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ABSTRACT

Decentralized federated learning (DFL) captures FL settings where both (i) model
updates and (ii) model aggregations are exclusively carried out by the clients with-
out a central server. Existing DFL works have mostly focused on settings where
clients conduct a fixed number of local updates between local model exchanges,
overlooking heterogeneity and dynamics in communication and computation ca-
pabilities. In this work, we propose Decentralized Sporadic Federated Learning
(DSpodFL), a DFL methodology built on a generalized notion of sporadicity in
both local gradient and aggregation processes. DSpodFL subsumes many exist-
ing decentralized optimization methods under a unified algorithmic framework by
modeling the per-iteration (i) occurrence of gradient descent at each client and (ii)
exchange of models between client pairs as arbitrary indicator random variables,
thus capturing heterogeneous and time-varying computation/communication sce-
narios. We analytically characterize the convergence behavior of DSpodFL for
both convex and non-convex models and for both constant and diminishing learn-
ing rates, under mild assumptions on the communication graph connectivity, data
heterogeneity across clients, and gradient noises. We show how our bounds re-
cover existing results from decentralized gradient descent as special cases. Exper-
iments demonstrate that DSpodFL consistently achieves improved training speeds
compared with baselines under various system settings.

1 INTRODUCTION

Traditional works in federated learning (FL) have focused on a conventional “star topology” con-
figuration where clients are connected directly to a central server (Konečnỳ et al., 2016; Bonawitz
et al., 2019). In this setup (Fig. 1a), FL iterates between (i) client-side local model updates, typically
via stochastic gradient descent (SGD) on local datasets, and (ii) server-side model aggregations.
However, a central server may not always be present/feasible for synchronization, e.g., in the grow-
ing body of direct peer-to-peer networks (Brinton et al., 2024). To address this, recent research has
proposed decentralized federated learning (DFL) (Koloskova et al., 2020), replacing the server’s role
in FL aggregations with distributed optimization techniques (Nedić et al., 2018). This introduces a
new challenge in DFL as clients need to reach consensus while optimizing their local models via
gradient descent (Figs. 1b-1d). Towards this end, clients exchange models with their neighbors over
the decentralized topology to form aggregations through gossip protocols (Huang et al., 2022).

FL settings are often dominated by heterogeneity and dynamics in various dimensions, including
client processing capabilities, communication capabilities, and local dataset statistics varying across
clients and over time (Li et al., 2020). This causes (i) computing gradients at every iteration to be
costlier (e.g., in terms of delay) at clients with weaker/slower processing units, and (ii) higher trans-
mission delays for clients with low-quality communication links (e.g., lower available bandwidth or
transmit power), among other impacts (Wang et al., 2021). Existing works in centralized FL have
addressed these issues by letting the number of local SGD steps between aggregations vary across

1



Published as a conference paper at ICLR 2025

𝑣!
" = 1	∀𝑘	𝑚𝑜𝑑	𝐷 ≠ 0

𝑣-!
" = 1	∀𝑘	𝑚𝑜𝑑	𝐷 = 0

(a) FL with a central server

𝑣!
" = 1

𝑣$!#
" = 1

(b) DGD

𝑣!
" = 1	∀𝑘	𝑚𝑜𝑑	𝐷 ≠ 0

𝑣-!#
" = 1	∀𝑘	𝑚𝑜𝑑	𝐷 = 0

(c) DFedAvg

𝑣!
" = 1

𝔼 𝑣%!#
" = 𝑏!#

(d) RG

𝔼 𝑣!
" = 𝑑!

(")

𝔼 𝑣%!%
" = 𝑏!%

"

local update

inter-client 
communication

dynamic
heterogeneous

(e) DSpodFL (Ours)

Figure 1: Illustrations of centralized FL (Fig. 1a) and different consensus-based decentralized optimization
algorithms (Figs. 1b-1e). In decentralized gradient descent (DGD, Fig. 1b), local updates and inter-client com-
munications occur at every iteration of training. Fig. 1c depicts decentralized local SGD, or DFedAvg, where
communications occur only every D-th iteration. Communication and computation operations are carried out
in a deterministic pattern (solid lines, thickness representing relative frequency) in Figs. 1b and 1c. Random-
ized gossip (RG, Fig. 1d) adopts sporadic communications for aggregations. DSpodFL in Fig. 1e considers
sporadicity in both communications and computations (dashed lines), where the number of local SGDs and the
period of model aggregations are heterogeneous across clients and vary over time.

clients (Maranjyan et al., 2022), and also over training rounds (Yang et al., 2022), i.e., to deal with
differing and/or varying capabilities while maintaining convergence guarantees.

Motivation and key challenges. In the fully decentralized setting, by contrast, there has not yet
been a comprehensive study of how different forms of heterogeneity and dynamics jointly impact
the FL performance. Integrating these factors into DFL makes the analysis challenging because there
are multiple client aggregators without a central coordinator which must reach consensus under the
following conditions: (i) the aggregation periods across the system become heterogeneous as they
depend on the number of local SGDs conducted by each client’s neighbors prior to sharing; and (ii)
these periods become time-varying depending on dynamics in communication/computation resource
availability of clients/links. Most existing DFL algorithms (Koloskova et al., 2020; Sun et al., 2022;
Mishchenko et al., 2022) have not taken these factors into account, resulting in longer times to
achieve a target accuracy in the presence of heterogeneous and time-varying resources. We thus aim
to answer the following key question in this paper:

How can we integrate heterogeneity and dynamics of local SGDs and aggregations into decentral-
ized FL to capture the impact of resource availability while maintaining convergence guarantees?

Contributions. We answer this question by developing a generalized algorithmic framework for
DFL that allows local model aggregations and transmissions to happen after any arbitrary number
of local updates. We refer to this as sporadicity in client participation, which enables capturing the
impacts of heterogeneity and dynamics in DFL. Our methodology, Decentralized Sporadic Federated
Learning (DSpodFL), encapsulates the joint effects of (i) sporadicity in local client computations
and (ii) sporadicity in inter-client communications arising from resource variations over clients and
time. In doing so, DSpodFL captures the impact of different numbers of local SGDs and different
aggregation periods across clients, and allows for these values to vary over the training process, not
constraining them to any prefixed deterministic pattern. We make the following novel contributions:

• Sporadic DFL framework capturing resource heterogeneity and dynamics: We formulate
DSpodFL by modeling the occurrences of (i) a local SGD step at each client and (ii) an exchange
of models between a pair of clients in each training iteration as arbitrary indicator random vari-
ables. This enables clients to conduct these processes intermittently according to their available
resources without delaying DFL training. As illustrated in Fig. 1, DSpodFL (Fig. 1e) subsumes
multiple decentralized optimization methods from existing research (Fig. 1b-1d), which can be
seen as handling special cases of our generalized notion of sporadicity.

• Convergence analysis under mild assumptions for convex and non-convex settings: We analyt-
ically characterize the convergence behavior of DSpodFL for both strongly-convex and non-
convex loss functions, under mild assumptions on the network graph, data heterogeneity, and
gradient noises. We conduct our analysis for both constant (Thms. 4.11, 4.12) and diminishing
learning rates (App. I, G), revealing conditions under which zero optimality/stationarity gap can be
achieved. The introduction of sporadicity to DFL makes the analysis challenging, since both local
SGDs and model aggregations occur without any predetermined pattern. We show how our results
recover the convergence rates of existing DFL algorithms under special cases of sporadicity.
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Paper

Properties of Algorithmic Framework Assumptions and Theoretical Results
Dynamic General. Loose Last Convex &
Resource Data Graph Iterates Non-ConvexFully

Decen.
Sporadic

SGDs
Sporadic

Aggr. Het. Het.a Conn. b Conv. c Analysis
Koloskova et al. (2020) ✓ ✓ ✓ ✓ ✓
Maranjyan et al. (2022) ✓ ✓

Yang et al. (2022) ✓ ✓ ✓
Sun et al. (2022)

Mishchenko et al. (2022) ✓ ✓

Ours ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

aIn Assumptions 4.1-(c) and 4.2-(b), we consider a more general/milder data heterogeneity assumption
based on two parameters δ and ζ. These assumptions are not restricting the gradient norms to a constant bound.

bIn Assumption 4.4, we neither require the underlying network graph to be static, nor B-connected.
cDiscussed in Sec. 4.5, and Appendix F.4(proof of Theorem 4.11 on convergence of convex models).

Table 1: Summary of eight key properties of our paper compared to representative related works.

• Experiments in heterogeneous and time-varying DFL settings: Our numerical experiments demon-
strate that DSpodFL reaches target accuracies with significantly smaller delays compared to DFL
baselines. Further, we find that DSpodFL consistently outperforms the baselines as the degrees
of data heterogeneity, resource heterogeneity and dynamics, and the network properties vary.

2 RELATED WORKS
Table 1 summarizes key contributions of our work relative to closely related literature in centralized
and decentralized FL. To the best of our knowledge, our work is the first to consider sporadic SGDs
and aggregations simultaneously, capturing heterogeneous and time-varying resources in the fully
decentralized setting. Below, we discuss related works along DFL’s two key processes.

Local SGDs. Several works in centralized FL (Li et al., 2019; Lin et al., 2019; Karimireddy et al.,
2020; Woodworth et al., 2020; Mishchenko et al., 2022) proposed algorithms with multiple local up-
dates between consecutive model aggregations, assuming fixed number of local SGDs across clients.
In Maranjyan et al. (2022), an FL method is proposed where at each round of training, the number of
SGD steps differs for each client considering resource heterogeneity. However, the varying number
of local SGD steps across clients remains fixed throughout the training process. To alleviate this
issue, Anarchic FL was proposed Yang et al. (2022); similar to our notion of sporadicity, each client
chooses when to conduct computations/communications freely on its own throughout the training
process, generalizing all prior work discussed above. Compared to these works in centralized FL,
we focus on sporadicity in the decentralized setting. This introduces new challenges to our analysis,
including dealing with multiple client aggregators and the consensus process among the clients.

A few recent works have also considered decentralized counterparts of fixed local SGD methods
(Wang & Joshi, 2018; Sun et al., 2022; Nguyen et al., 2023; Liu et al., 2024), without considering
the heterogeneity and dynamics of client resources. Compared to these works, our focus is on
the sporadic case in DFL, modeling heterogeneous number of local SGD steps for different clients
and allowing them to be time-varying as well. As a result, DSpodFL subsumes prior methods in
decentralized fixed local SGD as a special case. We will further show in Sec. 4 how our convergence
results (Thms. 4.11, 4.12) recover DGD-like methods when there is no sporadicity in SGDs. Finally,
we note that our contribution takes the consideration of sporadic SGDs a step further, by analyzing
the joint effects of sporadic SGDs and sporadic aggregations in DFL.

