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A Some Prerequisite Definitions and Useful Lemmas627

Definition 3 (Wasserstein Distance). Let d(·, ·) be a metric and let P and Q be probability measures628

on X . Denote Γ(P,Q) as the set of all couplings of P and Q (i.e. the set of all joint distributions on629

X × X with two marginals being P and Q), then the Wasserstein Distance of order one between P630

and Q is defined as W(P,Q) ≜ infγ∈Γ(P,Q)

∫
X×X d(x, x′)dγ(x, x′).631

Definition 4 (Total Variation). The total variation between two probability measures P and Q is632

TV(P,Q) ≜ supE |P (E)−Q(E)|, where the supremum is over all measurable set E.633

Note that the total variation equals to the Wasserstein distance under the discrete metric (or Hamming634

distortion) d(x, x′) = 1(x ̸= x′) where 1 is the indicator function.635

Definition 5 (Lautum Information [43]). Define the lautum information between X and Y as636

L(X;Y ) ≜ DKL(PXPY ||PXY ).637
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The key quantity in most information-theoretic generalization bounds is the mutual information638

between algorithm’s input and output. Specifically, the core technique behind these bounds is the639

well-known Donsker-Varadhan representation of KL divergence [47, Theorem 3.5].640

Lemma A.1 (Donsker and Varadhan’s variational formula). Let Q, P be probability measures on641

Θ, for any bounded measurable function f : Θ→ R, we have DKL(Q||P ) = supf Eθ∼Q [f(θ)]−642

logEθ∼P [exp f(θ)].643

Remark A.1. Motivated by the classic f -divergence, Acuna et al. [8] proposed a discrepancy644

measure called DHϕ -discrepancy. Since KL divergence belongs to the family of f -divergences (e.g.,645

choosing x log x as the Fenchel conjugate function) and both [8] and our work invoke the variational646

representation of the divergence, it seems our work (in Section 4) is related to theirs. However,647

the variational characterization of f -divergence used in [8] is based on the result of [57], and the648

Donsker-Varadhan representation of KL divergence (see Lemma A.1) used in this paper cannot be649

directly recovered from their variational characterization [58, 59]. Indeed, simply choosing x log x650

as the conjugate function will lead to a weaker bound than Lemma A.1. Thus, our results (in Section 4)651

cannot be directly recovered from the results in [8].652

Lemma A.2. Let Q and P be probability measures on Θ. Let θ′ ∼ Q and θ ∼ P . If g(θ) is653

R-subgaussian, then,654

|Eθ′∼Q [g(θ′)]− Eθ∼P [g(θ)]| ≤
√
2R2DKL(Q||P ).

Proof. Let f = t · g for any t ∈ R, by Lemma A.1, we have655

DKL(Q||P ) ≥ sup
t

Eθ′∼Q [tg(θ′)]− logEθ∼P [exp t · g(θ)]

= sup
t

Eθ′∼Q [tg(θ′)]− logEθ∼P [exp t(g(θ)− Eθ∼P [g(θ)] + Eθ∼P [g(θ)])]

= sup
t

Eθ′∼Q [tg(θ′)]− Eθ∼P [tg(θ)]− logEθ∼P [exp t(g(θ)− Eθ∼P [g(θ)])]

≥ sup
t

t (Eθ′∼Q [g(θ′)]− Eθ∼P [g(θ)])− t2R2/2,

where the last inequality is by the subgaussianity of g(θ).656

Then consider the case of t > 0 and t < 0 (t = 0 is trivial), by AM–GM inequality (i.e. the arithmetic657

mean is greater than or equal to the geometric mean), the following is straightforward,658

|Eθ′∼Q [g(θ′)]− Eθ∼P [g(θ)]| ≤
√
2R2DKL(Q||P ).

