
A Q-value convergence

We here show that if a tabular agent converges to a policy π∞ in a continuous NDP then Qt converges
to qπ∞ , assuming that the agent updates its Q-values in an appropriate way. To prove this we will use
the following lemma:
Lemma 10. Let �ζt, δt, Ft� be a stochastic process where ζt, δt, Ft : X → R satisfy

δt+1(x) = (1− ζt(xt)) · δt(xt) + ζt(xt) · Ft(xt)

with xt ∈ X and t ∈ N. Let Pt be a sequence of increasing σ-fields such that ζ0 and δ0 are P0-
measurable and ζt, δt and Ft−1 are Pt-measurable, t ≥ 1. Then δt converges to 0 with probability 1
if the following conditions hold:

1. X is finite.

2. ζt(xt) ∈ [0, 1] and ∀x �= xt : ζt(x) = 0.

3.
�

t ζt(xt) = ∞ and
�

t ζt(xt)
2 < ∞ with probability 1.

4. Var{Ft(xt) | Pt} ≤ K(1 + κ�δt�∞)2 for some K ∈ R and κ ∈ [0, 1).

5. �E{Ft | Pt}�∞ ≤ κ�δt�∞ + ct, where ct → 0 with probability 1 as t → ∞.

where �.�∞ is a (potentially weighted) maximum norm.

Proof. See Singh et al. (2000).

We say that a Q-value update rule is appropriate if it has the following form;

Qt+1(at | st) ← (1− αt(at, st)) ·Qt(at | st) + αt(at, st) · (rt + γ · v̂t+1(st+1)),

where v̂t(s) is an estimate of the value of s, and if moreover

lim
t→∞

E
�
v̂t(s)−max

a
Qt(a | s)

�
= 0.

Q-learning is of course appropriate. Moreover, SARSA and Expected SARSA are also both appropri-
ate, if the agent is greedy in the limit. Note that since R is bounded, Qt(a | s) has bounded support.
This means that if for all δ > 0, P(Qt(πt(s) | s) ≤ maxa Qt(a | s) − δ) → 0 as t → ∞, then
Ea∼πt

[Qt(a | s)] → maxa Qt(a | s) as t → ∞.
Theorem 11. In any continuous NDP �S,A, T,R, γ�, if a tabular agent converges to a policy π∞
then Qt converges to qπ∞ , if the following conditions hold:

1. The agent updates its Q-values with an appropriate update rule.

2. The update rates αt(a, s) are in [0, 1), and for all s ∈ S and a ∈ A we have that�
t αt(a, s) = ∞ and

�
t αt(a, s)

2 < ∞ with probability 1.

Note that condition 2 requires that the agent takes every action in every state infinitely many times

Proof. Let

• X = S ×A

• ζt(a, s) = αt(a, s)

• δt(a, s) = Qt(a | s)− qπ∞(a | s)
• Ft(a, s) = rt + γv̂t+1(st+1)− qπ∞(a | s)

Since S and A are finite, and since R is bounded, we have that condition 1 and 4 in Lemma 10 are
satisfied. Moreover, assumption 2 of this theorem corresponds to condition 2 and 3 in Lemma 10. It
remains to show that condition 5 is satisfied, which we can do algebraically:
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�E{Ft | Pt}�∞

=max
s,a

�����E
�
rt + γv̂t(st+1)− qπ∞(a | s)

������

=max
s,a

�����E
�
rt + γmax

a�
Qt(a

� | st+1)− qπ∞(a | s) + γv̂t(st+1)− γmax
a�

Qt(a
� | st+1)

������

≤max
s,a

�����E
�
rt + γmax

a�
Qt(a

� | st+1)− qπ∞(a | s)
������+max

s,a

�����E
�
γv̂t(st+1)− γmax

a�
Qt(a

� | st+1)
������

Note that the second term in this expression is bounded above by

max
s

�����E
�
v̂t(s)−max

a
Qt(a | s)

������

Let us use kt to denote this expression. Since the Q-value update rule is appropriate we have that
kt → 0 as t → ∞. We thus have:

= max
s,a

�����E[rt + γmax
a�

Qt(a
� | st+1)− qπ∞(a | s)]

�����+ kt

We can now expand the expectations, and rearrange the terms:

=max
s,a

�����
�

s�∈S

P(T (s, a,πt) = s�)