Consensus strategies. Sporadicity in communications for distributed consensus formation has been
studied in randomized gossip (RG) algorithms. Several works Boyd et al. (2006); Even et al. (2021);
Pu & Nedić (2021) study gossip algorithms with two clients conducting consensus at each iteration,
while (Koloskova et al., 2019; Kong et al., 2021; Chen et al., 2021; Zhu et al., 2022) allow more
general mixing matrices. Saha et al. (2024) further deals with privacy constraints while implement-
ing gossip communications. In another direction, Srivastava & Nedic (2011); Lian et al. (2018);
Bornstein et al. (2022) have studied asynchronous DFL, where the communication delay between
inter-client model exchanges can be modeled as sporadic aggregations. The authors of Koloskova
et al. (2020) unify several existing DGD algorithms, under similar generalized data heterogeneity
and graph connectivity assumptions that we consider in our analysis. However, none of these works
in sporadic aggregations have considered sporadic SGDs in their methodology, making our work
among the first to analyze the efficacy of the joint consideration of sporadic SGDs and aggrega-
tions. A contemporary of our work Even et al. (2024) has also unified several DFL algorithms, but
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for the asynchronous setting without consideration for time variations in resource heterogeneity. In
this respect, compared to all prior works, our modeling using general indicator random variables
(Sec. 3.1) enables us to jointly incorporate heterogeneous and time-varying resource availability of
clients. This approach leads to more generalized results accompanied by new challenges in studying
convergence, making both our algorithmic framework and analysis unique.

3 DECENTRALIZED SPORADIC FEDERATED LEARNING

In this section, we formalize our DSpodFL algorithmic framework and the notion of sporadicity. A
summary of notation used throughout this paper can be found in Appendix A.

3.1 DSPODFL: DECENTRALIZED FL WITH SPORADICITY

We consider a DFL system with m clientsM := {1, . . . ,m} and a series of training iterations k =
1, ...,K. The clients are connected through a time-varying communication graph G(k) = (M, E(k)),
where (i, j) ∈ E(k) if clients i and j can directly communicate at iteration k. Define G = (M, E)
as a graph such that E(k) ⊂ E for all k ≥ 0. The goal of DFL is for clients to discover the globally
optimal model θ⋆ = argminθ∈Rn F (θ) for a given global loss function F (θ). To do so, each client
i ∈ M updates its own version θi of the model by (i) conducting SGDs on its local loss Fi(θ) and
(ii) mixing its model with those received from its neighbors. We have

F (θ) =
1

m

∑
i∈M

Fi(θ), Fi(θ) =
∑

(x,y)∈Di

ℓ(x,y)(θ), (1)

in whichDi is the local dataset of client i ∈M, (x, y) denotes a data point with features x and label
y, and ℓ(x,y)(θ) is the loss incurred by ML model θ on a data point (x, y).

Goal and motivation. Eq. 1 is the conventional objective function of FL, which we consider opti-
mizing for the decentralized setting under sporadicity. Specifically, we aim for each client to arrive
at θ1 = · · · = θm = θ⋆. This means that the clients need to reach consensus through the local
exchange process alongside implementing local SGD (Nedic, 2020). Due to heterogeneity and time
variance in communication/computation resources, we allow for autonomy in the number of SGDs
conducted and in the periods between model sharing across client pairs. This will make the process
particularly challenging to analyze too.

Algorithmic framework. DSpodFL achieves the above goal by modeling sporadicity in client par-
ticipation for DFL, decoupling the number of SGD iterations conducted by a client from the time
between model exchanges with its neighbors and the resulting consensus mixing process. Specifi-
cally, at each iteration k, client i’s update is modeled in the following generalized manner:

θ
(k+1)
i = θ

(k)
i +

∑
j∈M

rij

(
θ
(k)
j − θ(k)i

)
v̂
(k)
ij︸ ︷︷ ︸

Sporadic aggregation

−α(k)g
(k)
i v

(k)
i︸ ︷︷ ︸

Sporadic SGD

, (2)

where θ(k)i is the vector of model parameters of client i at iteration k, and g
(k)
i = ∇Fi(θ

(k)
i ) + ϵ

(k)
i

is the local stochastic gradient with SGD noise ϵ(k)i . In Eq. 2, v(k)i ∈ {0, 1} is a random indicator
variable, capturing the sporadicity in SGD iterations, which is 1 if the client performs SGD in that
iteration. Similarly, v̂(k)ij ∈ {0, 1} is a binary random variable capturing the sporadicity in model
aggregations, which indicates whether the link (i, j) is being used for communications at iteration
k or not (v̂(k)ij = v̂

(k)
ji and v̂

(k)
ii = 0). ri,j ∈ [0, 1] is the mixing weight assigned to link (i, j), for

which the only requirement is that the mixing matrix R = [rij ]1≤i,j≤m is doubly stochastic. For
example, with the Metropolis-Hastings heuristic (Boyd et al., 2004), rij = 1/(1 + max {|Ni|, |Nj |})
when j ∈ Ni, and 0 if j /∈ Ni, in which Ni is the set of neighbors of client i in the physical graph
G = (M, E). Setting rii = 1 −

∑
j∈M rij and noting that rij = rji, i.e., R being symmetric,

completes the design of a doubly stochastic mixing matrix R. The full pseudocode of DSpodFL
implementing Metropolis-Hastings mixing weights is given in Appendix B.

The update rule of Eq. 2 with two different sporadicity terms v(k)i and v̂(k)ij , each capturing both
heterogeneous and time-varying characteristics, has not been considered in the DFL literature.
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3.2 KEY TAKEAWAYS FROM DSPODFL

Interpreting sporadicity. The novelty of DSpodFL in the integration of the two sporadicity terms
(i.e, v(k)i and v̂

(k)
ij ) to model the impacts of resource heterogeneity and dynamics in DFL. Specifi-

cally, client i may set v(k)i = 0 for computation efficiency in iterations where computing a new SGD
is not feasible or does not significantly benefit the statistical/inference performance of the decen-
tralized system. Similarly, a pair of clients can set v̂(k)ij = 0 for communication efficiency when
using link (i, j) is too costly at iteration k relative to local resource availability and/or expected
performance impact. These two key parameters v(k)i and v̂(k)ij can vary arbitrarily over the training
process according to decisions made by clients independently over time. This incorporation of spo-
radicity increases the degrees of freedom DSpodFL accounts for, thereby distinguishing it from the
literature in Sec. 2 (See Appendix P.2 for further remarks).

Unifying existing work. By introducing these two sporadicity terms, DSpodFL subsumes other
decentralized learning algorithms, including those shown in Fig. 1. Specifically, DSpodFL reduces
to DGD (Fig. 1b), DFedAvg (Fig. 1c), and RG (Fig. 1d) for specific configurations of v(k)i and v̂(k)ij .
However, these two sporadicity terms introduce several novel challenges when analyzing conver-
gence due to their creation of uncorrelated aggregation periods in DFL, which we address in Sec. 4.

3.3 MATRIX FORM OF UPDATES IN DSPODFL

To facilite our convergence analysis, we can rewrite the update rule given in Eq. 2 compactly as

Θ(k+1) = P(k)Θ(k) − α(k)V(k)G(k), (3)

where Θ(k) and G(k) are matrices with their rows comprised of (θ
(k)
i )T and (g

(k)
i )T , respectively,

and V(k) is a diagonal matrix with v
(k)
i as its diagonal entries, for clients 1 ≤ i ≤ m. Here,

G(k) = ∇(k) + E(k), where ∇(k) (respectively, E(k)) is the matrix whose i-th row is (∇Fi(θ
(k)
i ))T

(respectively, (ϵ(k)i )T ) for 1 ≤ i ≤ m. The elements of P(k) = [p
(k)
ij ]

1≤i,j≤m
are defined as

p
(k)
ij = rij v̂

(k)
ij ; i ̸= j, p

(k)
ij = 1−

∑
j∈M

rij v̂
(k)
ij ; i = j. (4)

Note that the random matrix P(k), by definition, is doubly stochastic and symmetric with non-
negative entries, i.e., P(k)1 = 1 and (P(k))T = P(k). Finally, in our analysis, we will find it useful
to define a row vector θ̄(k) as the average of model vectors θ(k)1 , ..., θ

(k)
m across clients. Using Eq. 3,

θ̄(k+1) = θ̄(k) − α(k)gv(k), (5)

where (gv(k))T = (1/m)
∑

i∈M g
(k)
i v

(k)
i .

4 CONVERGENCE ANALYSIS

4.1 DEFINITIONS AND ASSUMPTIONS

Assumption 4.1 (Convex loss functions) For analysis in the strongly convex case, we assume the
local loss function Fi at each client i ∈M is (a) βi-smooth and (b) µi-strongly convex. Also, (c) the
gradient diversity is measured via δi > 0 and ζi ≥ 0 as ∥∇F (θ)−∇Fi(θ)∥ ≤ δi + ζi ∥θ − θ⋆∥ ,
for all θ ∈ Rn. We define β = maxi∈M βi, µ = mini∈M µi, δ = maxi∈M δi and ζ = maxi∈M ζi.

For the non-convex analysis in Sec. 4.5, we will replace Assumptions 4.1-(b)&(c) with the following:

Assumption 4.2 (Non-convex loss functions) The local loss function Fi at each client i ∈ M is
(a) βi-smooth. Also, (b) the gradient diversity across clients is measured via δi > 0 and ζi ≥ 0 as
∥∇Fi(θ)∥ ≤ δi + ζi ∥∇F (θ)∥ , for all θ ∈ Rn, i ∈ M. We let β = maxi∈M βi, δ = maxi∈M δi
and ζ = maxi∈M ζi.

Assumption 4.3 (Random variables) For all i ∈ M and all k ≥ 0, (a) The gradient noise ϵ(k)i of
each client is zero mean with bounded variance σ2

i . We also let σ2 = maxi∈M σ2
i . (b) Gradient

noise vectors ϵ(k)i are uncorrelated across the clients, as are the indicator variables v(k)i . The indi-
cator variables v̂(k)ij are also uncorrelated among the network links. (c) Random variables ϵ(k)i and
v
(k)
i are uncorrelated for all clients .
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Assumption 4.4 (Asymptotic graph connectivity) Denote the asymptotic graph union of under-
lying time-varying communication network graphs by G =

(
M, limK→∞ ∪Kk=0E(k)

)
. We assume

that G is connected, and for every edge (i, j) ∈ G, (i, j) ∈ E(k) for infinitely many iterations k.

More detailed mathematical expositions of our assumptions are provided in Appendix C. In Assump-
tions 4.1-(c)&4.2-(b), we do not make the stricter assumption of ζ = 0 found in some works on DFL
(Sun et al., 2022; Mishchenko et al., 2022). The addition of this proximal term makes our analytical
bounds tighter as they only require a constant bound at optimal/stationary points (Lin et al., 2021).
Assumption 4.4 is milder than similar assumptions made in prior works, e.g., static connected graphs
(Sun et al., 2022; Mishchenko et al., 2022; Wang & Nedić, 2023) or B-connected graphs (Nedic &
Ozdaglar, 2009). Table 1 summarizes this comparison along these and other dimensions.

