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A PROOFS

Proof of Lemma 1. If y ∼ pθ(y) is equal to x ∼ pX(x) in distribution, then pX(x) = pθ(x) for
any x ∈ RV . For (2) we have

∫
pX(x)πφ(y |x)dy = pX(x)

∫
πφ(y |x)dy = pX(x) and∫

pX(x)πφ(y |x)dx =

∫
pX(x)

e−d(Tφ(x),Tφ(y))pθ(y)∫
e−d(Tφ(x),Tφ(y))pθ(y)dy

dx

= pθ(y)

∫
e−d(Tφ(x),Tφ(y))pX(x)∫
e−d(Tφ(x),Tφ(y))pθ(y)dy

dx.

If e−d(Tφ(x),Tφ(y)) = 1(x = y), then we further have∫
e−d(Tφ(x),Tφ(y))pX(x)∫
e−d(Tφ(x),Tφ(y))pθ(y)dy

dx =

∫
1(x = y)pX(x)∫
1(x = y)pθ(y)dy

dx =

∫
1(x = y)

pX(x)

pθ(x)
dx = 1

and hence it is true that ∫
pX(x)πφ(y |x)dx = pθ(y).

Similarly, for (3) we have
∫
pθ(y)πφ(x |y)dx = pθ(y) and can prove

∫
pθ(y)πφ(x |y)dy =

pX(x) given these two conditions.

Proof of Lemma 2. Since c(x,y) ≥ 0 by definition, we have Cφ,θ(µ→ ν) ≥ 0 and Cφ,θ(µ← ν) ≥
0. When µ = ν, it is known thatW(µ, ν) = 0. If y ∼ pθ(y) is equal to x ∼ pX(x) in distribution,
which means pX(x) = pθ(x) and pX(y) = pθ(y) for any x,y ∈ RV and µ = ν, then we have

Cφ,θ(µ→ ν) =

∫ ∫
c(x,y)pX(x)πφ(y |x)dxdy

=

∫ ∫
c(x,y)

e−d(Tφ(x),Tφ(y))pX(x)pθ(y)∫
e−d(Tφ(x),Tφ(y))pθ(y)dy

dxdy

=

∫ ∫
c(y,x)

e−d(Tφ(y),Tφ(x))pX(y)pθ(x)∫
e−d(Tφ(y),Tφ(x))pθ(x)dx

dxdy

=

∫ ∫
c(y,x)

e−d(Tφ(y),Tφ(x))pθ(y)pX(x)∫
e−d(Tφ(y),Tφ(x))pX(x)dx

dxdy

=

∫ ∫
c(x,y)pθ(y)

e−d(Tφ(x),Tφ(y))pX(x)∫
e−d(Tφ(x),Tφ(y))pX(x)dx

dxdy

=

∫ ∫
c(x,y)pθ(y)πφ(x |y)dxdy

= Cφ,θ(µ← ν)

and hence Cφ,θ(µ, ν) = Cφ,θ(µ→ ν) = Cφ,θ(µ← ν) ≥ 0 = W (µ, ν).

If e−d(Tφ(x),Tφ(y)) = 1(x = y), since c(x,x) = 0 by definition, we have

Cφ,θ(µ→ ν) =

∫ ∫
c(x,y)

1(x = y)pX(x)pθ(y)∫
1(x = y)pθ(y)dy

dxdy

=

∫ ∫
c(x,y)

1(x = y)pX(x)pθ(y)

pθ(x)
dxdy

=

∫ ∫
c(x,y)1(x = y)pθ(y)dxdy

=

∫
c(x,x)pθ(x)dx

= 0.
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Proof of Lemma 3. According to the strong law of large numbers, when M → ∞, ν̂M (A) =
1
M

∑M
j=1 1(yj ∈ A) converges almost surely to

1

M

M∑
j=1

Eyj∼pθ(y)[1(yj ∈ A)] =

∫
A

pθ(y)dy = ν(A)

and hence Cφ,θ(µ → ν̂M ) converges to Cφ,θ(µ → ν). Therefore, E
y1:M

iid∼ pθ(y)
[Cφ,θ(µ → ν̂M )]

converges to Cφ,θ(µ→ ν). Similarly, we can prove that as N →∞, E
x1:N

iid∼ pX(x)
[Cφ,θ(µ̂N ← ν)

converges to Cφ,θ(µ ← ν). Therefore, Cφ,θ(µ, ν,N,M) defined in (12) converges to 1
2Cφ,θ(µ →

ν) + 1
2Cφ,θ(µ← ν) = Cφ,θ(µ, ν) as N,M →∞.

Proof of Lemma 4.

