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A TRAINING AND EVALUATION DETAILS

A.1 MODEL TRAINING.

Our training configurations primarily followed the guidelines established by He et al. (2022). In the
ImageNet-1K experiment, our model was trained for 800 epochs, utilizing the AdamW Loshchilov &
Hutter (2019) optimizer with a constant weight decay of 5e-2 for a batch size of 1024. We set the
maximum learning rate to 6e-4. Initially, the learning rate started at 0 and linearly increased to its
maximum over the first 40 epochs, after which it followed a cosine schedule to gradually decrease
to zero by the end of the training period. It is worth noting that the learning rate per sample, or
effective learning rate, in our setup matched that of He et al. (2022), although our maximum learning
rate was set lower due to our batch size being a quarter of theirs. We applied random resizing,
cropping, and horizontal flipping during training as part of our augmentation scheme. To enhance the
quality of the learned representations in most experiments, we employed the normalized pixel loss, as
proposed by He et al. (2022). In the ImageNet-100 experiment, we employed the identical training
configuration used in the ImageNet-1K experiments. We train our model with 4 NVIDIA A40 GPUs
and a completed trianing usually takes 20 hours on ImageNet-100 and 200 hours on ImageNet-1k.

A.2 EVALUATION WITH LINEAR PROBING.

For the ImageNet-1k dataset, we use the exact same evaluation protocols employed in He et al. (2022),
which includes random data augmentation.

For the ImageNet-100 dataset, we employed a simpler evaluation protocol: We train the linear
classifier with a batch size of 1024 for 200 epochs, where the learning rate starts at 1e-2 and
then decays towards 0 using a cosine scheduler. During this evaluation, we do not apply any data
augmentation.

Encoder Block with 
Decayed Identity Shortcuts

⨁

⨁

MLP Block

Layer Norm

Layer Norm

Multi-Head 
Attention

Decoder Block

Decoder 1

Decoder 2

Decoder 3

Decoder 4

Decoder 5

Decoder 6

Encoder 7

Encoder 6

Encoder 9

Encoder 8

Encoder 11

Encoder 10

Encoder 5

Encoder 4

Encoder 3

Encoder 2

Encoder 12

UNet Transformer

Decoder 7

Decoder 8

Encoder 1

xl

xl+2

�lxl

�l+1xl+1

⨁

⨁

MLP Block

Layer Norm

Layer Norm

Multi-Head 
Attention

xl

xl+2

xl+1

xl

Figure 6: We present our enhanced UNet Transformer architecture for Masked Auto-encoder. (1)
Left: Our customized encoder blocks, equipped with our proposed decay identity shortcuts. (2)
Middle: Standard transformer blocks as the decoder blocks. (3) Right: We incorporate the decay
identity shortcuts exclusively within the encoder blocks of our UNet transformer and employ standard
transformer blocks for the decoder. To support abstract representation learning at the bottleneck, i.e.,
the last layer of the Encoder 12, we adopt the UNet Ronneberger et al. (2015) architecture and create
skip connections that transmit every other encoder feature directly to the decoder.

A.3 MODIFIED ARCHITECTURE

We present a visualization of our UNet transformer design, as outlined in Section 3.2, in Fig. 6. It’s
important to note that decayed identity shortcuts are exclusively implemented within the encoder
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block. Additionally, we establish skip connections from alternating blocks in the encoder to the
decoder, following the UNet Ronneberger et al. (2015) architecture’s design principles.

B FURTHER EXPERIMENTS

B.1 FURTHER ABLATION OF MAXIMUM DECAY RATE ON IMAGENET-1K

Dataset

XXXXXXXXXBackbone

↵min 0.5 0.6 0.7 0.8 0.9 1.0

ImageNet-1K ViT-B/16 69.8 72.7 68.9 - - -
ImageNet-100 ViT-B/16 82.3 83.6 81.8 79.8 79.2 76.5
ImageNet-100 ViT-S/16 78.6 78.5 78.1 75.2 73.5 69.2

Table 5: Linear probing accuracy of our method by varying ↵min, the architecture size, and the

dataset. We extend the ablation studies detailed in Table. 2 by including linear probing results for the
ImageNet-1K dataset. The results indicate that the most favorable ↵min consistently falls within the
range of r0.5, 0.6s for ImageNet-1K and ImageNet-100 experiments.

We present the results of ablating the choices of ↵min on ImageNet-1K dataset in Table.5. From the
table, we show that the optimal ↵min for ViT-B/16 on ImageNet-100 matches the optimal one for
ImageNet-1K, while a lower ↵min is preferred for a smaller architecture ViT-S/16.

B.2 RECONSTRUCTION QUALITY.

Figure 7: Qualitative comparison of images reconstructed by MAE with and without our method.

We observe our method learns features with higher linear probing accuracy without compromising
reconstruction quality. Row 1: ground truth test image. Row 2: images masked at 75%. Row 3:
reconstructions with our method. Row 4: reconstructions with baseline MAE.

We qualitatively evaluate test images reconstructed by an MAE using our framework and images
reconstructed by the original MAE. We show the reconstructed images in Figure 7. While the focus
of our work is entirely to improve the representations learned by an encoder, we observe that our
framework does not harm the reconstructions. Hence, there is no qualitative tradeoff for our increase
in linear probing accuracy.

B.3 ABSTRACTION AND LOW-RANK IN THE SUPERVISED SETTING

In this experiment, we modify the standard ResNet-18 model to experiment with different depth
models. By default, the ResNet-18 has a total of 8 residual blocks that are equally distributed into 4
layers. To increase model depth, we repeat residual blocks in the 3rd layer to obtain models varying
between 8 and 16 total layers. At convergence, we observe that the models of different depths achieve
a similar test accuracy. However, despite similar accuracies, in Figure 8a, which visualizes the
effective rank over depth for different values of ↵min, we see that the effective rank decreases over
depth. Furthermore, smaller values of ↵min consistently lead to features with lower effective rank.

Next, in Figure 8b, we try to verify our conjecture by visualizing the evolution of effective rank
during training when choosing different ↵min in our method. For this experiment, we choose to
train the standard ResNet-18 using our decayed identity shortcuts. In this setup, we observe that
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(a) Effective rank of ResNet for different
depths at the convergence of the training.

(b) Effective rank of ResNet over training
epoch.

Figure 8: Dynamics of the feature rank in the supervised setup. We train ResNet models for a
supervised classification task on a small subset of ImageNet. And visualize (a) effective rank across
different depths at convergence and (b) training dynamics of effective rank over time for various ↵min.
In (a) we see that at convergence, our method consistently decreases the feature rank with various
depth and, in (b), this pattern is also shown for standard ResNet model at every stage of training.

the optimal choice of ↵min slightly improves the test accuracy of the classification network: 94.4%
with ↵min “ 0.7 vs. 93.6% with ↵min “ 1.0. We observe that the effective rank of the final features
decreases with decreasing ↵min. This supports our hypothesis that (1) decayed identity shortcuts
substantially decrease the rank of bottleneck features and (2) decreasing feature rank may help
improve learned features.
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Figure 9: Qualitative comparison of images generated by diffusion models. Our method, decayed
identity shortcuts with ↵min “ 0.6, shows improved representation learning and produces higher-
quality generated images compared to the baseline, which employs full residual connections (↵min “
1.0).
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