Definition 4.5 We define Ξ(k) as the collection of random variables v
(r)
i , v̂(r)ij and ϵ

(r)
i for all

i ∈ M, (i, j) ∈ E(r), and 0 ≤ r ≤ k. With this, the expected consensus rate (Koloskova
et al., 2020) can be characterized via ρ̃(k), the spectral radius of the expected mixing ma-
trix, as EΞ(k) [∥P(k)Θ(k) − 1mθ̄

(k)∥2] ≤ ρ̃(k)EΞ(k−1) [∥Θ(k) − 1mθ̄
(k)∥2], which we present/prove in

Lemma D.4-(c) and Appendix E.4-(c), respectively.1

Definition 4.6 (Indicator variables) The expected values of variables v(k)i and v̂(k)ij are defined as

E
v
(k)
i

[
v
(k)
i

]
= d

(k)
i , E

v̂
(k)
ij

[
v̂
(k)
ij

]
= E

v̂
(k)
ji

[
v̂
(k)
ji

]
= b

(k)
ij = b

(k)
ji ,

2

in which d(k)i ∈ (0, 1] captures client i’s probability of conducting SGD, and b(k)ij ∈ (0, 1] captures
the probability of link (i, j) being used for communication, at iteration k. We also define d(k)max =

maxi∈M d
(k)
i and d

(k)
min = mini∈M d

(k)
i . Note that the probability distributions of these indicator

variables can be time-varying, allowing for an arbitrary range of profiles for v(k)i and v̂(k)ij .

4.2 AVERAGE MODEL ERROR AND CONSENSUS ERROR

To characterize the convergence behavior of DSpodFL, we first provide an upper bound on the
average model error EΞ(k) [∥θ̄(k+1) − θ⋆∥2] (Lemma 4.7), and also upper bound the consensus error
EΞ(k) [∥Θ(k+1) − 1mθ̄

(k+1)∥2] (Lemma 4.8), at each iteration k.

Lemma 4.7 (Average model error) (See Appendix F.1 for the proof.) Let Assumptions 4.1 and 4.3
hold. For each iteration k ≥ 0, we have the following bound on the expected average model error:

EΞ(k) [∥θ̄(k+1) − θ⋆∥2] ≤ ϕ(k)11 EΞ(k−1) [∥θ̄(k) − θ⋆∥2] + ϕ
(k)
12 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2] + ψ
(k)
1 ,

where ϕ(k)
11 = 1− µα(k)(1 + µα(k) − (µα(k))

2
) + 2α(k)

µ
(1 + µα(k))(1− d

(k)
min)β

2,

ϕ
(k)
12 = (1 + µα(k))α

(k)d
(k)
maxβ

2

mµ
, and ψ(k)

1 = 2α(k)

µ
(1 + µα(k))(1− d

(k)
min)δ

2 + (α(k))
2
d
(k)
maxσ

2

m
.

In Lemma 4.7, the upper bound on the expected error at iteration k + 1 is expressed
in terms of the scaled expected error ϕ

(k)
11 EΞ(k−1) [∥θ̄(k) − θ⋆∥2], the scaled consensus error

ϕ
(k)
12 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2] (which will be analyzed in Lemma 4.8), and the scalar ψ(k)
1 , all at

iteration k. We can see that this bound captures the impact of sporadicity in local SGDs at devices,
through d(k)min and d(k)max. It recovers the bound for DGD when d(k)min = 1, i.e., making v(k)i = 1 for
all i ∈M (e.g., see Lemma 5-b of Zehtabi et al. (2022)).

Lemma 4.8 (Consensus error) (See Appendix F.2 for the proof.) Let Assumptions 4.1, 4.3 and 4.4
hold. For each iteration k ≥ 0, we have the following bound on the expected consensus error:

EΞ(k) [∥Θ(k+1) − 1mθ̄
(k+1)∥2] ≤ ϕ(k)21 EΞ(k−1) [∥θ̄(k) − θ⋆∥2] + ϕ

(k)
22 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2] + ψ
(k)
2 ,

1Our notation of EΞ(k) [ ◦ ] denotes the full expectation operator with respect to the random variables in
matrix Ξ(k), i.e., EΞ(k−1) [Eξ(k) [ ◦ |Ξ(k−1)]] = Eξ(0) [Eξ(1) [· · ·Eξ(k−1) [Eξ(k) [ ◦ |Ξ(k−1)]|Ξ(k−2)] · · · |ξ(0)]].

2Note that v(k)i and v̂(k)ij are thus Bernoulli random variables for each k. However, the expectation changes

over time, i.e., varying d(k)i and b(k)ij , making v(k)i and v̂(k)ij dynamic Bernoulli variables.
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where ϕ(k)
21 = 3 1+ρ̃(k)

1−ρ̃(k)md
(k)
max(α

(k))
2
(ζ2+2β2(1−d(k)min)), ϕ

(k)
22 = 1+ρ̃(k)

2
+3 1+ρ̃(k)

1−ρ̃(k) d
(k)
max(α

(k))
2
(ζ2+2β2),

ψ
(k)
2 = m(α(k))

2
d
(k)
max(3

1+ρ̃(k)

1−ρ̃(k) δ
2 + σ2), and ρ̃(k) is defined in Definition 4.5.

Lemma 4.8 captures the impact of sporadicity in model exchanges, through ρ̃(k) (which is smaller
when the mixing matrix is better connected), and in SGDs. It also shows how gradient diversity
(ζ, δ) makes the bound larger. It reduces to a bound for DGD when (a) ζ = 0 and (b) d(k)min = 1 (i.e.,
d
(k)
i = 1 for all i), in turn forcing ϕ(k)

21 = 0 (e.g., see Lemma 5-c in Zehtabi et al. (2022)).

4.3 SUFFICIENT CONDITION FOR CONVERGENCE

We observe that the the average model error and consensus error from Lemmas 4.7 and 4.8 are cou-
pled. We next characterize their joint evolution and provide a condition for DSpodFL convergence.

Definition 4.9 (Error vector) We denote the error vector at iteration k as ν(k), defined as the con-
catenation of the average model error and the consensus error:

ν(k) =

[
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆
∥∥∥2

]
, EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)

∥∥∥2
]]T

. (6)

Using this definition, it follows that

ν(k+1) ≤ Φ(k)ν(k) +Ψ(k), (7)

with Φ(k) = [ϕ
(k)
ij ]

1≤i,j≤2
and Ψ(k) = [ψ

(k)
1 , ψ

(k)
2 ]T . Recursively expanding the inequalities in

Eq. 7 gives us an explicit relationship between the expected model error and consensus error at each
iteration, and their initial values, which will be useful in Theorem 4.11:

ν(k+1) ≤ Φ(k:0)ν(0) +

k∑
r=1

Φ(k:r)Ψ(r−1) +Ψ(k), (8)

where we have defined Φ(k:s) = Φ(k)Φ(k−1) · · ·Φ(s) for k > s, and Φ(k:k) = Φ(k). Note that
ν(0) = [∥θ̄(0) − θ⋆∥2, ∥Θ(0) − 1mθ̄

(0)∥2]T .

From Eqs. 7 and 8, we can apply linear system theory to identify a sufficient condition for conver-
gence of DSpodFL: that the spectral radius of matrix Φ(k) is less than one, i.e., ρ(Φ(k)) < 1. In the
following proposition, we show this can be enforced through appropriate choice of learning rate.

Proposition 4.10 (Spectral radius) (See Appendix F.3 for the proof.) Let Assumptions 4.1, 4.3 and
4.4 hold. If the learning rate satisfies the following condition for all k ≥ 0:

α(k) < min

{
1
µ
, 1

2
√

3d
(k)
max

1−ρ̃(k)√
1+ρ̃(k)

1√
ζ2+2β2

,

(
µ

12
(
ζ2+2β2

(
1−d

(k)
min

))
)1/3(

1−ρ̃(k)

2d
(k)
maxβ

)2/3
}
,

then we have ρ
(
Φ(k)

)
< 1 for all k ≥ 0, in which ρ(·) denotes the spectral radius of a given matrix,

and Φ(k) is given in Eq. 7. The exact value of ρ(Φ(k)) is given in Appendix F.3.

Proposition 4.10 implies that limk→∞ Φ(k:0) = 0 in Eq. 8, which means the consensus and average
model errors will converge. The exact convergence rate depends on the choice of learning rate α(k).

4.4 MAIN THEOREM AND DISCUSSIONS FOR CONVEX CASE

We characterize the convergence bound of DSpodFL for the convex case in the following theorem.

Theorem 4.11 (Strongly-convex convergence result) (See Appendix F.4 for the proof.) Let As-
sumptions 4.1, 4.3 and 4.4 hold, and suppose a constant step size α(k) = α > 0 satisfying the con-
ditions outlined in Proposition 4.10 is employed. Let ρ̃ = max0≤k≤K ρ̃(k) be the maximum expected
spectral radius of the mixing probabilities from Definition 4.5 and dmin = min0≤k≤K,i∈M d

(k)
i be

the minimum of the SGD probabilities. Then, we can rewrite Eq. 8 as

ν(K+1) ≤ ρ(Φ)
K+1

ν(0) +
1

1− ρ(Φ)
Ψ, (9)
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in which Ψ = Ψ(k) and Φ = Φ(k) from Eq. 7 for all k (given the bounds ρ̃(k) ≤ ρ̃, d(k)max ≤ 1 and
d
(k)
min ≥ dmin), and ν(k) is the error vector. This means for large enough K, we have

lim
K→∞

ν(K+1) ≤ 1

2A

[
2
µ (1 + µα) (1− dmin) δ

2 + ασ2

m

mα
(
3 1+ρ̃
1−ρ̃δ

2 + σ2
) ]

, (10)

where A = β2

µ
(Γ⋆

2−1)(1− 1
Γ0

) with Γ0,Γ
⋆
2 > 1 being constant scalars defined in Appendix F.3. Note

that Proposition 4.10 ensures ρ(Φ) < 1.

Discussion on convergence. The bound in Eq. 9 indicates that by using a constant step size,
DSpodFL obtains a geometric convergence rate (i.e., O(ρ(Φ)K)) as in other DFL methods
(Mishchenko et al., 2022; Nedic & Ozdaglar, 2009), Eq. 10 characterizes the asymptotic optimality
gap as K → ∞. We observe that this bound holds for any choice of time-varying SGD and ag-
gregation probabilities, d(k)i and b(k)ij through ρ̃(k) (see Appendix P.1), respectively. Additionally,
the optimality gap is reduced by (i) choosing a smaller learning rate α and (ii) having a system
with a larger minimum SGD probability dmin. As discussed after Lemma 4.7, in the conventional
DFL setting where SGDs occur at every iteration, we have dmin = 1. In this setting, the optimality
gap in Eq. 10 would be proportional to α, showing that DSpodFL recovers well-known results of
DGD-like algorithms (Maranjyan et al., 2022) in this special case of no sporadicity in local updates.

Diminishing learning rate. When diminishing step size α(k) is used, DSpodFL achieves zero
optimality gap with a sub-linear convergence rate O(lnK/

√
K), matching the rate achieved by

existing DGD-based methods (Nedić & Olshevsky, 2014). See Appendix I for proofs and discussion.