Cφ,θ(µ, ν,N,M) = 1
2Ey1:M

iid∼ pθ(y)
[Cφ,θ(µ→ ν̂M )] + 1

2Ex1:N
iid∼ pX(x)

[Cφ,θ(µ̂N ← ν)]

= 1
2Ex∼pX(x), y1:M

iid∼ pθ(y)
[Cφ,θ(x→ ν̂M )] + 1

2Ex1:N
iid∼ pX(x), y∼pθ(y)

[Cφ,θ(µ̂N ← y)]

= 1
2Ex∼p̂N (x)Ex1:M

iid∼ pX(x), y1:M
iid∼ pθ(y)

[Cφ,θ(x→ ν̂M )]

+ 1
2Ey∼p̂M (y)Ex1:N

iid∼ pX(x), y1:M
iid∼ pθ(y)

[Cφ,θ(µ̂N ← y)]

= Ex∼p̂N (x), y∼p̂M (y)Ex1:N
iid∼ pX(x), y1:M

iid∼ pθ(y)

[
1
2Cφ,θ(x→ ν̂M ) + 1

2Cφ,θ(µ̂N ← y)
]
. (18)

Plugging (8) and (10) into the above equation concludes the proof.

Proof of Lemma 5. Solving the first expectation of (18), we have

Cφ,θ(µ, ν,N,M)

= E
x1:N

iid∼ pX(x), y1:M
iid∼ pθ(y)

[
1

2N

∑N
i=1 Cφ,θ(xi → ν̂M ) + 1

2M

∑M
j=1 Cφ,θ(µ̂N ← yj)

]
.

Plugging (8) and (10) into the above equation concludes the proof.

B SUPPLEMENTARY EXPERIMENT RESULTS

B.1 DERIVATION OF THE UNIVARIATE NORMAL BASED TOY EXAMPLE DEFINED IN (17)

For the toy example specified in (17), exploiting the normal-normal conjugacy, we have an analytical
conditional distribution for the forward navigator as

πφ(y |x) ∝ e−
(x−y)2

2eφ N (y; 0, eθ)

∝ N (x; y, eφ)N (y; 0, eθ)

= N
(

eθ

eθ + eφ
x,

eφeθ

eθ + eφ

)
,

and an analytical conditional distribution for the backward navigator as

πφ(x | y) ∝ e−
(x−y)2

2eφ N (x; 0, 1)

∝ N (y;x, eφ)N (x; 0, 1)

= N
(

y

1 + eφ
,

eφ

1 + eφ

)
.

13
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Plugging them into (2) and (3), respectively, and solving the expectations, we have

Cφ,θ(µ→ ν) = Ex∼N (0,1)

[
eφ

eθ + eφ

(
eθ +

eφ

eθ + eφ
x2

)]
=

eφ

eθ + eφ

(
eθ +

eφ

eθ + eφ

)
,

Cφ,θ(µ← ν) = Ey∼N (0,eθ)

[
eφ

1 + eφ

(
1 +

eφ

1 + eφ
y2

)]
=

eφ

1 + eφ

(
1 +

eφ

1 + eφ
eθ
)
.

B.2 MORE RESULTS ON 2D TOY DATASETS

We visualize the results on three additional 2D toy datasets here. Compared to the 8-Gaussian
mixture dataset, the mode collapse issue of both GAN and WGAN-GP becomes more severe on the
Swiss-Roll, Half-Moon, and 25-Gaussian datasets, while ACT consistently shows good and stable
performance on all of them.
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Figure 5: Analogous plot to Fig. 3 for the Swiss-Roll dataset.
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Figure 6: Analogous plot to Fig. 3 for the Half-Moon dataset.
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Figure 7: Analogous plot to Fig. 3 for the 25-Gaussian mixture dataset.
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We also illustrate the data points and generated samples with empirical samples, shown in Fig. 8. The
first column shows the generated samples (marked in blue) and the samples from data distribution
(marked in red). To visualize how the feature extractor Tφ used by both navigators works, we set its
output dimension as 1 and plot the logits in the third and fifth columns and map the corresponding
data (in the second column) and generated samples (in the fourth column) with the same color.

