¢ has a closed graph
and s.t. ¢(x) is non-empty and convex for all © € X. Then ¢ has a fixed point.

Proof. See Kakutani (1941). ]

Theorem 3. Every continuous NDP has a strongly ratifiable policy.
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Proof. Let N = (S, A,Tn,Ry,vy) be a continuous NDP, and let N, be the MDP
(S,A,Tn_,Rn,,7) that is obtained by fixing the dynamics in N according to m — that is,
Tn,(s,a) = Tn(s,a,7), and Ry_(s,a,s') = Rn(s,a,s',7). Let oy : (S ~ A) — 2(5~4)
be the set-valued function s.t. ¢ (7) is the set of all policies that are optimal in N,;. We will show
that the graph of ¢y is closed and apply Kakutani’s fixed point theorem.

Suppose (7;) is a sequence of policies converging to o and suppose \; € ¢ (7;) is a sequence
converging to \g. For all sufficiently large 4, supp(\g) C supp()\;) (as the state and action spaces
are finite). Therefore for sufficiently large i, Ay € ¢n(m;). By the continuity with respect to 7 of
E[R | Ao] in Ny, Ao € ¢n(mp). Therefore, the graph of ¢ is closed.

The domain of ¢ is a non-empty, compact, convex subset of Euclidean space. Any MDP always has
an optimal policy, and so ¢ (-) is non-empty. Since N is an MDP ¢y () is a set of deterministic
policies and all their convex combinations, and so ¢y (-) is convex. Hence, by Kakutani’s Fixed
Point Theorem, there must be a 7 s.t. 7 € ¢ (7). Then 7 is strongly ratifiable in N. Hence every
continuous NDP has a strongly ratifiable policy. O

D Proof of Theorem 6

To prove Theorem 6, we first need to prove the following lemma.

Lemma 13. Let X; be a non-negative discrete stochastic process, indexed by t, and let F; denote the
history upto time t. Suppose X, is bounded, i.e. there exists B such that X, < B, and further that
| X¢+1 — X¢| < B/t. Suppose also that there exists € > 0 and b > 0 such that whenever X; < b,

€

Var(Xi41|Ft) > — 4

~

and

E[X¢ 1] Fe] — X¢ > 0. )
Then P(X; — 0) = 0.

Proof. Let a, = 22" and define the following sequences of events. Firstly, letting s,, denote
2n\ [AB2Y ok,
An == {Xan_H > Sn} (6)

and
A;L = A,V {Elt € [a'rL7 a'n-i-l] s.t. Xy > b}7 Q)

which tell us that at some point after time a,,, but not after a,, 1, the value of X} isn’t very small and
secondly
B, = {X; <bvt > a,}. ®)

This event is useful because it is implied by convergence to 0 and tells us that Equation 5 can be
applied.

We will show that two properties hold. Firstly that P(A!, A B, A {X; — 0}) < 272" and secondly
that P(A!,|F,,,) > 2/5 for all sufficiently large n.

From the second of these properties, and the fact that A, is 7, , measurable, it is immediate by
the argument of the Borel-Cantelli Lemma that, almost surely, A’ occurs infinitely often (i.0.) i.e.
for infinitely many n. From this and the fact that X; — 0 — (BnVn sufficiently large) we can

deduce the following

P(X; —0) 9)
=P(B, A {X: — 0}Vn sufficiently large) (10)
=P((A,, A B, A{X; — 0})i.0.) (11)
<P(3n > ms.t A, A B, AN{X; — 0}) (12)
< Z P(A!, A B, A{X; — 0}). (13)
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It is immediate from the first fact that this sum is convergent, and thus it must converge to zero as
m — 00, but m was arbitrary so P(X; — 0) = 0.