Effects of sporadicity terms. Both ρ(Φ) (from Proposition 4.10) and the first term in the optimality
gap vector given in Eq. 10 can be made smaller by choosing a larger dmin = min0≤k≤K,i∈M d

(k)
i ,

which will result in a faster convergence rate and a lower average model error. Also, the communi-
cation probabilities b(k)ij affect the bounds through the spectral radius parameter ρ̃ (exact relationship
given in Appendix E.4). To elaborate, increasing the frequency of communications will lower the
spectral radius term ρ̃, leading to faster convergence and a smaller gap for the consensus error. How-
ever, this is not always desirable since choosing di and bij solely based on the convergence rate can
result in longer iteration lengths, due to resource-limited clients. As we will see in Sec. 5, choosing
di and bij considering resource availability leads to speedup in achieving performance targets.

4.5 ANALYSIS FOR NON-CONVEX CASE

Our discussion so far has revolved around strongly convex loss functions. For the non-convex case,
we follow a similar roadmap for our analysis as in Sec. 4.2-4.4. The detailed supporting lemmas and
propositions can be found in Appendix G. Ultimately, we arrive at the following theorem:

Theorem 4.12 (Non-convex convergence result) (See Appendix H.7 for the proof.) Let Assump-
tions 4.2, 4.3 and 4.4 hold, and suppose a constant learning rate α(k) = α with α > 0 satisfying the
constraints given in Proposition G.6 is employed. Let ρ̃ = max0≤k≤K ρ̃(k) for the spectral radius
and dmin = min0≤k≤K,i∈M d

(k)
i for the local SGDs. Then,∑K

r=0 E
Ξ(r−1) [∥∇F (θ̄(r))∥2

]

K+1 ≤ 1
w1

(
F (θ̄(0))−F⋆

α(K+1) + ∥Θ(0)−1mθ̄(0)∥2
w2

K+1 + α2w2w3 + (1− dmin)w4 + αw5

)
,

in which F ⋆ = minθ∈Rn F (θ) is the globally optimal loss, and w1 = 1
2
(1 − 1

Γ0
)(1 − 1

Γ2
)(1 − 1

Γ2
4
),

w2 = β2dmax(1+Γ3)

m(1−ρ̃)
(
1− 1

Γ1

) , w3 = mdmax(16
1+ρ̃
1−ρ̃

δ2 + σ2), w4 = (1 + Γ3)δ
2 and w5 = βdmaxσ

2

2m
. Also, the

conditions on the constant scalars Γi are Γ0,Γ1,Γ2,Γ4 > 1 and Γ3 > 0. Letting K → ∞, we obtain

lim
K→∞

∑K
r=0 EΞ(r−1) [∥∇F (θ̄(r))∥2]

K + 1
≤ α2w2w3 + (1− dmin)w4 + αw5

w1
.

Discussion. Theorem 4.12 shows that many takeaways from Theorem 4.11 extend to the non-convex
case. Specifically, Theorem 4.12 generalizes results of existing DFL works by capturing the effect of
sporadicity with non-convex losses. As in Theorem 4.11, by setting dmin = min0≤k≤K,i∈M d

(k)
i = 1,

our work recovers well-known convergence guarantees in DGD when there is no sporadicity in
SGDs Koloskova et al. (2020) (see Appendix. P.4 for further discussion). Additionally, the sta-
tionarity gap, which is bounded regardless of the di values, can be reduced by choosing a smaller
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Figure 2: Accuracy vs. latency plots. DSpodFL achieves the target accuracy much faster with less delay,
emphasizing the benefit of sporadicity in DFL for SGD iterations and model aggregations simultaneously.

learning rate α and/or a larger minimum SGD probability dmin. One key difference from Theo-
rem 4.11 is that Theorem 4.12 provides sub-linear convergence (i.e., O(1/K)) of average gradient
norms as opposed to geometric convergence of models’ last iterates across clients. We also provide
analysis for the diminishing learning rate case in Appendix K.

5 NUMERICAL EVALUATION

Models and datasets. To evaluate our methodology, we consider image classification tasks using
the Fashion-MNIST (FMNIST) (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 2009) datasets.
We use FMNIST to train the Support Vector Machine (SVM) model (Cortes & Vapnik, 1995), while
CIFAR10 is adopted for training VGG11 (Simonyan & Zisserman, 2015).

Settings. By default, we consider m = 10 clients connected via a random geometric graph (RGG)
with radius 0.4 (Penrose, 2003). We adopt a constant learning rate α = 0.01, and use a batch size
of 16. The SGD probability di for each client and exchange probability bij for each link are ran-
domly chosen according to either the Beta distribution Beta(α, β), uniform distribution U [0, 1] or
Bimodal Truncated Gaussian distribution 0.5(Ñ[0,1](µ1, σ

2
1)+Ñ[0,1](µ2, σ

2
2)), and are held constant

over iterations k. Choosing α = β < 1 for the Beta distribution results in an inverted bell-shaped
distribution, which corresponds to scenarios where the clients and communications links exhibit
significant heterogeneity. For FMNIST, we use di, bij ∼ Beta(0.5, 0.5), and for CIFAR10, we use
di, bij ∼ Beta(0.8, 0.8). We consider two different data distribution scenarios: (i) IID, where each
client receives samples from all 10 classes in the dataset, and (ii) non-IID, where each client re-
ceives samples from just 1 class for the FMNIST dataset, and from 3 classes for CIFAR10. Unless
stated otherwise, our experiments are done under the non-IID setup. We measure the test accu-
racy of each scheme achieved over the average total delay incurred up to iteration k. Specifically,
τ
(k)
total = τ

(k)
trans + τ

(k)
proc, in which τ (k)trans = [

∑m
i=1 (1/|Ni|)

∑
j v̂

(k)
ij /bij ]/[

∑m
i=1 (1/|Ni|)

∑
j 1/bij ] and

τ
(k)
proc = [

∑m
i=1 v

(k)
i /di]/[

∑m
i=1 1/di] are the per-client transmission delays incurred across links and

processing delays incurred across clients in iteration k, respectively (see Appendix P.3 for further
discussion). For a fair comparison, we determine the aggregation frequency D for the DFedAvg
algorithm (depicted in Fig. 1) based on these di, i.e., D = ⌈(1/m)

∑m
i=1 1/di⌉. We conduct the

experiments based on a cluster of three NVIDIA A100 GPUs with 40GB memory. We run the
experiments multiple times in each setup, and present the mean and 1-sigma standard deviation.

Baselines. We compare DSpodFL with four baselines that are tailored to decentralized settings: (a)
Distributed Gradient Descent (DGD), where SGDs and local aggregations occur at every iteration
(Nedic & Ozdaglar, 2009); (b) the Randomized Gossip (RG) algorithm (Koloskova et al., 2020),
which is equivalent to Sporadic Aggregations (with constant SGDs); (c) Sporadic SGDs (with con-
stant aggregations); and (d) Decentralized Federated Averaging (DFedAvg) (Sun et al., 2022). Note
that all these baselines can be viewed as special cases of DSpodFL as elaborated in Fig. 1.

Accuracy vs. delay comparisons. Fig. 2 compares the test accuracies of different schemes in terms
of overall delay. By allowing for sporadicity in both SGDs and aggregations, DSpodFL outperforms
all baselines for both data distributions and models/datasets. In the IID setups of Figs. 2a and 2c,
the performances of the baselines are reasonably similar. Meanwhile, our DSpodFL is able to
significantly outperform those algorithms by an accuracy margin of 10− 20% in the initial stages of
training. The gain of DSpodFL becomes more significant for non-IID data distributions as shown in
Figs. 2b and 2d. Inter-client communications become more crucial in non-IID setups, as each client
has access only to a small portion of the distribution of the whole dataset. Depending on the baseline
and dataset, DSpodFL is able to achieve 10− 40% improvement in accuracy for a particular delay.
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Figure 3: Effects of system parameters on FMNIST. In Figs. 3a, 3b and 3c, client and link capabilities di and
bij are sampled from a uniform distribution U(0, 1]. The overall results confirm the advantage of DSpodFL.

Effects of system parameters. In Fig. 3, we study the accuracy reached by a certain training delay
as system parameters are varied. In contrast to Fig. 2 where client/link capabilities were sampled
from Beta distribution, for completeness, Figs. 3a-3c are sampled from uniform distribution. In
Fig. 3a, we see how increasing number of labels possessed by each client (moving from non-IID to
IID) improves the achieved accuracy of all methods. Further, DSpodFL outperforms the baselines
for each data distribution. In Fig. 3b, we see that increasing the radius of the underlying RGG (which
controls the density of connections) improves the achievable accuracy for all baselines. Again,
DSpodFL performs the best for all choices of radii, confirming the benefit of integrating the notion
of sporadicity in both communications and computations. Fig. 3c depicts the impact of the number
of clients in the system. DSpodFL obtains the largest improvement as the size of the network
increases, whereas the baselines are more likely to suffer from resource bottlenecks if weak nodes
are added. Finally, in Fig. 3d, we analyze the effects of parameters α = β in the Beta distribution,
which control the communication/computation heterogeneity across clients. Note that increasing
these parameters to 1 brings the distribution closer to uniform. We see that DSpodFL is robust to
the underlying resource distribution, and the gap between our approach and other baselines become
more significant when levels of heterogeneity in client/link resources are higher, i.e., lower α = β.
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Figure 4: Scalability to larger clients and robustness
against distributions on FMNIST.

Generalization of results to various settings.
In Fig. 4, we provide experimental results
where some of the default system parameters
that were used for Figs. 2 and 3 are changed.
In Fig. 4a, a total of 50 clients are considered
for the decentralized system. The results illus-
trate that the improvements become more pro-
nounced with m = 50, confirming the trend
seen with increasing m in Fig. 3a. In Fig. 4b,
a Bimodal Truncated Gaussian distribution is
used to generate probabilities di and bij , which
for small values of variance when the means of
the two modes are far from each other, gives
heterogeneous clients. We see that when vary-
ing µ, a wider margin of improvement (15%) with lower µwhere µ1 = µ and µ2 = 1−µ is achieved.
This confirms that DSpodFL is most advantageous relative to the baselines under higher levels of
heterogeneity, similar to how the improvements under the inverted bell-shaped Beta distribution
were more pronounced than those under the uniform distribution in Fig. 3d.

Additional results. In Appendix O, we report experimental results when time-varying SGD and
aggregation probabilities are used, as well as under other configurations of resource heterogeneity.