Similarly, we visualize the GAN’s generated samples and logits produced by its discriminator in
Fig. 9. We can observe that the discriminator maps the data to very close values. Specifically, in both
the 8-Gaussian mixture and 25-Gaussian mixture cases, when the mode collapse occurs, the logits of
the missed modes have similar value to the those in the other modes. This property results in GAN’s
mode collapse problem and it is commonly observed in GANs. Different from the GAN case, the
navigator in our ACT model maps the data with non-saturating logits. We can observe in various
multi-mode cases, different modes are assigned with different values by the navigator. This property
helps ACT to well resist the mode collapse problem and stabilize the training.
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Figure 8: Visual results of ACT for generated samples (blue dots) compared to real samples (red dots)
on Swiss Roll, Half Moons, 8-Gaussian mixture, and 25-Gaussian mixture. The second and third
columns map the data points and their corresponding navigator logits by color; The fourth and fifth
columns map the generated points and their corresponding navigator logits by color.
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Figure 9: Visual results of GAN for generated samples (blue dots) compared to real samples (red
dots) on Swiss Roll, Half Moons, 8-Gaussian mixture, and 25-Gaussian mixture. The second and the
third columns map the data points and their corresponding discriminator logits by color; The fourth
and fifth columns map the generated points and the corresponding discriminator logits by color.
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B.3 RESULTS FOR ABLATION STUDY

Transport cost in pixel space vs. feature space We visualize the difference of using the transport
cost in the pixel space and in the feature space here. In both Figs. 10 and 11, we test with MNSIT and
CIFAR-10 data and with the L2

2 distance and cosine dissimilarity as the transport cost, respectively.
For the MNIST dataset, due to its simple data structure, ACT can still be trained to generate
meaningful digits, though some digits appear blurry. On the CIFAR-10, we can observe the model
fails to generate any class of CIFAR images. As the dimensionality of the input space increases,
using the distance in the pixel space as transport cost might lose the essential information for the
transport and increases the training complexity of the navigator.

������������������ ������������������� �������������������
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Figure 10: Visual results of generated samples on MNIST and CIFAR-10 using pixel-wise transport
cost, with DCGAN (standard CNN) backbone.

�������� ��������� �������� ���������

Figure 11: Visual results of generated samples on MNIST and CIFAR-10 using pixel-wise transport
cost, with SNGAN (ResNet) backbone. The Inception and FID scores are not shown due to poor
visual quality.
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Training the critic with the discriminator loss of a vanilla GAN The quantitative and qualitative
on MNIST, CIFAR-10, CelebA, and LSUN are shown in Fig. 12. We can observe the quality of
generated samples, while clearly not as good as training the critic with the ACT divergence, can still
catch up with some of the benchmarks in Table 1.

�������������������� ��������
 ��������� ���������

Figure 12: Visual results of using a standard cross-entropy discriminator loss in lieu of ACT diver-
gence to train the critic of ACT.

B.4 MORE RESULTS ON IMAGE DATASETS

For the experiments on the image datasets, we provide more visual results in this part. Apart from
the datasets described in the experiment part, we also test the capacity of single-channel image
generation with the MNIST dataset. Considering the inception score and the FID score are designed
for RGB natural images, we also calculate the inception score of the real testing sets for reference.
The presented methods are all able to generate meaningful digits on MNIST. If we take a closer look
at the digits, the digits generated with L2 cost is less natural than the one with cosine cost. Moreover,
we show both unconditional and conditional generation results on CIFAR-10. For both unconditional
and conditional generation, our proposed method achieves good quantitative and qualitative results.

��������� ���������� ������������������ �������������������

Figure 13: Unconditional generated samples and inception scores of MNIST, with DCGAN (standard
CNN) backbone.
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Figure 14: Unconditional generated samples and FIDs of CIFAR-10, with DCGAN (standard CNN)
backbone.
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Figure 15: Unconditional generated samples and FIDs of CIFAR-10, with SNGAN (ResNet) back-
bone.
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Figure 16: Conditional generated samples and FIDs of CIFAR-10, with SNGAN (ResNet) backbone.
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Figure 17: Generated samples and FIDs of CelebA, with DCGAN (standard CNN) backbone.
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Figure 18: Generated samples and FIDs of CelebA, with SNGAN (ResNet) backbone.
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Figure 19: Generated samples and FIDs of LSUN, with DCGAN (standard CNN) backbone.
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Figure 20: Generated samples and FIDs of LSUN, with SNGAN (ResNet) backbone.

21



Under review as a conference paper at ICLR 2021

B.5 EXPERIMENT DETAILS

Preparation of datasets We apply the commonly used training set of MNIST (50K images, 28×28
pixels) (Lecun et al., 1998), CIFAR-10 (50K images, 32×32 pixels) (Krizhevsky et al., 2009), CelebA
(about 203K images, resized to 64× 64 pixels) (Liu et al., 2015), and LSUN bedrooms (around 3
million images, resized to 64× 64 pixels) (Yu et al., 2015). The images were scaled to range [−1, 1].
For MNIST, when calculate the inception score, we repeat the channel to convert each gray-scale
image into a RGB format.