We now prove the first property. Note that if B,, occurs then A/, can only occur if A, occurs.
Thus P(A), A B, A {X; — 0}) < P(B, A {X; — 0}|A,). To see this is small, we consider an
augmentation of X, given by

X t < ani1
Vi=¢Yi1+ (Xe — Xi1) ‘> (14)
—E[X; — X;_4] L

Note that this process is a martingale (for ¢t > ap1), i.e. E[Y;y1|F:] = Y: forall t > ap41, and

that if B,, occurs then Y; < X, for all £ (by Equation 5). As Y is a martingale E[Y;|F,, ., = Yo, .
Furthermore we can compute as follows
Var(Y;|Fa, ) (15)
:E[(Y;& an+1) |~7:an+1] (16)
=E[( Z Y1 = Y2)? | Fa,] (17)
T=0n41
Z Z r+1 r Ys+1 - YS)“Fan+1] (18)
T=0n+41 S=An+1
t—1 -1
Yo D ElYes Y)Y = Yo)lFa- (19)

T=0n+1 $=0n+1

As Y is a martingale we have that this final expectation is zero unless r = s. To see this assume
WLOG that r > s and note that

E[( r+1 — r)(}/s—i-l - }/;)|fa7z+1] (20)
:E[E[( r+1 — Yr)(Ys+1 - s)|]:r]‘]:an+1] (21)
=E[E[(Yit1 — V)| Fr) (Yer1 — Yo)| Fanys] (22)
=E[0(Ys41 — Y5) [ Fa] (23)
=0. (24)

Putting these together, along with the fact that Y., 1 — Y,. < 2B/r (which follows from the similar
bound on difference in X'), we get that

t—1
Var(Ye| o)) = D E[(Yer1 = Y3)?| Fa,,] (25)
T=0n+1
<4B* Y (26)
r=an+41

Thus, for all t > a,,41, by Chebyshev’s inequality,

P(Y; < 0]A,) <P(|Y: — Yo, [>Ya, ., [An) (27)
<SP (|Y; = Ya, ., [>snlAn) (28)
o Var(Yi| Fa, )
< 872“ 29)
<o, (30)

Whilst by the final property if B,, occurs and X; — 0 then Y; < 7 for all sufficiently large ¢ for all
n > 0. Thus P(B, A {X; — 0}|A,)) < 272" and P(4], A B, A {X; — 0}) <2727,

We now prove that P(A], |]-'an +1) = 2/5 for sufficiently large n, where we have replaced n by
n + 1 for convenience. We again define Y; exactly as for the previous property and note again that
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it is a martingale and that, for t > a,, 11, 4B?/t> > Var(Y;,1|F;) > ¢/t%. Thus we can apply the
martingale central limit theorem (Hall and Heyde, 1980, Theorem 5.4) to conclude that, setting

02 = Var(Y,, , — Y, |Fa,), the distribution conditioned on F,, ,, of (Yy, ., — Ya..,)/0nt1

converges to a standard normal distribution as n — oo. Let Z have a standard normal distribution.

P(Ya71,+2 > 5n+1) :P((Ya71+2 - Yan+1>/gn+1 > (57l+1 - Yan+1)/‘7n+1)
=P ( Ant2 an+1)/a’ﬂ+1 > (5n+1 X“n«}»l)/an"'l)

(
P(( ant2 an+1 /UnJrl > 5n+1/0n+1)
—P(Z > hm Sn+1/0n+1)

=P(Z > 0) = 5
Where the limit in the probability was zero because s,,41 = O(2"+1=32"" ) and 7,11 = Q(2732").
Finally note that, X; > Y; for all ¢ < a,42 unless the event {Ja, 11 <t < anq28.t.X¢ > b}
occurs. So for sufficiently large n either {Ja,+1 <t < an+gs t.X; > b} or, with probability at
least 2/5, A, 41 occurs. Therefore, for sufficiently large n, P(A], | {|Fa,.,) > 2/5 and the proof is
complete.

Theorem 6. Let A be an agent that plays the Repellor Problem, explores infinitely often, and updates
its Q-values with a learning rate o that is constant across actions, and let 7, and Q; be A’s policy
and Q-function at time t. Assume also that for j # 14, if m(a;), m(a;) both converge to positive
values, then

mi(ai) — mi(a;)

— 5 = 0 2)

Qi(a;) — Qi(ay) as.

as t — oo. Then my almost surely does not converge.