6 CONCLUSION AND LIMITATIONS

We proposed DSpodFL, a DFL algorithmic framework that generalizes the notion of sporadicity to
fully decentralized scenarios. By considering (i) sporadic gradient computations and (ii) sporadic
client-to-client communications simultaneously, our approach tackles the challenges in heteroge-
neous and time-varying resource settings and subsumes well-known decentralized optimization al-
gorithms. We analyzed the convergence behavior of DSpodFL, and showed how our results recover
existing DGD-like algorithms under special cases of sporadicity. Through experiments, we demon-
strated the advantage of DSpodFL compared to DFL baselines. Future work could consider further
validating DSpodFL on larger datasets and more expansive set of tasks beyond image classification.
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drikx, Laurent Massoulié, and Adrien Taylor. A continuized view on nesterov acceleration for
stochastic gradient descent and randomized gossip. In Advances in Neural Information Process-
ing Systems, pp. 1–32, 2021.

Mathieu Even, Anastasia Koloskova, and Laurent Massoulié. Asynchronous sgd on graphs: a unified
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A NOTATION

Arguments for functions are denoted with parentheses, e.g., f(x) implies x is an argument for
function f . The iteration index for a parameter is indicated via superscripts, e.g., h(k) is the value of
the parameter h at iteration k. client indices are given via subscripts, e.g., h(k)i refers to parameter
belonging to client i. We write a graph G with a set of nodes (clients) V and a set of edges (links) E
as G = (V, E).
We denote vectors with lowercase boldface, e.g., x, and matrices with uppercase boldface, e.g., X.
All vectors x ∈ Rd×1 are column vectors, except in certain cases where average vectors x̄ ∈ R1×d

and optimal vectors w⋆ ∈ R1×d are row vectors. ⟨x,x′⟩ and ⟨X,X′⟩ denote the inner product of
two vectors x,x′ of equal dimensions and the Frobenius inner product of two matrices X,X′ of
equal dimensions, respectively. Moreover, ∥x∥ and ∥X∥ denote the 2-norm of the vector x, and the
Frobenius norm of the matrix X, respectively. The spectral norm of the matrix X is written as ρ(X).

B ALGORITHM PSEUDOCODE

Algorithm 1 Decentralized Sporadic Federated Learning (DSpodFL)

1: Input: K, {G(k) = (M, E(k))}0≤k≤K , {v(k)i }i∈M,0≤k≤K , {v̂(k)ij }(i,j)∈E(k),0≤k≤K
,

{α(k)}0≤k≤K

2: Output: {θ(K+1)
i }i∈M

3: k ← 0, Initialize θ(0), {θ(0)i ← θ(0)}i∈M, {v(0)i ← 0}i∈M, {v̂(0)ij ← 0}
(i,j)∈E(0)

4: while k ≤ K do
5: for all i ∈M do
6: g

(k)
i ← 0, aggr(k)i ← 0

7: if v(k)i = 1 then
8: sample mini-batch ξ(k)i ∈ Di

9: g
(k)
i ← ∇Fi(θ

(k)
i ; ξ

(k)
i )

10: end if
11: for all j ∈ E(k)i do
12: if v̂(k)ij = 1 then
13: rij ← 1/(1 + max {|Ni|, |Nj |})
14: aggr(k)i ← aggr(k)i + rij

(
θ
(k)
j − θ(k)i

)
15: end if
16: end for
17: end for
18: for all i ∈M do
19: θ

(k+1)
i ← θ

(k)
i + aggr(k)i − α(k)g

(k)
i

20: end for
21: k ← k + 1
22: end while

C ASSUMPTION STATEMENTS

In this section, we state the mathematical inequalities that follow from the assumptions we made in
Sec. 4.1, which are used in our subsequent Lemmas and Propositions.

• Assumption 4.1:
(a): βi-smoothness: ∥∇Fi(θ)−∇Fi(θ

′)∥ ≤ βi ∥θ − θ′∥ ≤ β ∥θ − θ′∥,
(b): µi-strong convexity: ⟨∇Fi(θ)−∇Fi(θ

′), θ − θ′⟩ ≥ µi∥θ − θ′∥2 ≥ µ∥θ − θ′∥2,
(c): δi, ζi-gradient diversity: ∥∇F (θ)−∇Fi(θ)∥ ≤ δi + ζi ∥θ − θ⋆∥ ≤ δ + ζ ∥θ − θ⋆∥,
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for all (θ′, θ) ∈ Rn × Rn and all i ∈ M, where µ = mini∈M µi, β = maxi∈M βi,
δ = maxi∈M δi and ζ = maxi∈M ζi.
Note that these measures are related to each other via the inequalities µ ≤ µi ≤ βi ≤ β,
0 ≤ ζi < βi + β and 0 ≤ ζ ≤ 2β (see Appendix E.1). We will also find the relationship
F (θ) ≤ F (θ′) + ⟨∇F (θ′), θ − θ′⟩+ β

2 ∥θ
′ − θ∥2 useful in our treatment of smoothness.

• Assumption 4.2:
Note that it is possible to make this assumption even for convex models instead of Assump-
tion 4.1-(c), since smoothness implies that ∥∇F (θ)∥ ≤ β∥θ−θ⋆∥. However, we choose to
use Assumption 4.1-(c) instead of Assumption 4.2-(b) for convex models, since it is a less
strict assumption.

• Assumption 4.3:

(a): Zero mean and bounded variance of stochastic gradient noise: E
ϵ
(k)
i

[ϵ
(k)
i ] = 0,

E[∥ϵ(k)i ∥
2

2] ≤ σ
2
i ≤ σ2,

where σ2 = maxi∈M σ2
i , for all i ∈M and all k ≥ 0.

(b): Let us define SGD noise vectors ϵ(k)i and ϵ(k)j , indicator variables v(k)i and v(k)j , and

v̂
(k)
i,j and v̂(k)l,q . Then for all i ̸= j, and (i, j) ̸= (l, q), we have:

Eξ(k) [⟨ϵ(k)i , ϵ
(k)
j ⟩] =

〈
E
ϵ
(k)
i

[ϵ
(k)
i ],E

ϵ
(k)
j

[ϵ
(k)
j ]
〉

, Eξ(k) [v
(k)
i v

(k)
j ] = E

v
(k)
i

[v
(k)
i ]E

v
(k)
j

[v
(k)
j ],

Eξ(k) [v̂
(k)
i,j v̂

(k)
l,q ] = E

v̂
(k)
i,j

[v̂
(k)
i,j ]Ev̂

(k)
l,q

[v̂
(k)
l,q ], Eξ(k) [ϵ

(k)
i v

(k)
i ] = E

ϵ
(k)
i

[ϵ
(k)
i ]E

v
(k)
i

[v
(k)
i ].

• Assumption 4.4:

This assumption implies that if P(k) = [p
(k)
ij ]

1≤i,j≤m
and R = [rij ]1≤i,j≤m as defined in

Eqs. 4 and 2 are the doubly-stochastic mixing matrices assigned to G(k) and G, respectively,
we have∥∥P(k)Θ(k) − 1mθ̄

(k)
∥∥2 ≤ ∥∥Θ(k) − 1mθ̄

(k)
∥∥2,∥∥RΘ(k) − 1mθ̄

(k)
∥∥2 ≤ ρ2r · ∥∥Θ(k) − 1mθ̄

(k)
∥∥2,

with 0 < ρr < 1, where ρr denotes the spectral radius of the matrix R− 1
m1m1T

m.

C.1 GRADIENT DIVERSITY ASSUMPTIONS FOR CONVEX AND NON-CONVEX MODELS

In this section, we will discuss why we change the gradient diversity assumption when we treat
non-convex models, i.e., move from Assumption 4.1-(c) to Assumption 4.2-(b).

We note that if we are dealing with strongly-convex models, i.e., we make Assumption 4.1-(b)
for µ-strongly convex models, the inequality in Assumption 4.2-(b) for data heterogeneity is a
much stronger assumption than Assumption 4.1-(c). To show this, we first note that making the
β-smoothness assumption (made in both Assumptions 4.1-(a) and 4.2-(a)) implies that

∥∇F (θ)∥ ≤ β∥θ − θ⋆∥,
where θ⋆ is a point where ∇F (θ⋆) = 0, i.e., a globally optimal point for convex models and a
stationary point for non-convex models (note that we present and prove this result in Lemma D.1-
(b)). Then, since we have ∥∇Fi(θ)∥ ≤ δi + ζi∥∇F (θ)∥ according to Assumption 4.2-(b), we can
conclude that

∥∇F (θ)−∇Fi(θ)∥ ≤ ∥∇F (θ)∥+ ∥∇Fi(θ)∥ ≤ δi + (1+ ζi)∥∇F (θ)∥ ≤ δi + (1+ ζi)β∥θ− θ⋆∥.
We observe that defining δ′i = δi and ζ ′i = (1 + ζi)β > 0, Assumption 4.1-(c) is implied with
parameters δ′i and ζ ′i. The converse is not necessarily true though, i.e., Assumption 4.1-(c) does not
imply Assumption 4.2-(b).

D INTERMEDIARY LEMMAS

Lemma D.1 (Gradient bounds) (See Appendix E.1 for the proof.) Let Assumption 4.1 hold. We
have
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(a) The global loss function F (θ) is β-smooth and µ-strongly convex, i.e.,

∥∇F (θ)−∇F (θ′)∥ ≤ β ∥θ − θ′∥ , ⟨∇F (θ)−∇F (θ′), θ − θ′⟩ ≥ µ∥θ − θ′∥2.

(b) The gradients of the global and local loss functions, and the gradient of the local loss function
at the optimal point are bounded as

∥∇F (θ)∥ ≤ β ∥θ − θ⋆∥ , ∥∇Fi(θ)∥2 ≤ 2
(
β2
i ∥θ − θ⋆∥

2
+ δ2i

)
, ∥∇Fi(θ

⋆)∥ ≤ δi.

Part-(a) of Lemma D.1 outlines the smoothness and convexity behaviour of the global loss function
based on the measures of local loss functions, and part (b) provides upper bounds on the gradients.
Note how these show that we are not making the bounded gradients assumption for all θ ∈ Rn, but
only bounded local gradients at the globally optimal point θ⋆.

Next, we provide upper bounds on the expected Frobenius norms of the following quantities related
to SGD noises.

Lemma D.2 (Expected value of SGD noise average and deviation) (See Appendix E.2 for the
proof.) Let Assumption 4.3 hold. For every iteration k ≥ 0, the average SGD noise and their
deviation from this average can be bounded as

Eξ(k)

[∥∥∥ϵv(k)∥∥∥2] ≤ d(k)maxσ
2/m, Eξ(k)

[∥∥∥V(k)E(k) − 1mϵv
(k)
∥∥∥2] ≤ md(k)maxσ

2,

in which ϵv(k) = 1
m

∑m
i=1 ϵ

(k)
i v

(k)
i .

Note that by setting d(k)max = 1 in D.2, we get back the well-known estimation bounds for these
quantities (e.g., see Lemma 2 in Pu & Nedić (2021)).

Next, we find an upper bound on the expected deviation of the gradients from their average (similar
to the second quantity in Lemma D.2).