Network architecture and hyperparameters For the network architectures presented here, the
slopes of all lReLU functions in the networks are set to 0.1 by default. For toy experiments, typically
10, 000 update steps are sufficient. However, our experiments show that the DGM optimized with
the ACT divergence can be stably trained at least over 500, 000 steps (or possibly even more if
allowed to running non-stop) regardless of whether the navigators are frozen or not after a certain
number of iterations, where the GAN’s discriminator usually diverges long before reaching that many
iterations even if we do not freeze it after a certain number of iterations. For all image experiments,
the output feature dimension of the navigators and that of the critic (i.e., Tφ(·), Tη(·) ∈ Rm) are set
to m = 2048. All models are able to be trained on a single GPU, such as NVidia GTX 1080-TI in
our experiments, with 150, 000 generator updates (for CIFAR-10 we apply 50, 000 iterations).

To keep close to the configuration of the DCGAN and SNGAN experiments setting, we use the the
Adam optimizer (Kingma and Ba, 2015) with learning rate α = 2× 10−4 and β1 = 0.5, β2 = 0.99
for the parameters of the generator, navigators, and critic. On the DCGAN backbone, we let all
the modules update with the same frequency; while on the SNGAN backbone, the critic is updated
once per 5 generator updating steps. The performance might be further improved with more careful
fine-tuning. For example, the learning rate of the navigator parameter could be made smaller than
that of the generator parameter. The true data minibatch size is fixed to N = 64 for all experiments.
Moreover, with this batch-size we let the generated sample size M the same as minibatch size N for
ACT computation and we have monitored the average time for each update step on a single NVidia
GTX 1080-TI GPU: On CIFAR-10, each update step takes around 0.1s and 0.2s for DCGAN and
SNGAN, respectively; For DCGAN and SNGAN backbone trained with ACT divergence each update
step takes around 0.4s and 0.7s. On CelebA and LSUN, each update takes 0.6s and 0.7s for DCGAN
and SNGAN, respectively; when trained with ACT, the elapsed time for each update increases to 3.3s
and 3.6s, respectively.

Table 3: Network architecture for toy datasets (V indicates the dimensionality of data).

(a) Generator Gθ

ε ∈ R50 ∼ N (0, 1)

50→ 100, dense, lReLU

100→ 50, dense, lReLU

50→ V , dense, linear

(b) Navigator Tφ

x ∈ RV

2→ 100, dense, lReLU

100→ 50, dense, lReLU

50→ 1, dense, linear
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Table 4: DCGAN architecture for CIFAR-10 datasets (h = w = 4).

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 512, dense, linear

4× 4, stride=2 deconv. BN 256 ReLU

4× 4, stride=2 deconv. BN 128 ReLU

4× 4, stride=2 deconv. BN 64 ReLU

3× 3, stride=1 conv. 3 Tanh

(b) Navigator Tφ / Critic Tη

x ∈ [−1, 1]
32×32×3

3× 3, stride=1 conv 64 lReLU
4× 4, stride=2 conv 64 lReLU

3× 3, stride=1 conv 128 lReLU
4× 4, stride=2 conv 128 lReLU

3× 3, stride=1 conv 256 lReLU
4× 4, stride=2 conv 256 lReLU

3× 3, stride=1 conv. 512 lReLU

h× w × 512→ m, dense, linear

Table 5: DCGAN architecture on for CelebA and LSUN datasets (h = w = 4).

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 1024, dense, linear

4× 4, stride=2 deconv. BN 512 ReLU

4× 4, stride=2 deconv. BN 256 ReLU

4× 4, stride=2 deconv. BN 128 ReLU

4× 4, stride=2 deconv. BN 64 ReLU

3× 3, stride=1 conv. 3 Tanh

(b) Navigator Tφ / Critic Tη

x ∈ [−1, 1]
64×64×3

4× 4, stride=2 conv 64 lReLU
4× 4, stride=2 conv BN 128 lReLU

4× 4, stride=2 conv BN 256 lReLU

3× 3, stride=1 conv BN 512 lReLU

h× w × 512→ m, dense, linear

Table 6: ResNet architecture on for CIFAR-10 datasets.

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 256, dense, linear

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3× 3 conv, 3 Tanh

(b) Navigator Tφ / Critic Tη

x ∈ [−1, 1]
32×32×3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU

Global sum pooling

h = 128→ m, dense, linear
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Table 7: ResNet architecture on for CelebA and LSUN datasets.

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 1024, dense, linear

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3× 3 conv, 3 Tanh

(b) Navigator Tφ / Critic Tη

x ∈ [−1, 1]
64×64×3

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ReLU
Global sum pooling

h = 1024→ m, dense, linear
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