This completes the proof.659

The following lemma is the Kantorovich–Rubinstein duality of Wasserstein distance [60].660

Lemma A.3 (KR duality). For any two distributions P and Q, we have661

W(P,Q) = sup
f∈1−Lip(ρ)

∫
X
fdP −

∫
X
fdQ,

where the supremum is taken over all 1-Lipschitz functions in the metric d, i.e. |f(x) − f(x′)| ≤662

d(x, x′) for any x, x′ ∈ X .663

To connect total variation with KL divergence , we will use Pinsker’s inequality [47, Theorem 6.5]664

and Bretagnolle-Huber inequality [48, Lemma 2.1] in this paper, for more discussion about these two665

inequalities, we refer readers to [61].666

Lemma A.4 (Pinsker’s inequality). TV(P,Q) ≤
√

1
2DKL(P ||Q).667

Lemma A.5 (Bretagnolle-Huber inequality). TV(P,Q) ≤
√
1− e−DKL(P ||Q).668

Below is the variational formula, or golden formula of mutual information.669

Lemma A.6 (Polyanskiy and Wu [47, Corollary 3.1.]). For two random variables X and Y , we have670

I(X;Y ) = inf
P

EX

[
DKL(QY |X ||P )

]
,

where the infimum is achieved at P = QY .671
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S′
X′

↓
S → W
↓ ↙
F

Figure 1: The relationship between random variables in UDA, where F = Rµ′(W )−RS(W ).

B Omitted Proofs and Additional Results in Section 4672

B.1 Proof of Theorem 4.1673

Proof. Let Q = µ′, P = µ and g = ℓ, then Theorem 4.1 comes directly from Lemma A.2.674

B.2 Proof of Corollary 4.2675

Proof. When the loss is bounded in [0,M ], similar to the proof of Theorem 4.1, let Q = µ, P = µ′676

and g = ℓ, then the following bound also holds by Lemma A.2,677 ∣∣∣Ẽrr(w)∣∣∣ ≤√M2

2
DKL(µ||µ′).

Then, recall Theorem 4.1 and by min{A,B} ≤ 1
2 (A+B), the remaining part is straightforward,678 ∣∣∣Ẽrr(w)∣∣∣ ≤ M√

2

√
min{DKL(µ||µ′),DKL(µ′||µ)} ≤ M

2

√
DKL(µ||µ′) + DKL(µ′||µ).

This completes the proof.679

B.3 Proof of Theorem 4.2680

Proof. Let w∗ = argminw∈W EZ′ [ℓ(fw(X
′), Y ′)] + EZ [ℓ(fw(X), Y )]. By Lemma A.1,681

DKL(PX′ ||PX) ≥ sup
t∈R,w∈W

EX′ [tℓ(fw(X
′), fw∗(X ′))]− logEX

[
etℓ(fw(X),fw∗ (X))

]
.

Recall that ℓ(fw′(X), fw(X)) is R-subgaussian, by using Lemma A.2 (let Q = PX′ , P = PX and682

g(·) = ℓ(fw′(·), fw(·))), we have683

|EX′ [ℓ(fw(X
′), fw∗(X ′))]− EX [ℓ(fw(X), fw∗(X))]| ≤

√
2R2DKL(PX′ ||PX). (7)

For any fw ∈ F , by the triangle property of the loss, we have684

EZ′ [ℓ(fw(X
′), Y ′)]

≤EX′ [ℓ(fw(X
′), fw∗(X ′))] + EZ′ [ℓ(fw∗(X ′), Y ′)]

≤EX [ℓ(fw(X), fw∗(X))] +
√
2R2DKL(PX′ ||PX) + EZ′ [ℓ(fw∗(X ′), Y ′)] (8)

=

∫
x

ℓ(fw(x), fw∗(x))dPX(x) +
√

2R2DKL(PX′ ||PX) + EZ′ [ℓ(fw∗(X ′), Y ′)]

=

∫
x

∫
y

ℓ(fw(x), fw∗(x))dPY |X=x(y)dPX(x) +
√

2R2DKL(PX′ ||PX) + EZ′ [ℓ(fw∗(X ′), Y ′)]

≤
∫
x

∫
y

ℓ(fw(x), y) + ℓ(y, fw∗(x))dPY |X=x(y)dPX(x) +
√

2R2DKL(PX′ ||PX) + EZ′ [ℓ(fw∗(X ′), Y ′)]

(9)

=EZ [ℓ(fw(X), Y )] + EZ [ℓ(Y, fw∗(X))] +
√

2R2DKL(PX′ ||PX) + EZ′ [ℓ(fw∗(X ′), Y ′)],

where Eq. (8) is by Eq. (7) and Eq. (9) is again by the triangle property of the loss function.685