Lemma D.3 (Gradient deviation bound) (See Appendix E.3 for the proof.) Let Assumption 4.1
hold. For each iteration k ≥ 0, we have the following bound on the expected error of gradients from
their average

EΞ(k)

[∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2] ≤ 6d(k)max

[
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m
(
ζ2 + 2β2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]].
in which∇(k) is a matrix whose rows are comprised of the gradient vectors∇Fi(θ

(k)
i ), and∇v(k) =

1
m

∑m
i=1∇Fi(θ

(k)
i )v

(k)
i .

Finally, we analyze the behaviour of the random mixing matrix P(k) defined in Eqs. 3 and 4.

Lemma D.4 (Expected mixing matrix) (See Appendix E.4 for the proof.) Let Assumption 4.4 hold.
For each iteration k ≥ 0, we have

(a) The expected mixing matrix, denoted as R̄(k), is irreducible and doubly-stochastic:

EV̂(k)

[
P(k)

]
≜ R̄(k) =

[
r̄
(k)
ij

]
1≤i,j≤m

, r̄
(k)
ij =

{
b
(k)
ij rij i ̸= j

1−
∑m

j=1 b
(k)
ij rij i = j

.

(b) EV̂(k)

[(
P(k)

)2]
=
(
R̄(k)

)2
+R

(k)
0 ≜ R̃(k),

where R
(k)
0 is a matrix whose rows and columns sum to zero. Thus, R̃(k) will be irreducible

and doubly-stochastic.
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(c) EΞ(k)

[∥∥P(k)Θ(k) − 1mθ̄
(k)
∥∥2] ≤ ρ̃(k)EΞ(k−1)

[∥∥Θ(k) − 1mθ̄
(k)
∥∥2],

in which ρ̃(k) is the spectral radius of the matrix R̃(k) − 1
m1m1T

m.

E PROOFS OF INTERMEDIARY LEMMAS

E.1 PROOF OF LEMMA D.1

(a) First, we use Eq. 1, triangle inequality and the smoothness property given in Assumption 4.1-(a)
to get

∥∇F (θ)−∇F (θ′)∥ =

∥∥∥∥∥∥ 1

m

m∑
j=1

(∇Fj(θ)−∇Fj(θ
′))

∥∥∥∥∥∥ ≤ 1

m

m∑
j=1

∥∇Fj(θ)−∇Fj(θ
′)∥

≤ 1

m

m∑
j=1

βj ∥θ − θ′∥ = β̄ ∥θ − θ′∥ ≤ β ∥θ − θ′∥ .

Next, using Eq. 1 and the strong convexity property of Assumption 4.1-(b), we have

⟨∇F (θ)−∇F (θ′), θ − θ′⟩ = 1

m

m∑
j=1

⟨∇Fj(θ)−∇Fj(θ
′), θ − θ′⟩ ≥ 1

m

m∑
j=1

µj∥θ − θ′∥
2

= µ̄∥θ − θ′∥2 ≥ µ∥θ − θ′∥2.

(b) Since∇F (θ⋆) = 0 by definition, we can use the results of part (a) of this lemma to show that

∥∇F (θ)∥ ≤ β ∥θ − θ⋆∥ .

Once again noting that ∇F (θ⋆) = 0, we next use the gradient diversity bound outlined in Assump-
tion 4.1-(c) to get

∥∇Fi(θ
⋆)∥ ≤ δi. (11)

Finally, using Eq. 11 and Assumption 4.1-(a), we write

∥∇Fi(θ)∥2 ≤ 2
(
∥∇Fi(θ)−∇Fi(θ

⋆)∥2 + ∥∇Fi(θ
⋆)∥2

)
≤ 2

(
β2
i ∥θ − θ⋆∥

2
+ δ2i

)
,

finishing the proof.

To explain the statement written after Assumption 4.1 on how these measures relate to each other,
we first have

µ ≤ µi ≤ βi ≤ β,

in which µi ≤ βi is a well-known fact (see Bottou et al. (2018) as a reference), and µ ≤ µi and
βi ≤ β follow from the definitions given in Assumption 4.1. Moreover, if we upper-bound the
gradient diversity term ∥∇F (θ)−∇Fi(θ)∥ without using Assumption 4.1-(c), we will have

∥∇F (θ)−∇Fi(θ)∥ ≤ ∥∇F (θ)−∇Fi(θ
⋆) +∇Fi(θ

⋆)−∇Fi(θ)∥
≤ ∥∇F (θ)∥+ ∥∇Fi(θ

⋆)∥+ ∥∇Fi(θ)−∇Fi(θ
⋆)∥

≤ δi + βi ∥θ − θ⋆∥+ β ∥θ − θ⋆∥ ≤ δi + (βi + β) ∥θ − θ⋆∥ ,
(12)

in which we used the triangle inequality, Assumption 4.1-(a) and the results of Lemma D.1-(b). Now
comparing Eq. 12 with the assumption made in 4.1-(c) for the same expression, we conclude that

ζi ≤ βi + β, ζ ≤ 2β.
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E.2 PROOF OF LEMMA D.2

We start by finding an upper bound for the average SGD noise, by expanding the terms using their
definitions and employing the properties given in Assumption 4.3 and Definition 4.6.

Eξ(k)

[∥∥∥ϵv(k)∥∥∥2] = Eξ(k)

∥∥∥∥∥ 1

m

m∑
i=1

ϵ
(k)
i v

(k)
i

∥∥∥∥∥
2
 = Eξ(k)

 1

m2

m∑
i=1

m∑
j=1

〈
ϵ
(k)
i v

(k)
i , ϵ

(k)
j v

(k)
j

〉
=

1

m2

m∑
i=1

E
ξ
(k)
i

[∥∥∥ϵ(k)i v
(k)
i

∥∥∥2]+ 1

m2

m∑
i=1

m∑
j=1
j ̸=i

〈
E
ξ
(k)
i

[
ϵ
(k)
i v

(k)
i

]
,E

ξ
(k)
j

[
ϵ
(k)
j v

(k)
j

]〉

=
1

m2

m∑
i=1

E
ξ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2v(k)i

]

+
1

m2

m∑
i=1

m∑
j=1
j ̸=i

〈
E
ϵ
(k)
i

[
ϵ
(k)
i

]
E
v
(k)
i

[
v
(k)
i

]
,E

ϵ
(k)
j

[
ϵ
(k)
j

]
E
v
(k)
j

[
v
(k)
j

]〉

=
1

m2

m∑
i=1

E
ϵ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2]Ev
(k)
i

[
v
(k)
i

]
=

1

m2

m∑
i=1

d
(k)
i σ2

i ≤
d
(k)
maxσ2

m
.

Next, we found an upper bound for deviance of the error matrix from its average, using a simi-
lar approach as above. Noting that ∥ · ∥ is the Frobenius norm for matrices, Assumption 4.3 and
Definition 4.6 implies that

Eξ(k)

[∥∥∥V(k)E(k) − 1mϵv
(k)
∥∥∥2]

= Eξ(k)

[∥∥∥V(k)E(k)
∥∥∥2 − 2

〈
V(k)E(k),1mϵv

(k)
〉
+
∥∥∥1mϵv

(k)
∥∥∥2]

= Eξ(k)

[
m∑
i=1

∥∥∥ϵ(k)i v
(k)
i

∥∥∥2]− 2Eξ(k)

[
m∑
i=1

〈
ϵ
(k)
i v

(k)
i , ϵv(k)

〉]
+ Eξ(k)

[
m
∥∥∥ϵv(k)∥∥∥2]

=

m∑
i=1

E
ξ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2v(k)i

]
− 2

m

m∑
i=1

E
ξ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2v(k)i

]

− 2

m

m∑
i=1

〈
E
ξ
(k)
i

[
ϵ
(k)
i v

(k)
i

]
,

m∑
j=1
j ̸=i

E
ξ
(k)
j

[
ϵ
(k)
j v

(k)
j

]〉
+mEξ(k)

[∥∥∥ϵv(k)∥∥∥2]

=

(
1− 2

m
+

1

m

) m∑
i=1

E
ϵ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2]Ev
(k)
i

[
v
(k)
i

]
− 2

m

m∑
i=1

m∑
j=1
j ̸=i

〈
E
ϵ
(k)
i

[
ϵ
(k)
i

]
E
v
(k)
i

[
v
(k)
i

]
,E

ϵ
(k)
j

[
ϵ
(k)
j

]
E
v
(k)
j

[
v
(k)
j

]〉

=

(
1− 1

m

) m∑
i=1

d
(k)
i σ2

i ≤ (m− 1) d(k)maxσ
2 ≤ md(k)maxσ

2.

E.3 PROOF OF LEMMA D.3

Noting that∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2 ≤ 2

∥∥∥V(k)∇(k) −V(k)∇F(k)
∥∥∥2 + 2

∥∥∥V(k)∇F(k) − 1m∇v
(k)
∥∥∥2,
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according to Young’s inequality, we first find an upper bound for each of the two terms above
separately. For the first term, noting that ∥ · ∥ is the Frobenius norm for matrices, we have∥∥∥V(k)∇(k) −V(k)∇F(k)

∥∥∥2 =

m∑
i=1

∥∥∥∇Fi

(
θ
(k)
i

)
v
(k)
i −∇F

(
θ
(k)
i

)
v
(k)
i

∥∥∥2
=

m∑
i=1

∥∥∥∇Fi

(
θ
(k)
i

)
−∇F

(
θ
(k)
i

)∥∥∥2v(k)i ≤
m∑
i=1

(
δi + ζi

∥∥∥θ(k)i − θ⋆
∥∥∥)2v(k)i

≤
m∑
i=1

(
δi + ζi

∥∥∥θ(k)i − θ̄(k)
∥∥∥+ ζi

∥∥∥θ̄(k) − θ⋆∥∥∥)2v(k)i

≤ 3

m∑
i=1

(
δ2i + ζ2i

∥∥∥θ(k)i − θ̄(k)
∥∥∥2 + ζ2i

∥∥∥θ̄(k) − θ⋆∥∥∥2) v(k)i ,

where Assumption 4.1-(c), triangle inequality and Young’s inequality were used for the inequalities,
respectively. For the second term, again noting that ∥ · ∥ is the Frobenius norm for matrices, using
Eq. 1 and the triangle inequality, we can write∥∥∥V(k)∇F(k) − 1m∇v

(k)
∥∥∥2 =

m∑
i=1

∥∥∥∇F(θ(k)i

)
v
(k)
i −∇v(k)

∥∥∥2

=

m∑
i=1

∥∥∥∥∥∥ 1

m

m∑
j=1

(
∇Fj

(
θ
(k)
i

)
v
(k)
i −∇Fj

(
θ
(k)
j

)
v
(k)
j

)∥∥∥∥∥∥
2

≤
m∑
i=1

1

m

m∑
j=1

∥∥∥∇Fj

(
θ
(k)
i

)
v
(k)
i −∇Fj

(
θ
(k)
j

)
v
(k)
j

∥∥∥2,
Continuing from there and using Young’s inequality and Assumption 4.1-(a), we have

=
1

m

m∑
i=1

m∑
j=1

∥∥∥∇Fj

(
θ
(k)
i

)
v
(k)
i −∇Fj

(
θ̄(k)