�
E[R(s, a, s�,πt)] + γmax

a�
Qt(a

� | s�)
�

−
�

s�∈S

P(T (s, a,π∞) = s�)

�
E[R(s, a, s�,π∞)] + γmax

a�
qπ∞(a� | s�)

������+ kt

=max
s,a

�����
�

s�∈S

P(T (s, a,π∞) = s�)

�
E[R(s, a, s�,πt)] + γmax

a�
Qt(a

� | s�)−

E[R(s, a, s�,π∞)]− γmax
a�

qπ∞(a� | s�)
�

+
�

s�∈S

�
P(T (s, a,πt) = s�)−

P(T (s, a,π∞) = s�)
�
·X

�����+ kt

where X = E[R(s, a, s�,πt)]+γmaxa� Qt(a
� | s�). Let dt(s, a) be the second term in this expression,

and let bt(s, a, s�) = E [R(s, a, s�,πt)] − E [R(s, a, s�,π∞)]. Since πt → π∞, and since T and R
are continuous, we have that bt(s, a, s�) → 0 and dt(s, a) → 0 as t → ∞ (for any s, a, and s�). We
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thus have:

= max
s,a

�����
�

s�∈S

P(T (s, a,π∞) = s�)

�
γmax

a�
Qt(a

� | s�)− γmax
a�

qπ∞(a� | s�)+

bt(s, a, s
�)
�
+ dt(s, a)

�����+ kt

≤ γmax
s,a

���Qt(a | s)− qπ∞(a | s)
���+

max
s,a,s�

���bt(s, a, s�) + dt(s, a) + kt

���

= γmax
s,a

���δ(s, a)
���+ ct = γ�δt�∞ + ct

where ct = maxs,a,s�
���bt(s, a, s�) + dt(s, a) + kt

���. This means that

�E{Ft | Pt}�∞ ≤ γ�δt�∞ + ct

where γ ∈ [0, 1) and ct → 0 as t → ∞. Thus by lemma 10 we have that Qt converges to qπ∞ .

B Proof of Theorem 2

Theorem 2. Let A be a model-free reinforcement learning agent, and let πt and Qt be A’s policy
and Q-function at time t. Let A satisfy the following in a given NDP:

• A is greedy in the limit, i.e. for all δ > 0, P (Qt(πt(s))≤maxa Qt(a | s)− δ) → 0 as t → ∞.
• A’s Q-values are accurate in the limit, i.e. if πt → π∞ as t → ∞, then Qt → qπ∞ as t → ∞.

Then if A’s policy converges to π∞ then π∞ is strongly ratifiable on the states that are visited
infinitely many times.

Proof. Let πt → π∞ and hence Qt → qπ∞ . For strong ratifiability, we have to show that for
all actions a� and states s, if a� is suboptimal (in terms of true q values) given π∞ in s, then
π∞(a� | s) = 0.

If a� is suboptimal in this way, then there is δ > 0 s.t.

qπ∞(a� | s) ≤ max
a

qπ∞(a | s)− δ.

Thus, since Qt → qπ∞ , it is for large enough t,

Qt(a
� | s) ≤ max

a
Qt(a | s)− δ

2
.

By the greedy-in-the-limit condition, πt(a
� | s) → 0. Because πt → π∞, it follows that π∞(a� |

s) = 0, as claimed.

C Proof of Theorem 3

Lemma 12 (Kakutani’s Fixed-Point Theorem). Let X be a non-empty, compact, and convex subset
of some Euclidean space Rn, and let φ : X → 2X be a set-valued function s.t. φ has a closed graph
and s.t. φ(x) is non-empty and convex for all x ∈ X . Then φ has a fixed point.

Proof. See Kakutani (1941).

Theorem 3. Every continuous NDP has a strongly ratifiable policy.
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Proof. Let N = �S,A, TN , RN , γ� be a continuous NDP, and let Nπ be the MDP
�S,A, TNπ , RNπ , γ� that is obtained by fixing the dynamics in N according to π – that is,
TNπ

(s, a) = TN (s, a,π), and RNπ
(s, a, s�) = RN (s, a, s�,π). Let φN : (S � A) → 2(S�A)

be the set-valued function s.t. φN (π) is the set of all policies that are optimal in Nπ. We will show
that the graph of φN is closed and apply Kakutani’s fixed point theorem.