Thus, Ẽrr(w) ≤
√
2R2DKL(PX′ ||PX) + λ∗, which completes the proof.686
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B.4 Proof of Theorem 4.3687

Proof. By Lemma A.1,688

DKL(PX′ ||PX) ≥ sup
t∈R,W,W ′∈W2

EX′ [tℓ(fW (X ′), fW ′(X ′))]− logEX

[
etℓ(fW (X),fW ′ (X))

]
≥ sup

t∈R
EW,W ′

[
EX′ [tℓ(fW (X ′), fW ′(X ′))]− logEX

[
etℓ(fW (X),fW ′ (X))

]]
≥ sup

t∈R
EW,W ′,X′ [tℓ(fW (X ′), fW ′(X ′))]− logEW,W ′,X

[
etℓ(fW (X),fW ′ (X))

]
,

where the last inequality is by applying Jensen’s inequality to the concavity of logarithm function.689

By Lemma A.2,690

|EW,W ′,X′ [ℓ(fW (X ′), fW ′(X ′))]− EW,W ′,X [ℓ(fW (X), fW ′(X))]| ≤
√
2R2DKL(PX′ ||PX).

This concludes the proof.691

B.5 Proof of Theorem 4.4692

Proof. From the definition, we have693 ∣∣∣Ẽrr(w)∣∣∣ = |EZ′ [ℓ(fw(X
′), Y ′)]− EZ [ℓ(fw(X), Y )]|

≤βW(µ, µ′).

where the last inequality is by the KR duality of Wasserstein distance (see Lemma A.3).694

B.6 Proof of Corollary 4.3695

Proof. When d is the discrete metric, Wasserstein distance is equal to the total variation, then by696

Theorem 4.4,697 ∣∣∣Ẽrr(w)∣∣∣ ≤ βTV(µ′, µ),

The remaining part is by using Lemma A.4 and Lemma A.5:698

βTV(µ′, µ) ≤ β

√
min

{
1

2
DKL(µ′||µ), 1− e−DKL(µ′||µ)

}
.

Then, if ℓ is bounded by M , we replace β by M above, which completes the proof.699

B.7 Proof of Theorem 4.5700

Proof. Let w∗ = argminw∈W EZ′ [ℓ(fw(X
′), Y ′)] + EZ [ℓ(fw(X), Y )].701

If ℓ(fw(X), fw′(X)) is L-Lipschitz in X for any w,w′ ∈ W , then similar to Theorem 4.4, it’s easy702

to show that703

EX′ [ℓ(fw(X
′), f∗(X ′))]− EX [ℓ(fw(X), f∗(X))] ≤ βW(P ′

X , PX) (10)

For any fw ∈ F , by the triangle property of the loss, we have704

EZ′ [ℓ(fw(X
′), Y ′)]

≤EX′ [ℓ(fw(X
′), fw∗(X ′))] + EZ′ [ℓ(fw∗(X ′), Y ′)]

≤EX [ℓ(fw(X), fw∗(X))] + βW(P ′
X , PX) + EZ′ [ℓ(fw∗(X ′), Y ′)] (11)

≤EZ [ℓ(fw(X), Y )] + EZ [ℓ(Y, fw∗(X))] + βW(P ′
X , PX) + EZ′ [ℓ(fw∗(X ′), Y ′)],

where Eq. (11) is by Eq. (10) and the last inequality is again by the triangle property of the loss705

function. This completes the proof.706
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B.8 Additional Results: Sample Complexity Bounds707

Theorem B.1. Let µ̂ and µ̂′ be the empirical distributions consist of n source data and m target708

data sampled i.i.d. from µ and µ′, respectively. Let G = {g : Z → R s.t. Eµ

[
eg(Z)

]
< ∞} with709

finite VC-dimension d1, and let VC-dimension of {exp ◦ g|g ∈ G} be d2. W.L.O.G. assume that710

α ≤ Eµ̂

[
eg(Z)

]
≤ Eµ

[
eg(Z)

]
for some constant α > 0 and any g ∈ G. Then for ∀δ ∈ (0, 1) the711

following holds with probability at least 1− δ,712

DKL(µ
′||µ)−DKL(µ̂

′||µ̂) ≤

√
4

n

(
d1 log

2en

d1
+ log

4

δ

)
+

1

α

√
4

m

(
d2 log

2em

d2
+ log

4

δ

)
.