)
v
(k)
i +∇Fj

(
θ̄(k)

)
v
(k)
i −∇Fj(θ

⋆)v
(k)
i

+∇Fj(θ
⋆)v

(k)
i −∇Fj

(
θ̄(k)

)
v
(k)
j +∇Fj

(
θ̄(k)

)
v
(k)
j −∇Fj

(
θ
(k)
j

)
v
(k)
j

∥∥∥2
=

3

m

m∑
i=1

m∑
j=1

(∥∥∥∇Fj

(
θ
(k)
i

)
−∇Fj

(
θ̄(k)

)∥∥∥2v(k)i +
∥∥∥∇Fj

(
θ̄(k)

)
−∇Fj(θ

⋆)
∥∥∥2(v(k)i − v(k)j

)2
+
∥∥∥∇Fj

(
θ̄(k)

)
−∇Fj

(
θ
(k)
j

)∥∥∥2v(k)j

)
≤ 3

m

m∑
i=1

m∑
j=1

(
β2
j

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i + β2

j

∥∥∥θ̄(k) − θ⋆∥∥∥2 (v(k)i + v
(k)
j − 2v

(k)
i v

(k)
j

)
+ β2

j

∥∥∥θ̄(k) − θ(k)j

∥∥∥2v(k)j

)
=

3

m

m∑
j=1

β2
j

m∑
i=1

(∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i +

∥∥∥θ̄(k) − θ⋆∥∥∥2 (v(k)i + v
(k)
j − 2v

(k)
i v

(k)
j

)
+
∥∥∥θ̄(k) − θ(k)j

∥∥∥2v(k)j

)
≤ 3β2

m

[
m

m∑
i=1

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i +m

m∑
j=1

∥∥∥θ̄(k) − θ(k)j

∥∥∥2v(k)j

+
∥∥∥θ̄(k) − θ⋆∥∥∥2

m m∑
i=1

v
(k)
i +m

m∑
j=1

v
(k)
j − 2

m∑
i=1

m∑
j=1

v
(k)
i v

(k)
j

]
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≤ 6β2
m∑
i=1

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i + 6β2

∥∥∥θ̄(k) − θ⋆∥∥∥2
 m∑

i=1

v
(k)
i − 1

m

(
m∑
i=1

v
(k)
i

)2


≤ 6β2
m∑
i=1

∥∥∥θ(k)i − θ̄(k)
∥∥∥2 + ∥∥∥θ̄(k) − θ⋆∥∥∥2

1− 1

m

m∑
j=1

v
(k)
j

 v(k)i ,

where for the last three inequalities we used the properties of the binary indicator random variables
v
(k)
i ∈ {0, 1}. Now, by combining the two components together we get

∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2 = 2

∥∥∥V(k)∇(k) −V(k)∇F(k)
∥∥∥2 + 2

∥∥∥V(k)∇F(k) − 1m∇v
(k)
∥∥∥2

≤ 6

m∑
i=1

[
δ2i +

(
ζ2i + 2β2

)∥∥∥θ(k)i − θ̄(k)
∥∥∥2

+

ζ2i + 2β2

1− 1

m

m∑
j=1

v
(k)
j

∥∥∥θ̄(k) − θ⋆∥∥∥2]v(k)i .

Finally, we have to take the expected value of the above inequality to conclude the proof. Towards
this, we multiply v(k)i inside the parentheses and use Definition 4.6 to get

EΞ(k)

[∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2]

≤ 6

m∑
i=1

[(
δ2i +

(
ζ2i + 2β2

)
EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2])E

v
(k)
i

[
v
(k)
i

]
+

(
ζ2i Ev

(k)
i

[
v
(k)
i

]
+2β2

(
E
v
(k)
i

[
v
(k)
i

]
− 1

m
E
v
(k)
i

[
v
(k)
i

]
− 1

m
E
v
(k)
i

[
v
(k)
i

] m∑
j=1
j ̸=i

E
v
(k)
j

[
v
(k)
j

]))

EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

= 6

m∑
i=1

[(
δ2i +

(
ζ2i + 2β2

)
EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]) d(k)i +

(
ζ2i d

(k)
i

+2β2

d(k)i − 1

m
d
(k)
i − 1

m
d
(k)
i

m∑
j=1
j ̸=i

d
(k)
j


)
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

= 6

m∑
i=1

d
(k)
i

[
δ2i +

(
ζ2i + 2β2

)
EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]

+

(
ζ2i + 2β2

(
1− 1

m

[
1 +

m∑
j=1
j ̸=i

d
(k)
j

]))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

≤ 6d(k)max

[
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m

(
ζ2 + 2β2

(
1− 1

m

[
1 + (m− 1)d

(k)
min

]))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]
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= 6d(k)max

[
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m

(
ζ2 + 2β2

(
1− 1

m

)(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

≤ 6d(k)max

[
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m
(
ζ2 + 2β2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]],
where the last four lines are algebraic manipulations to simplify the bound.

E.4 PROOF OF LEMMA D.4

(a) We take the expected value of the matrix P(k) by looking at its individual elements. Using Eq. 4
and Definition 4.6, we have

EV̂(k)

[
P(k)

]
=
[
E
v̂
(k)
ij

[
p
(k)
ij

]]
1≤i,j≤m

=


[
rijEv̂

(k)
ij

[
v̂
(k)
ij

]]
1≤i,j≤m

i ̸= j[
1−

∑m
j=1 rijEv̂

(k)
ij

[
v̂
(k)
ij

]]
1≤i≤m

i = j

=


[
b
(k)
ij rij

]
1≤i,j≤m

i ̸= j[
1−

∑m
j=1 b

(k)
ij rij

]
1≤i≤m

i = j
= R̄(k)

(b) Similar to the proof of the previous part, we take the expected value of (P(k))TP(k) =
(
P(k)

)2
by looking at its individual elements. Again, using Eq. 4 and Definition 4.6, Assumption 4.3 implies
that

if i ̸= j :

EV̂(k)

[
m∑
l=1

p
(k)
il p

(k)
lj

]

= EV̂(k)

 m∑
l=1
l ̸=i,j

rilrlj v̂
(k)
il v̂

(k)
lj +

(
1−

m∑
q=1

riq v̂
(k)
iq

)
rij v̂

(k)
ij +

(
1−

m∑
q=1

rjq v̂
(k)
jq

)
rij v̂

(k)
ij


= EV̂(k)

[
m∑
l=1

rilrlj v̂
(k)
il v̂

(k)
lj +

(
2−

m∑
q=1

(
riq v̂

(k)
iq + rjq v̂

(k)
jq

))
rij v̂

(k)
ij

]

= EV̂(k)

[
m∑
l=1

rilrlj v̂
(k)
il v̂

(k)
lj +

2−
m∑
q=1
q ̸=i,j

(
riq v̂

(k)
iq + rjq v̂

(k)
jq

) rij v̂
(k)
ij

−
(
rij v̂

(k)
ij + rjiv̂

(k)
ji

)
rij v̂

(k)
ij

]

=

m∑
l=1

rilrljEv̂
(k)
il

[
v̂
(k)
il

]
E
v̂
(k)
lj

[
v̂
(k)
lj

]

+

2−
m∑
q=1
q ̸=i,j

(
riqEv̂

(k)
iq

[
v̂
(k)
iq

]
+ rjqEv̂

(k)
jq

[
v̂
(k)
jq

]) rijEv̂
(k)
ij

[
v̂
(k)
ij

]
− 2r2ijEv̂

(k)
ij

[
v̂
(k)
ij

]
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=

m∑
l=1

b
(k)
il rilb

(k)
lj rlj +

2−
m∑
q=1
q ̸=i,j

(
b
(k)
iq riq + b

(k)
jq rjq

) b
(k)
ij rij − 2b

(k)
ij r

2
ij

On the other hand,

if i = j :

EV̂(k)

[
m∑
l=1

p
(k)
il p

(k)
lj

]
= EV̂(k)

 m∑
l=1
l ̸=i

rilrliv̂
(k)
il v̂

(k)
li +

(
1−

m∑
q=1

riq v̂
(k)
iq

)2


= EV̂(k)

[
m∑
l=1

r2ilv̂
(k)
il + 1− 2

m∑
q=1

riq v̂
(k)
iq +

m∑
q=1

m∑
t=1

riqritv̂
(k)
iq v̂

(k)
it

]

= EV̂(k)

 m∑
l=1

r2ilv̂
(k)
il + 1− 2

m∑
q=1

riq v̂
(k)
iq +

m∑
q=1

m∑
t=1
t ̸=q

riqritv̂
(k)
iq v̂

(k)
it +

m∑
q=1

r2iq v̂
(k)
iq


= 2

m∑
l=1

r2ilEv̂
(k)
il

[
v̂
(k)
il

]
+ 1− 2

m∑
q=1

riqEv̂
(k)
iq

[
v̂
(k)
iq

]
+

m∑
q=1

m∑
t=1
t̸=q

riqritEv̂
(k)
iq

[
v̂
(k)
iq

]
E
v̂
(k)
it

[
v̂
(k)
it

]

= 2

m∑
l=1

b
(k)
il r

2
il + 1− 2

m∑
q=1

b
(k)
iq riq +

m∑
q=1

m∑
t=1
t ̸=q

b
(k)
iq riqb

(k)
it rit

Finally, comparing the above expression with the elements of
(
R̄(k)

)2
, we get

EV̂(k)

[(
P(k)

)2]
=

[
EV̂(k)

[
m∑
l=1

p
(k)
il p

(k)
lj

]]
1≤i,j≤m

=
(
R̄(k)

)2
+


[
−2b(k)ij

(
1− b(k)ij

)
r2ij

]
1≤i,j≤m

i ̸= j[∑m
l=1 2b

(k)
il

(
1− b(k)il

)
r2il

]
1≤i≤m

i = j
=
(
R̄(k)

)2
+R

(k)
0 ≜ R̃(k),

in which R
(k)
0 is a matrix whose rows and columns sum to zero.

(c) In order to prove this inequality, we expand the left-hand side Frobenius norm by its columns
and use the results of part (b) of this lemma. We have

EΞ(k)

[∥∥∥P(k)Θ(k) − 1mθ̄
(k)
∥∥∥2] = EΞ(k)

 m∑
j=1

∥∥∥P(k)θ
(k)
j − θ̄(k)j 1m

∥∥∥2


= EΞ(k)

 m∑
j=1

∥∥∥P(k)θ
(k)
j − θ̄(k)j P(k)1m

∥∥∥2
 = EΞ(k)

 m∑
j=1

∥∥∥P(k)
(
θ
(k)
j − θ̄(k)j 1m

)∥∥∥2


= EΞ(k)

 m∑
j=1

(
θ
(k)
j − θ̄(k)j 1m

)T(
P(k)

)T
P(k)

(
θ
(k)
j − θ̄(k)j 1m

)
= EΞ(k−1)

 m∑
j=1

(
θ
(k)
j − θ̄(k)j 1m

)T
EV̂(k)

[
P(k)P(k)

] (
θ
(k)
j − θ̄(k)j 1m

)
= EΞ(k−1)

 m∑
j=1

(
θ
(k)
j − θ̄(k)j 1m

)T
R̃(k)

(
θ
(k)
j − θ̄(k)j 1m

)
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≤ EΞ(k−1)

 m∑
j=1

ρ̃(k)
∥∥∥θ(k)j − θ̄(k)j 1m

∥∥∥2
 ≤ ρ̃(k)EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2].