Suppose (πi) is a sequence of policies converging to π0 and suppose λi ∈ φN (πi) is a sequence
converging to λ0. For all sufficiently large i, supp(λ0) ⊆ supp(λi) (as the state and action spaces
are finite). Therefore for sufficiently large i, λ0 ∈ φN (πi). By the continuity with respect to π of
E[R | λ0] in Nπ , λ0 ∈ φN (π0). Therefore, the graph of φN is closed.

The domain of φN is a non-empty, compact, convex subset of Euclidean space. Any MDP always has
an optimal policy, and so φN (·) is non-empty. Since Nπ is an MDP φN (π) is a set of deterministic
policies and all their convex combinations, and so φN (·) is convex. Hence, by Kakutani’s Fixed
Point Theorem, there must be a π s.t. π ∈ φN (π). Then π is strongly ratifiable in N . Hence every
continuous NDP has a strongly ratifiable policy.

D Proof of Theorem 6

To prove Theorem 6, we first need to prove the following lemma.

Lemma 13. Let Xt be a non-negative discrete stochastic process, indexed by t, and let Ft denote the
history upto time t. Suppose Xt is bounded, i.e. there exists B such that Xt ≤ B, and further that
|Xt+1 −Xt| < B/t. Suppose also that there exists � > 0 and b > 0 such that whenever Xt < b,

Var(Xt+1|Ft) ≥
�

t2
(4)

and
E[Xt+1|Ft]−Xt ≥ 0. (5)

Then P(Xt → 0) = 0.

Proof. Let an = 22
n

and define the following sequences of events. Firstly, letting sn denote
2n

�
4B2

�∞
t=an+1

1
t2 ,

An =
�
Xan+1

> sn
�

(6)

and
A�

n = An ∨ {∃t ∈ [an, an+1] s.t. Xt ≥ b} , (7)

which tell us that at some point after time an, but not after an+1, the value of Xt isn’t very small and
secondly

Bn = {Xt < b∀t ≥ an} . (8)

This event is useful because it is implied by convergence to 0 and tells us that Equation 5 can be
applied.

We will show that two properties hold. Firstly that P(A�
n ∧Bn ∧ {Xt → 0}) ≤ 2−2n and secondly

that P(A�
n|Fan

) ≥ 2/5 for all sufficiently large n.

From the second of these properties, and the fact that A�
n is Fan+1 measurable, it is immediate by

the argument of the Borel-Cantelli Lemma that, almost surely, A�
n occurs infinitely often (i.o.) i.e.

for infinitely many n. From this and the fact that Xt → 0 =⇒ (Bn∀n sufficiently large) we can
deduce the following

P(Xt → 0) (9)
=P(Bn ∧ {Xt → 0}∀n sufficiently large) (10)

=P((A�
n ∧Bn ∧ {Xt → 0}) i.o.) (11)

≤P(∃n > m s.t. A�
n ∧Bn ∧ {Xt → 0}) (12)

≤
∞�

n=m

P(A�
n ∧Bn ∧ {Xt → 0}). (13)

16



It is immediate from the first fact that this sum is convergent, and thus it must converge to zero as
m → ∞, but m was arbitrary so P(Xt → 0) = 0.

We now prove the first property. Note that if Bn occurs then A�
n can only occur if An occurs.

Thus P(A�
n ∧ Bn ∧ {Xt → 0}) ≤ P(Bn ∧ {Xt → 0}|An). To see this is small, we consider an

augmentation of Xt given by

Yt =




Xt t ≤ an+1

Yt−1 + (Xt −Xt−1)

− E[Xt −Xt−1]
t > an+1.

(14)

Note that this process is a martingale (for t > an+1), i.e. E[Yt+1|Ft] = Yt for all t > an+1, and
that if Bn occurs then Yt ≤ Xt for all t (by Equation 5). As Y is a martingale E[Yt|Fan+1

] = Yan+1
.