Proof. Recall Lemma A.1, we have713

DKL(µ
′||µ) = sup

g∈G
Eµ′ [g(Z ′)]− logEµ

[
eg(Z)

]
,

and714

DKL(µ̂
′||µ̂) = sup

g∈G
Eµ̂′ [g(Z ′)]− logEµ̂

[
eg(Z)

]
.

Then, with the probability at least 1− δ,715

DKL(µ
′||µ)−DKL(µ̂

′||µ̂)

= sup
g∈G

Eµ′ [g(Z ′)]− logEµ′

[
eg(Z)

]
−
(
sup
g∈G

Eµ̂′ [g(Z ′)]− logEµ̂

[
eg(Z)

])
≤ sup

g∈G
Eµ′ [g(Z ′)]− logEµ

[
eg(Z)

]
−
(
Eµ̂′ [g(Z ′)]− logEµ̂

[
eg(Z)

])
=sup

g∈G
Eµ′ [g(Z ′)]− Eµ̂′ [g(Z ′)] + logEµ̂

[
eg(Z)

]
− logEµ

[
eg(Z)

]
≤ sup

g∈G
|Eµ′ [g(Z ′)]− Eµ̂′ [g(Z ′)]|+ sup

g∈G

∣∣∣logEµ̂

[
eg(Z)

]
− logEµ

[
eg(Z)

]∣∣∣
≤ sup

g∈G
|Eµ′ [g(Z ′)]− Eµ̂′ [g(Z ′)]|+ sup

g∈G

1

α

∣∣∣Eµ̂

[
eg(Z)

]
− Eµ

[
eg(Z)

]∣∣∣ (12)

≤

√
4

n

(
d1 log

2en

d1
+ log

4

δ

)
+

1

α

√
4

m

(
d2 log

2em

d2
+ log

4

δ

)
, (13)

where Eq. (12) is by716 ∣∣∣logEµ̂

[
eg(Z)

]
− logEµ

[
eg(Z)

]∣∣∣ = ∣∣∣∣∣log Eµ

[
eg(Z)

]
Eµ̂

[
eg(Z)

] ∣∣∣∣∣ =
∣∣∣∣∣log

(
1 +

Eµ

[
eg(Z)

]
Eµ̂

[
eg(Z)

] − 1

)∣∣∣∣∣
≤

∣∣∣∣∣Eµ

[
eg(Z)

]
Eµ̂

[
eg(Z)

] − 1

∣∣∣∣∣
=

∣∣∣∣∣ 1

Eµ̂

[
eg(Z)

] (Eµ

[
eg(Z)

]
− Eµ̂

[
eg(Z)

])∣∣∣∣∣
≤ 1

α

∣∣∣Eµ

[
eg(Z)

]
− Eµ̂

[
eg(Z)

]∣∣∣ ,
and Eq. (13) is by the classic VC-dimension generalization bound [62]. This concludes the proof.717

With Theorem B.1 and Theorem 4.1, we immediately have the following corollary.718

Corollary B.1. Let the conditions in Theorem B.1 and Theorem 4.1 hold, then for any w ∈ W ,719

∣∣∣Ẽrr(w)∣∣∣ ≤ R

√√√√2DKL(µ̂′||µ̂) + 2

√
4

n

(
d1 log

2en

d1
+ log

4

δ

)
+

2

α

√
4

m

(
d2 log

2em

d2
+ log

4

δ

)
.
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B.9 Additional Discussions on the Convergence of Empirical KL Divergence720

Although characterizing the convergence of the empirical KL divergence to the real KL is not easy721

without relying several additional assumptions (as in Theorem B.1), the result of convergence rate of722

empirical distribution to the real distribution in the KL sense is already known in the discrete space.723

The following theorem comes directly from the classic result in [63, Theorem 11.2.1],724

Theorem B.2. Let µ̂ and µ̂′ be defined as in Theorem B.1. Assume the space of Z is finite (i.e.725

|Z| ≤ ∞), then for ∀δ ∈ (0, 1), with the probability at least 1− δ,726

DKL(µ̂||µ) ≤
|Z|
n

log (n+ 1) +
1

n log δ
, DKL(µ̂

′||µ′) ≤ |Z|
m

log (m+ 1) +
1

m log δ
.