Proof. We first need to establish the fact that (1/3,1/3,1/3) is the only strongly ratifiable policy. First,
if m(a;) < 1/4 for some j then E [R(a;, 7)) = m(a;41). Itis easy to see that for this reward function,
there is no strongly ratifiable policy other than the symmetric (1/3,1/3,1/3).

The other case of w(a;) > 1/4 for all j is harder. Finding strongly ratifiable policies in this range
gives rise to the following system of polynomial equations, constrained to py, p2, ps € [1/4,1]:

1 1 1
pL+4-13%p, <P1 - 4) <P2 - 4) <p3 - 4)

= z

1 1 1
4133 - - ) =

P2+ 3°p3 (pl 4> (pz 4) <p3 4) T
1 1 1

ps+4-13%py (p1—~ ) (p2— =) (ps— =) = =
4 4 4

p1+p2+ps = 1

Although this is non-trivial, it can be solved by computer algebra system.?> For completeness, we
would like to give a more human argument here. Consider the simpler system

p1+ Kps = pa+ Kp3 = p3 + Kp: (3D
p1+p2+p3=1 (32)

Note that for py, p2, p3 to satisfy the original system of equations, it has to satisfy the above system
of equations for a particular ' > 0. It turns out that even without knowing K, the unique solution
to this equation system is the symmetric p; = ps = ps. To prove this, assume that the three are
not the same. WLOG we can assume that p; is among the maxima of {p;, p2, p3}. Then we can
distinguish two cases: First, imagine that p; > ps > ps, where at least one of the two inequalities
is strict. Then because K > 0, it is p; + Kpy > ps + Kps, contradicting the first equality in line
31. Second, imagine that p; > ps > p2, where at least one of the inequalities is strict. Then it

*For example, in Mathematica, the following code identifies the unique solution (1/3,1/3,1/3):
Solve[(4%13°3) * pl * ((p1-1/4)*(p2-1/4)*(p3-1/4)) + p2 == (4*13°3) * p2 *
((p1-1/4)*(p2-1/4)*(p3-1/4)) +p3 == (4%13°3) * p3 * ((pl-1/4) * (p2-1/4)*(p3-1/4)) +
pl && pl+p2+p3==1 && pi>=1/4 && p2>=1/4 && p3>=1/4, pl,p2,p3]
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is p2 + Kp3 < p3 + Kp;, contradicting the second equality in line 31. In conclusion, it must be
p1 = p2 = p3 as claimed.

Now that we have shown that (1/3,1/3,1/3) is the only strongly ratifiable policy, we can conclude by
Theorem 2, that 7, almost surely does not converge to any policy other than (1/3,1/3,1/3). It now
only remains to show that 7, almost surely does not converge to (1/3,1/3, 1/3).

To show that 7; cannot converge to (1/3,1/3,1/3), we will analyze the history of what we will call
relative (empirical) Q-values, which we will denote by D, (a;, a;) = Q¢(a;) — Q¢(a;). In order to
converge to (1/3,1/3,1/3), the relative Q-values must all converge to 0. In particular, it has to be

Xe= Y |Diaj,a:)| =0, (33)

ai,aj:i<j
ast — oo.

We will show, however, that these values almost surely do not converge to O if the policies converge
to (1/3,1/3,1/3). Roughly, we show that when the relative Q-values are close to 0 and the agent acts
according to a policy that is close to (1/3,1/3, 1/3), the Q-values will in expectation be updated toward
the action that is currently most likely to be taken. Thus for large enough ¢, X; will always increase
in expectation. With some other easy-to-verify properties of X, we can then apply Lemma 13, which
gives us that almost surely the X; do not converge to 0 as ¢t — oo.

In order to prove that E [X; | F;_1] — X;—1 > 0 for large enough ¢ and assuming X; is close to 0
and ; close to (1/3,1/3,1/3), let a* € arg max, m¢(a). Because of stochasticity of the rewards and
by line 2, it is m,(a*) > 1/3 for large enough ¢. Further, let ¢~ € arg min, m(a). Itis m(a™) < 1/3.
Finally, let € = m;(a*) — m(a™).