Furthermore we can compute as follows

Var(Yt|Fan+1
) (15)

=E[(Yt − Yan+1
)2|Fan+1

] (16)

=E[(
t−1�

r=an+1

Yr+1 − Yr)
2|Fan+1 ] (17)

=E[
t−1�

r=an+1

t−1�

s=an+1

(Yr+1 − Yr)(Ys+1 − Ys)|Fan+1 ] (18)

=

t−1�

r=an+1

t−1�

s=an+1

E[(Yr+1 − Yr)(Ys+1 − Ys)|Fan+1 ]. (19)

As Y is a martingale we have that this final expectation is zero unless r = s. To see this assume
WLOG that r > s and note that

E[(Yr+1 − Yr)(Ys+1 − Ys)|Fan+1 ] (20)
=E[E[(Yr+1 − Yr)(Ys+1 − Ys)|Fr]|Fan+1

] (21)
=E[E[(Yr+1 − Yr)|Fr)(Ys+1 − Ys)|Fan+1

] (22)
=E[0(Ys+1 − Ys)|Fan+1 ] (23)
=0. (24)

Putting these together, along with the fact that Yr+1 − Yr ≤ 2B/r (which follows from the similar
bound on difference in X), we get that

Var(Yt|Fan+1
) =

t−1�

r=an+1

E[(Yr+1 − Yr)
2|Fan+1

] (25)

≤ 4B2
∞�

r=an+1

r−2. (26)

Thus, for all t ≥ an+1, by Chebyshev’s inequality,

P(Yt < 0|An) ≤ P(|Yt − Yan+1
|>Yan+1

|An) (27)

≤ P
�
|Yt − Yan+1

|>sn|An

�
(28)

≤ Var(Yt|Fan+1
)

s2n
(29)

≤ 2−2n. (30)

Whilst by the final property if Bn occurs and Xt → 0 then Yt < η for all sufficiently large t for all
η > 0. Thus P(Bn ∧ {Xt → 0}|An) ≤ 2−2n and P(A�

n ∧Bn ∧ {Xt → 0}) ≤ 2−2n.

We now prove that P(A�
n+1|Fan+1

) ≥ 2/5 for sufficiently large n, where we have replaced n by
n+ 1 for convenience. We again define Yt exactly as for the previous property and note again that
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it is a martingale and that, for t ≥ an+1, 4B2/t2 ≥ Var(Yt+1|Ft) ≥ �/t2. Thus we can apply the
martingale central limit theorem (Hall and Heyde, 1980, Theorem 5.4) to conclude that, setting
σ2
n = Var(Yan+1 − Yan |Fan), the distribution conditioned on Fan+1 of (Yan+2 − Yan+1)/σn+1

converges to a standard normal distribution as n → ∞. Let Z have a standard normal distribution.

P(Yan+2 > sn+1) =P((Yan+2 − Yan+1)/σn+1 > (sn+1 − Yan+1)/σn+1)

=P((Yan+2
− Yan+1

)/σn+1 > (sn+1 −Xan+1
)/σn+1)

≥P((Yan+2
− Yan+1

)/σn+1 > sn+1/σn+1)

→P(Z > lim
n→∞

sn+1/σn+1)

=P(Z > 0) =
1

2

Where the limit in the probability was zero because sn+1 = O(2n+1−3·2n+1

) and σn+1 = Ω(2−3·2n).
Finally note that, Xt ≥ Yt for all t ≤ an+2 unless the event {∃an+1 ≤ t ≤ an+2s.t.Xt ≥ b}
occurs. So for sufficiently large n either {∃an+1 ≤ t ≤ an+2s.t.Xt ≥ b} or, with probability at
least 2/5, An+1 occurs. Therefore, for sufficiently large n, P(A�

n+1|Fan+1
) ≥ 2/5 and the proof is

complete.

Theorem 6. Let A be an agent that plays the Repellor Problem, explores infinitely often, and updates
its Q-values with a learning rate αt that is constant across actions, and let πt and Qt be A’s policy
and Q-function at time t. Assume also that for j �= i, if πt(ai), πt(aj) both converge to positive
values, then

πt(ai)− πt(aj)

Qt(ai)−Qt(aj)
→
a.s.

∞ (2)

as t → ∞. Then πt almost surely does not converge.

Proof. We first need to establish the fact that (1/3, 1/3, 1/3) is the only strongly ratifiable policy. First,
if π(aj) ≤ 1/4 for some j then E [R(ai,π)] = π(ai+1). It is easy to see that for this reward function,
there is no strongly ratifiable policy other than the symmetric (1/3, 1/3, 1/3).