Thus, it suffices to ensure that the empirical KL converge to the real KL with the similar rate, although727

we do not know if there might exist more optimal convergence rate.728

C Omitted Proofs and Additional Discussions in Section 5729

C.1 Additional Discussion on Theorem 5.1730

To derive the bound in Theorem 5.1, we need to make use of the second equality in Eq. (1). Indeed,731

by the definition of Err (the first equality in Eq. (1)), the unlabelled sample S′
X′

j
does not explicitly732

appear, so one can easily apply the similar information-theoretic analysis starting from the first733

equality in Eq. (1), and obtain an upper bound that consists of I(W ;Zi) and DKL(µ||µ′). Precisely,734

the following bound holds,735

Theorem C.1. Assume ℓ(fw(X
′), Y ′) is R-subgaussian for any w ∈ W . Then736

|Err| ≤ 1

n

n∑
i=1

E
√

2R2I(W ;Zi) +
√
2R2DKL(µ||µ′).

The proof of Theorem C.1 is nearly the same to the proof of [38, Corollary 2] and [40, Corollary 1].737

It’s important to note that although738

I(W ;Zi) ≤ I(W ;Zi|X ′
j) = EX′

j

[
IX

′
j (W ;Zi)

]
,

the bound in Theorem 5.1 is incomparable to the bound based on I(W ;Zi). This is mainly due to the739

fact that we use the disintegrated version of mutual information, IX
′
j (W ;Zi), and the expectation740

over X ′
j is outside of the square root, which is a convex function. Using IX

′
j (W ;Zi) instead of741

I(W ;Zi) allows us to figure out more details about the role of unlabelled target data in the algorithm.742

Additionally, one can also prove a bound based on I(W ;Zi|X ′
j) (e.g., simply applying Jensen’s743

inequality to Theorem 5.1), which is close to an individual and UDA version of [41, Theorem 3].744

In essence, the first term in Theorem 5.1 characterize the expected generalization gap on the source745

domain (i.e. EW,S [Rµ(W )−RS(W )]), then the bound suggests us that it’s possible to invoke the746

unlabelled target data to further improve the performance on source domain, and the simplest case is747

the semi-supervised learning (when µ = µ′).748

C.2 Proof of Theorem 5.1749

Proof. By Lemma A.1,750

DKL

(
PW,Zi|X′

j=x′
j
||PW,Z′|X′

j=x′
j

)
=DKL

(
PW,Zi|X′

j=x′
j
||PW |X′

j=x′
j
PZ′

)
(14)

≥ sup
t

EPW,Zi|X′
j
=x′

j
[tℓ(fW (Xi), Yi)]− logEPW |X′

j
=x′

j
PZ′ [exp tℓ(fW (X ′), Y ′)]

≥ sup
t

EPW,Zi|X′
j
=x′

j
[tℓ(fW (Xi), Yi)]− EPW |X′

j
=x′

j
[tRµ′(W )]− logEPW |X′

j
=x′

j
PZ′

[
et(ℓ(fW (X′),Y ′)−EZ′ [ℓ(fW (X′),Y ′)])

]
(15)

≥ sup
t

EPW,Zi|X′
j
=x′

j
[tℓ(fW (Xi), Yi)]− EPW |X′

j
=x′

j
[tRµ′(W )]−R2t2/2,

20



where Eq. (14) is by the independence between algorithm output W and unseen target domain data751

Z ′, Eq. (15) is by Jensen’s inequality for the exponential function and the last inequality is by the752

subgaussian assumption.753

Thus,754 ∣∣∣EPW,Zi|X′
j
=x′

j
[ℓ(fW (Xi), Yi)]− EPW |X′

j
=x′

j
[Rµ′(W )]

∣∣∣ ≤√2R2DKL

(
PW,Zi|X′

j=x′
j
||PW |X′

j=x′
j
PZ′

)
.