The X; — X;_1 can be seen as the sum of three differences |D;(a;, a;)| — |Di—1(a;, a;)|. We start
with the difference for a* and a~. It is

E [|Di(a*,a7)| | Fiz1] — |Di—i(a*,a”)]

—au (E[R(a" )] ~ B[R0 m)]) — o (Qu-1(a”) — Qoo (a7)) oY
Now, assuming that 1 is close enough to (1/3, 1/, 1/3) that m(a;) > 1/4 + 1/13 for all j, it is
E [R(a",m)] — E [R(a™, )] (35)
= ()~ @) 4] 13 <7r(aj) - i) T r(aty) - wlaTy) (36)
> de-e j 37

It is left to estimate the other summands in the expectation of X; — X;_;. Consider any pair
of actions a;,a; with ¢ > j. Because |D;(a;,a;)| = |Di(aj,a;)|, we can assume WLOG that
Q¢—1(a;) > Q¢—1(a;), which for large enough ¢ also means m;(a;) > m:(a;). Thus, by similar
reasoning as before,

E[|Di(ai, a;)| | Fi—1] — |Di—1(aq, aj)|

—au (E[R(as, 7)] — E[R(a;,m))) — a (Qe1(a;) — Qi1 (ay). o9
and
E[R(a;,m)] — E[R(aj;,m)] > —e. (39)
Thus, overall for large enough ¢ we have
EX, | Fi] —Xio1 > e — oy Z Qi—1(ai) — Qi—1(aj) (40)

ai,a;:i<j

By line 2, € outgrows the differences in Q-values and therefore this term will be positive for all large
enough ¢, as claimed. O

19



E Proof of Theorem 7

Theorem 7. Assume that there is some sequence of random variables (e, > 0); s.t. €; A 0 and
— 00 a.s.
forallt € Nitis

Z m(a*) > 1 — ¢. 3)
a*€argmax, Q+(a)
Let PF — p™ with positive probability as t — oc. Then across all actions a € supp(p®), qa(a) is

constant.

Proof. Consider any a € supp(p>) that is played with positive frequency. Because exploration goes
to zero, almost all (i.e. frequency 1) of the time that a is played must be from 7, playing a with
probability close to 1. Therefore, whenever P o p~ it is

—00

. 41

Qula), = aula) @
Thus g, (a) must be constant across a € supp(p>), since otherwise the actions with lower values of
¢a(a) could not be taken in the limit. O

F Proof of Theorem 8

Theorem 8. Same assumptions as Theorem 7. If |supp(p™)| > 1 then for all a € supp(p®) there
exists ' € As.t. q(a') > qq(a).

Proof. Let |supp(p®)| > 1 and suppose that Ja € supp(p®) s.t.
Va' € A—{a}: qu(a') < qq(a). (42)

Policies close to 7, are almost surely played infinitely often. Every time 7' this happens we have
that Qr(a) > Qr(a’) forall ’ € A — {a}. Now it is easy to see that if 42 holds, then there is a
K s.t. every such time 7', there is a chance of at least K that for all t > T'itis Q;(a) > Q(a’) for
all a’ € A — {a}. Hence almost surely supp(p*) = {a}, which contradicts the assumption that
[supp(p™)| > 1. O

G Proof of Theorem 9

Theorem 9. Same assumptions as Theorem 7. Let U be the Q-value q,(a) which (by Theorem
7) is constant across a € supp(p®). For any a' € A — supp(p®) that is played infinitely often,
let frequency 1 of the exploratory plays of a' happen when playing a policy near elements of
{mo | a € supp(p*)}. Then either there exists a € supp(p®) such that q,(a’) < U; or qu/(a’) < U.

Proof. Suppose there is an a’ € A — supp(p®) for which both are false, i.e. g,(a’) > U for all
a € supp(p®), and g,/ (a’) > U. Frequency 1 of the time that a’ is played is when the policy is near
an element of {7, | a € supp(p*) U {a’}}, and so Q,(a’) converges to some convex combination
of gu(a’) for a € supp(p®) U {a’}. Therefore, in the limit Q;(a’) is bigger than U. But that is
inconsistent with a’ being played with frequency 0. O
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