The other case of π(aj) > 1/4 for all j is harder. Finding strongly ratifiable policies in this range
gives rise to the following system of polynomial equations, constrained to p1, p2, p3 ∈ [1/4, 1]:

p1 + 4 · 133p2
�
p1 −

1

4

��
p2 −

1

4

��
p3 −

1

4

�
= x

p2 + 4 · 133p3
�
p1 −

1

4

��
p2 −

1

4

��
p3 −

1

4

�
= x

p3 + 4 · 133p1
�
p1 −

1

4

��
p2 −

1

4

��
p3 −

1

4

�
= x

p1 + p2 + p3 = 1

Although this is non-trivial, it can be solved by computer algebra system.3 For completeness, we
would like to give a more human argument here. Consider the simpler system

p1 +Kp2 = p2 +Kp3 = p3 +Kp1 (31)
p1 + p2 + p3 = 1 (32)

Note that for p1, p2, p3 to satisfy the original system of equations, it has to satisfy the above system
of equations for a particular K > 0. It turns out that even without knowing K, the unique solution
to this equation system is the symmetric p1 = p2 = p3. To prove this, assume that the three are
not the same. WLOG we can assume that p1 is among the maxima of {p1, p2, p3}. Then we can
distinguish two cases: First, imagine that p1 ≥ p2 ≥ p3, where at least one of the two inequalities
is strict. Then because K > 0, it is p1 +Kp2 > p2 +Kp3, contradicting the first equality in line
31. Second, imagine that p1 ≥ p3 ≥ p2, where at least one of the inequalities is strict. Then it

3For example, in Mathematica, the following code identifies the unique solution (1/3, 1/3, 1/3):
Solve[(4*13ˆ3) * p1 * ((p1-1/4)*(p2-1/4)*(p3-1/4)) + p2 == (4*13ˆ3) * p2 *
((p1-1/4)*(p2-1/4)*(p3-1/4)) +p3 == (4*13ˆ3) * p3 * ((p1-1/4) * (p2-1/4)*(p3-1/4)) +
p1 && p1+p2+p3==1 && p1>=1/4 && p2>=1/4 && p3>=1/4, p1,p2,p3]
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is p2 +Kp3 < p3 +Kp1, contradicting the second equality in line 31. In conclusion, it must be
p1 = p2 = p3 as claimed.

Now that we have shown that (1/3, 1/3, 1/3) is the only strongly ratifiable policy, we can conclude by
Theorem 2, that πt almost surely does not converge to any policy other than (1/3, 1/3, 1/3). It now
only remains to show that πt almost surely does not converge to (1/3, 1/3, 1/3).

To show that πt cannot converge to (1/3, 1/3, 1/3), we will analyze the history of what we will call
relative (empirical) Q-values, which we will denote by Dt(aj , ai) = Qt(aj)−Qt(ai). In order to
converge to (1/3, 1/3, 1/3), the relative Q-values must all converge to 0. In particular, it has to be

Xt :=
�

ai,aj :i<j

|Dt(aj , ai)| → 0, (33)

as t → ∞.

We will show, however, that these values almost surely do not converge to 0 if the policies converge
to (1/3, 1/3, 1/3). Roughly, we show that when the relative Q-values are close to 0 and the agent acts
according to a policy that is close to (1/3, 1/3, 1/3), the Q-values will in expectation be updated toward
the action that is currently most likely to be taken. Thus for large enough t, Xt will always increase
in expectation. With some other easy-to-verify properties of Xt, we can then apply Lemma 13, which
gives us that almost surely the Xt do not converge to 0 as t → ∞.

In order to prove that E [Xt | Ft−1]−Xt−1 > 0 for large enough t and assuming Xt is close to 0
and πt close to (1/3, 1/3, 1/3), let a∗ ∈ argmaxa πt(a). Because of stochasticity of the rewards and
by line 2, it is πt(a

∗) > 1/3 for large enough t. Further, let a− ∈ argmina πt(a). It is πt(a
−) ≤ 1/3.

Finally, let � = πt(a
∗)− πt(a

−).