(16)

Exploiting the fact that755

|Err| =

∣∣∣∣∣ 1n
n∑

i=1

EW,Zi
[ℓ(fW (Xi), Yi)]− EW,Z′ [ℓ(fW (X ′), Y ′)]

∣∣∣∣∣
=

∣∣∣∣∣∣ 1m
m∑
j=1

EX′
j

[
1

n

n∑
i=1

EW,Zi|X′
j=x′

j
[ℓ(fW (Xi), Yi)]− EW,Z′|X′

j=x′
j
[ℓ(fW (X ′), Y ′)]

]∣∣∣∣∣∣
≤ 1

m

m∑
j=1

EX′
j

∣∣∣∣∣ 1n
n∑

i=1

EW,Zi|X′
j=x′

j
[ℓ(fW (Xi), Yi)]− EW,Z′|X′

j=x′
j
[ℓ(fW (X ′), Y ′)]

∣∣∣∣∣
≤ 1

nm

m∑
j=1

n∑
i=1

EX′
j

∣∣∣EW,Zi|X′
j=x′

j
[ℓ(fW (Xi), Yi)]− EW |X′

j=x′
j
[Rµ′(W )]
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where the last two inequalities are by the Jensen’s inequality for the absolute function.756
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Recall Eq. (16), we have758
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This completes the proof.759

C.3 Proof of Corollary 5.1760

Proof. We now modify the proof in Theorem 5.1.761
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where the last inequality is by Corollary 4.2.764

Then for the first term in RHS, notice that765

DKL

(
PW,Z|X′

j=x′
j
||PW,Zi|X′

j=x′
j

)
=DKL

(
PW |X′

j=x′
j
PZ ||PW,Zi|X′

j=x′
j

)
≥ sup

t
EPW |X′

j
=x′

j
PZ

[tℓ(fW (X), Y )]− logEPW,Zi|X′
j
=x′

j
[exp tℓ(fW (Xi), Yi)]

≥ sup
t

EPW |X′
j
=x′

j
PZ

[tℓ(fW (X), Y )]− EPW,Zi|X′
j
=x′

j
[tℓ(fW (Xi), Yi)]

− logEPW,Zi|X′
j
=x′

j

[
e
t(ℓ(fW (Xi),Yi)−EP

W,Zi|X′
j
=x′

j
[ℓ(fW (Xi),Y)])

]
≥ sup

t
EPW |X′

j
=x′

j
[tRµ(W )]− EPW,Zi|X′

j
=x′

j
[tℓ(fW (Xi), Yi)]−M2t2/8,

where the last inequality is due to the fact that ℓ is bounded by M and ℓ(fW (Xi), Yi) is M/2-766

subgaussian.767

Thus,768
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Plugging this inequality with the decomposition into the inequality at the beginning of the proof, we769
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This completes the proof.772
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C.4 Proof of Theorem 5.2773

Proof. Similar to the proof of Theorem 5.1, we exploit the fact that774
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which concludes the proof.775

C.5 Proof of Corollary 5.2776

Proof. Similar to the proof of Corollary 4.3, replacing Wasserstein distance by the total variation and777

replacing β and β′ by M , will give us the first inequality,778
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The second inequality is by Lemma A.4,779
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Again, one can also apply Lemma A.5 here. This concludes the proof.780

C.6 Proof of Theorem 5.3781

Proof. Recall Theorem 5.1 and by Jensen’s inequality we have782
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Then, since S ⊥⊥ S′
X′ and Zi ⊥⊥ Z1:i−1 for any i ∈ [n], by chain rule of the mutual information, we784

have785
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Thus, the generalization error bound becomes,786
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Recall the updating rule of W and notice that W0 is independent of S and S′
X′ , the following process787

is by using chain rule of mutual information and data processing inequality recurrently,788
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where the inequality is by Lemma A.6 and the last equality is by the KL divergence between two790

Gaussian distributions.791

Finally, putting everything together,792
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which concludes the proof.793
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C.7 Derivation of Eq. (6)794

Recall the expected cross-entropy loss, we have795
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C.8 Additional Discussion on LIMIT796

As mentioned in Section 5, [51] proposed an approach called LIMIT, refers to limiting label in-797

formation memorization in training, to control label information. Roughly speaking, to update the798

parameters of the classifier, they construct an auxiliary network to predict the gradient instead of799

using the real gradient, in which case the true label is not directly used for training the classifier.800

To provide accurate gradients, they also need to train the auxiliary network by using the true labels.801

We find that the training of LIMIT is unstable and hard to tune the hyperparameters under the UDA802

setting. Thus, we choose to use the pseudo label strategy proposed in Section 5 instead of pseudo803

gradient strategy.804

D Experiment Details805

The implementation in this paper is on PyTorch [64], and all the experiments are carried out on806

NVIDIA Tesla V100 GPUs (32 GB).807

D.1 Objective Functions of Gradient Penalty and Controlling Label Information808

For every iteration, the objective function after adding the gradient penalty becomes809

min
W

L̂(W,ZBt
, X ′

Bt
) + λ1||g(W,ZBt

, X ′
Bt
)||2,

where L̂(W,ZBt
, X ′

Bt
) is some loss function for the source and target domain data in the current810

mini-batch and λ1 is the trade-off coefficient. For example, if we combine ERM with gradient811

penalty then L̂(W,ZBt
, X ′

Bt
) = 1

|Bt|
∑

k∈Bt
ℓ(fW (Xk), Yk) and ℓ could be the cross-entropy loss.812

Moreover, if we combine KL guided marginal alignment algorithm [9] with gradient penalty then the813

objective function is814
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where θ is the parameters of the representation network and the gradient is815

g(W,ZBt
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∇W,θℓ(fW (Tk), Yk) + β1∇θDKL(PT ′ ||PT ) + β2∇θDKL(PT ||PT ′).

In [9], the representation distribution is modelled as an Gaussian distribution, i.e., T ∼816

N (µθ, σ
2
θId|X) and T ′ ∼ N (µθ, σ

2
θId|X ′). Additionally, let the batch size be b = |Bt|, the817
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empirical KL divergence is estimated by the mini-batch data, as given in [9],818
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where PTk|Xk
= N (µθ, σ

2
θId|Xk) and PT ′

k|X
′
k
= N (µθ, σ

2
θId|X ′

k). To be more precise, µθ and σθ819

are the outputs of the representation network. Since the forward pass requires the sampling of T and820

T ′, we need to use the reparameterization trick [65] for the backward pass.821

When we train the model with controlling label information, the objective function becomes822

min
W

L̂(W,ZBt , X
′
Bt
) + λ2||W − W̃ ||2,

where W̃ is the auxiliary classifier and λ2 is the trade-off hyperparameter.823

Similarly, when we combine KL guided marginal alignment algorithm with controlling label informa-824

tion, then the objective function in every iteration is825

min
W,θ

1

|Bt|
∑
k∈Bt

ℓ(fW (Tk), Yk) + β1DKL(PT ′ ||PT ) + β2DKL(PT ||PT ′) + λ2||W − W̃ ||2.

In addition, the training objective for the auxiliary classifier is826

min
W̃

1

|Bt|
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ℓ(f
W̃
(T ′

k), fW (T ′
k)) +
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ℓ(f
W̃
(Tk), fW (Tk)). (17)

In practice, removing the second term would not affect the performance. Note that we need to827

disenable the automatic differentiation of T , T ′ and W when executing the backward pass for the828

auxiliary classifier. The detailed algorithm of controlling label information is given in the next829

section.830

D.2 Algorithm of Controlling Label Information and Additional Results of ERM-CL831

Algorithm 1 Controlling Label Information

Require: Source domain labelled dataset S, Target domain unlabelled dataset S′
X′ , Batch size b,

Classification loss function ℓc, Marginal alignment loss function ℓr, Initial classifier parameter
w0 = w̃0, Initial representation network parameter θ0, Learning rate η, Lagrange multiplier λ2

while wt not converged do
2: Update iteration: t← t+ 1

Sample ZB = {zi}bi=1 from source domain training set S
4: Sample X ′

B = {x′
i}bi=1 from target domain training set S′

X′

Compute distance from the auxiliary classifier dis← ||wt − w̃t||2
6: Compute marginal alignment loss Lr ← 1

b

∑b
i=1 ℓr(θt, zi,x

′
i)