The Xt −Xt−1 can be seen as the sum of three differences |Dt(aj , ai)|− |Dt−1(aj , ai)|. We start
with the difference for a∗ and a−. It is

E
�
|Dt(a

∗, a−)| | Ft−1

�
− |Dt−1(a

∗, a−)|
=αt

�
E [R(a∗,πt)]− E

�
R(a−,πt)

��
− αt

�
Qt−1(a

∗)−Qt−1(a
−)

� (34)

Now, assuming that π is close enough to (1/3, 1/3, 1/3) that π(aj) ≥ 1/4 + 1/13 for all j, it is

E [R(a∗,πt)]− E
�
R(a−,πt)

�
(35)

= (π(a∗)− π(a−)) · 4
�

j

13

�
π(aj)−

1

4

�
+ π(a∗+1)− π(a−+1) (36)

≥ 4�− � (37)

It is left to estimate the other summands in the expectation of Xt − Xt−1. Consider any pair
of actions ai, aj with i > j. Because |Dt(ai, aj)| = |Dt(aj , ai)|, we can assume WLOG that
Qt−1(ai) > Qt−1(aj), which for large enough t also means πt(ai) > πt(aj). Thus, by similar
reasoning as before,

E [|Dt(ai, aj)| | Ft−1]− |Dt−1(ai, aj)|
=αt (E [R(ai,πt)]− E [R(aj ,πt)])− αt (Qt−1(ai)−Qt−1(aj)) .

(38)

and
E [R(ai,πt)]− E [R(aj ,πt)] ≥ −�. (39)

Thus, overall for large enough t we have

E [Xt | Ft]−Xt−1 ≥ αt�− αt


 �

ai,aj :i<j

Qt−1(ai)−Qt−1(aj)


 (40)

By line 2, � outgrows the differences in Q-values and therefore this term will be positive for all large
enough t, as claimed.
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E Proof of Theorem 7

Theorem 7. Assume that there is some sequence of random variables (�t ≥ 0)t s.t. �t →
t→∞ a.s.

0 and

for all t ∈ N it is �

a∗∈argmaxa Qt(a)

πt(a
∗) ≥ 1− �t. (3)

Let PΣ
t → pΣ with positive probability as t → ∞. Then across all actions a ∈ supp(pΣ), qa(a) is

constant.

Proof. Consider any a ∈ supp(pΣ) that is played with positive frequency. Because exploration goes
to zero, almost all (i.e. frequency 1) of the time that a is played must be from πt playing a with
probability close to 1. Therefore, whenever PΣ

t →
t→∞

pΣ it is

Qt(a) →
t→∞ a.s.

qa(a). (41)

Thus qa(a) must be constant across a ∈ supp(pΣ), since otherwise the actions with lower values of
qa(a) could not be taken in the limit.

F Proof of Theorem 8

Theorem 8. Same assumptions as Theorem 7. If |supp(pΣ)| > 1 then for all a ∈ supp(pΣ) there
exists a� ∈ A s.t. qa(a�) ≥ qa(a).

Proof. Let |supp(pΣ)| > 1 and suppose that ∃a ∈ supp(pΣ) s.t.

∀a� ∈ A− {a} : qa(a�) < qa(a). (42)

Policies close to πa are almost surely played infinitely often. Every time T this happens we have
that QT (a) ≥ QT (a

�) for all a� ∈ A − {a}. Now it is easy to see that if 42 holds, then there is a
K s.t. every such time T , there is a chance of at least K that for all t ≥ T it is Qt(a) > Qt(a

�) for
all a� ∈ A − {a}. Hence almost surely supp(pΣ) = {a}, which contradicts the assumption that
|supp(pΣ)| > 1.

G Proof of Theorem 9

Theorem 9. Same assumptions as Theorem 7. Let U be the Q-value qa(a) which (by Theorem
7) is constant across a ∈ supp(pΣ). For any a� ∈ A − supp(pΣ) that is played infinitely often,
let frequency 1 of the exploratory plays of a� happen when playing a policy near elements of
{πa | a ∈ supp(pΣ)}. Then either there exists a ∈ supp(pΣ) such that qa(a�) ≤ U ; or qa�(a�) < U .

Proof. Suppose there is an a� ∈ A − supp(pΣ) for which both are false, i.e. qa(a�) > U for all
a ∈ supp(pΣ), and qa�(a�) ≥ U . Frequency 1 of the time that a� is played is when the policy is near
an element of {πa | a ∈ supp(pΣ) ∪ {a�}}, and so Qt(a

�) converges to some convex combination
of qa(a�) for a ∈ supp(pΣ) ∪ {a�}. Therefore, in the limit Qt(a

�) is bigger than U . But that is
inconsistent with a� being played with frequency 0.
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