Compute classification loss Lc ← 1
b

∑b
i=1 ℓc(wt, θt, zi,x

′
i)

8: Compute gradient:
gB ← ∇(Lc + Lr + λ2dis)
Update parameter: wt+1 ← wt − η · gB, θt+1 ← θt − η · gB

10: Obtain the pseudo labels Y ′
B ← fwt

(gθt
(X ′

B))

Compute auxiliary classification loss La ← 1
b

∑b
i=1 ℓc(w̃t, θt,x

′
i,y

′
i)

12: Compute auxiliary classifier gradient:
g̃B ← ∇La

Update auxiliary classifier parameter: w̃t+1 ← w̃t − η · g̃B
14: end while
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Table 2: RotatedMNIST and Digits Experiments of ERM-CL. Results of ERM are reported from [9].

RotatedMNIST (0◦ as source domain) Digits

Method 15◦ 30◦ 45◦ 60◦ 75◦ Ave M → U U → M S → M Ave

ERM 97.5±0.2 84.1±0.8 53.9±0.7 34.2±0.4 22.3±0.5 58.4 73.1±4.2 54.8±6.2 65.9±1.4 64.6

ERM-GP 97.5±0.1 86.2±0.5 62.0±1.9 34.8±2.1 26.1±1.2 61.2 91.3±1.6 72.7±4.2 68.4±0.2 77.5
ERM-CL 97.3±0.1 84.1±0.1 56.9±2.5 34.2±1.9 25.5±1.6 59.6 88.9±0.4 71.2±3.6 73.5±1.4 77.9

If we only provide the pseudo labels for the target domain data to the auxiliary classifier, i.e. removing832

the second term in Eq (17), the Algorithm 1 is the algorithm for combining any marginal alignment833

algorithm with controlling label information.834

Even without incorporating with the marginal alignment algorithm, e.g., ERM, in which case Lr is835

removed, Algorithm 1 still boosts the performance in practice.836

Table 2 shows that ERM-CL can overall outperform the basic ERM and is close to the performance837

of ERM-GP.838

D.3 Architectures and Hyperparameters839

The network architecture in this work is the same as in [56] and [9], where a simple CNN is used.840

Other settings are also the same as [56] and [9], for example, each algorithm is trained for 100841

epochs. To select the hyperparameters (λ1 and λ2) for ERM-GP, ERM-KL, KL-GP and KL-CL,842

we perform random search. Specifically, λ1 is searched between [0.1, 0.9] and λ2 is searched between843

[10−6, 0.8]. Other hyperparameters searching range could be found in the source code.844

D.4 Additional Experimental Results845

The representation version of Corollary 4.2 hints that small Jeffrey’s divergence will make the846

testing error small. In Figure 2a, we show that the dynamic of Jeffrey’s divergence (computed in847

representation space) can well characterize the evolution of the testing error during the training phase.848

In Figure 2b, we show that the number of target data has some impact on the testing performance on849

the target data. When we use less than half of the available unlabelled target data, the performance850

increases as the number of data increases. When we use more than half of the unlabelled target data,851

the improvement on the performance is very small.852
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Figure 2: KL on S→M. The left figure is the comparison of the Jeffrey’s divergence in the represen-
tation space and the testing error. The right figure is the evolution of testing accuracy with respect to
the different fraction of unlabelled target data used for training.
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D.5 License of the Assets853

MNIST is made available under the terms of the Creative Commons Attribution-Share Alike 3.0854

license. SVHN is licensed under the GNU General Public License v3.0. The source code from the855

DomainBed suite is released under the MIT license.856

E Limitations857

A central notion in our bounds is KL divergence (which includes mutual information as a special858

case). Although generic and universally applicable, KL divergence has a fundamental limitation859

in capturing the natural metric in the underlying space, which may cause the bounds incapable of860

extracting certain structural properties in some settings.861

In the mutual information-based bounds, the key random variable is weight W . For over-parametrized862

models, this variable may not be sufficiently indicative as the algorithm’s output. Replacing W by a863

random variable on the space F of classifiers may lead to tighter bounds.864

865
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