Note how we used the double stochasticity of P(k) in the second line.

F PROOFS OF MAIN RESULTS

F.1 PROOF OF LEMMA 4.7

Using Lemma D.1-(b) on θ̄(k), the average model parameters at iteration k, we get∥∥∥∇Fi

(
θ̄(k)

)∥∥∥2 ≤ 2

(
β2
i

∥∥∥θ̄(k) − θ⋆∥∥∥2 + δ2i

)
. (13)

Now, if 0 < α(k) ≤ 2
µ+β , we can write∥∥∥θ̄(k+1) − θ⋆

∥∥∥2 =
∥∥∥θ̄(k) − α(k)gv(k) − θ⋆

∥∥∥2
=
∥∥∥θ̄(k) − α(k)∇v(k) − θ⋆

∥∥∥2 − 2
〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)ϵv(k)

〉
+
(
α(k)

)2∥∥∥ϵv(k)∥∥∥2
≤
(
1 + µα(k)

)∥∥∥θ̄(k) − α(k)∇F
(
θ̄(k)

)
− θ⋆

∥∥∥2
+

(
1 +

1

µα(k)

) (
α(k)

)2
m

m∑
i=1

∥∥∥∇Fi

(
θ̄(k)

)
−∇Fi

(
θ
(k)
i

)
v
(k)
i

∥∥∥2
− 2

〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)ϵv(k)

〉
+
(
α(k)

)2∥∥∥ϵv(k)∥∥∥2
≤
(
1 + µα(k)

)(
1− µα(k)

)2∥∥∥θ̄(k) − θ⋆∥∥∥2 + α(k)

mµ

(
1 + µα(k)

) m∑
i=1

v
(k)
i =1

β2
i

∥∥∥θ̄(k) − θ(k)i

∥∥∥2

+
2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

v
(k)
i =0

(
β2
i

∥∥∥θ̄(k) − θ⋆∥∥∥2 + δ2i

)

− 2
〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)ϵv(k)

〉
+
(
α(k)

)2∥∥∥ϵv(k)∥∥∥2
=

[(
1 + µα(k)

)(
1− µα(k)

)2
+

2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
i

(
1− v(k)i

)]∥∥∥θ̄(k) − θ⋆∥∥∥2
+
α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
i

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i +

2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

δ2i

(
1− v(k)i

)
− 2

〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)ϵv(k)

〉
+
(
α(k)

)2∥∥∥ϵv(k)∥∥∥2,
in which the relationship in first four lines follow from (i) Eq. 5, (ii) g(k)

i = ∇(k)
i + ϵ

(k)
i for all

i ∈ M, (iii) Young’s inequality, (iv) Lemma 10 in Qu & Li (2017), Assumption 4.1-(a) and Eq. 13.
Next, we take the expected value of the above inequality and use Definition 4.6, Assumption 4.3 and
Lemma D.2 to get

EΞ(k)

[∥∥∥θ̄(k+1) − θ⋆
∥∥∥2] ≤ Ev(k)

[(
1 + µα(k)

)(
1− µα(k)

)2
+

2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
i

(
1− v(k)i

)]
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]

23



Published as a conference paper at ICLR 2025

+
α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
i EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]Ev

(k)
i

[
v
(k)
i

]
+

2α(k)

mµ

(
1 + µα(k)
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i=1

δ2i Ev
(k)
i

[
1− v(k)i

]
− 2EΞ(k−1)∪v(k)
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θ̄(k) − α(k)∇v(k) − θ⋆, α(k)EE(k)

[
ϵv(k)

]〉]
+
(
α(k)

)2
Eξ(k)

[∥∥∥ϵv(k)∥∥∥2]
≤

[(
1 + µα(k)

)(
1− µα(k)

)2
+

2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
(
1− d(k)i

)]

EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]
+
α(k)

mµ

(
1 + µα(k)

) m∑
i=1

d
(k)
i β2

i EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]

+
2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

δ2i

(
1− d(k)i

)
+

(
α(k)

)2
d
(k)
maxσ2

m

− 2EΞ(k−1)∪v(k)

[〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)EE(k)

[
ϵv(k)

]〉]
+
(
α(k)

)2
Eξ(k)

[∥∥∥ϵv(k)∥∥∥2]
=

[
1− µα(k)

(
1 + µα(k) −

(
µα(k)

)2)
+

2α(k)

µ

(
1 + µα(k)

)(
1− d(k)min

)
β2

]

EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]
+
(
1 + µα(k)

) α(k)d
(k)
maxβ2

mµ
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+
2α(k)

µ

(
1 + µα(k)

)(
1− d(k)min

)
δ2 +

(
α(k)

)2
d
(k)
maxσ2

m
.

F.2 PROOF OF LEMMA 4.8

Using Eqs. 3 and 5, we first expand the left-hand side norm, and then use Young’s inequality to get∥∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥∥2 =
∥∥∥P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)G(k) − 1mgv(k)

)∥∥∥2
≤
∥∥∥P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)∥∥∥2

− 2α(k)
〈
P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)
,V(k)E(k) − 1mϵv

(k)
〉

+
(
α(k)

)2∥∥∥V(k)E(k) − 1mϵv
(k)
∥∥∥2

≤
(
1 +

1− ρ̃(k)

2ρ̃(k)

)∥∥∥P(k)Θ(k) − 1mθ̄
(k)
∥∥∥2

+

(
1 +

2ρ̃(k)

1− ρ̃(k)

)(
α(k)

)2∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2

−2α(k)

〈
P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)
,(

Im −
1

m
1m1T

m

)
V(k)E(k)

〉
+
(
α(k)

)2∥∥∥V(k)E(k) − 1mϵv
(k)
∥∥∥2.

(14)
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Next, we take the expected value of the above inequality and use Lemmas D.2, D.3 and D.4-(c) to
get

EΞ(k)

[∥∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥∥2] ≤ 1 + ρ̃(k)

2ρ̃(k)
ρ̃(k)EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+3
1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2(
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m
(
ζ2 + 2β2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2])
−2α(k)EΞ(k)\E(k)

[〈
P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)
,

(
Im −

1

m
1m1T

m

)
V(k)EE(k)

[
E(k)

]〉]

+m
(
α(k)

)2
d(k)maxσ

2

≤

[
1 + ρ̃(k)

2
+ 3

1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2 (
ζ2 + 2β2

) ]
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 3
1 + ρ̃(k)

1− ρ̃(k)
md(k)max

(
α(k)

)2 (
ζ2 + 2β2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]
+m

(
α(k)

)2
d(k)max

(
3
1 + ρ̃(k)

1− ρ̃(k)
δ2 + σ2

)
.

F.3 PROOF OF PROPOSITION 4.10

Step 1: Setting up the proof. We want to find the conditions under which we will have ρ
(
Φ(k)

)
<

1. As we have Φ(k) = [ϕij ]1≤i,j≤2 and ρ
(
Φ(k)

)
= max

{∣∣∣λ(k)1

∣∣∣ , ∣∣∣λ(k)2

∣∣∣} where λ(k)i are the

eigenvalues of the matrix Φ(k) for i = 1, 2, we need to show that max
{∣∣∣λ(k)1

∣∣∣ , ∣∣∣λ(k)2

∣∣∣} < 1.
Therefore, we first write the eigenvalue equation of the matrix as(
λ− ϕ(k)11

)(
λ− ϕ(k)22

)
− ϕ(k)12 ϕ

(k)
21 = 0 ⇒ λ2 −

(
ϕ
(k)
11 + ϕ

(k)
22

)
λ+ ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 = 0.

Since this is a quadratic equation in the form of aλ2+bλ+c = 0, we know that if b < 0, and a, c > 0

and the determinant is positive, we will have max
{∣∣∣λ(k)1

∣∣∣ , ∣∣∣λ(k)2

∣∣∣} = −b+
√
b2−4ac
2a . Therefore, we

solve for −b+
√
b2−4ac
2a < 1 as follows√
b2 − 4ac < b+ 2a ⇒ 4a (b+ c) + 4a2 > 0 ⇒ a+ b+ c > 0.

Now, rewriting the above inequality in terms of the actual coefficients, we get

1− ϕ(k)11 − ϕ
(k)
22 + ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0 ⇒

(
1− ϕ(k)11

)(
1− ϕ(k)22

)
> ϕ

(k)
12 ϕ

(k)
21 . (15)

Furthermore, note that a = 1 > 0, b = −
(
ϕ
(k)
11 + ϕ

(k)
22

)
< 0 and b2 − 4ac =

(
ϕ
(k)
11 − ϕ

(k)
22

)2
+

4ϕ
(k)
12 ϕ

(k)
21 > 0 hold by definition, so we only need to check for

c = ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0. (16)

Eqs. 15 and 16 lay out the necessary conditions in order to get ρ
(
Φ(k)

)
< 1.

Step 2: Simplifying the conditions. Starting off with the more important of the two, we first
solve for Eq. 15. In order to simplify this inequality, we choose to have (i) 0 < ϕ

(k)
11 ≤ 1 and (ii)
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0 < ϕ
(k)
22 ≤ 1 for the main diagonal entries. For ϕ(k)11 as defined in Lemma 4.7, we have

ϕ
(k)
11 ≤ 1 ⇒

1 + µα(k) −
(
µα(k)

)2
1 + µα(k)

≥ 2β2

µ2

(
1− d(k)min

)
. (17)

To better characterize the condition on α(k) based on the above inequality, we put the following
constraints on d(k)min and α(k) to get

Constraints 1: d(k)min ≥
1

Γ
(k)
0

, α(k) ≤ Γ
(k)
1

µ

⇒ µα(k) ≥ 2β2

µ2

(
1− 1

Γ
(k)
0

)(
1 + Γ

(k)
1

)
+
(
Γ
(k)
1

)2
− 1,

where Γ
(k)
0 ≥ 1 and Γ

(k)
1 > 0 are scalars. The above condition requires the learning rate α(k) to be

lower-bounded, which is something we want to avoid. Thus, if the right-hand side of the inequality
is non-positive, this condition only requires us to choose a non-negative value for the learning rate,
which is sensible. So, we have

2β2

µ2

(
1− 1

Γ
(k)
0

)(
1 + Γ

(k)
1

)
+
(
Γ
(k)
1

)2
− 1 ≤ 0

⇒
(
Γ
(k)
1

)2
+

(
2β2

µ2

(
1− 1

Γ
(k)
0

))
Γ
(k)
1 +

(
2β2

µ2

(
1− 1

Γ
(k)
0

)
− 1

)
≤ 0

⇒

∣∣∣∣∣Γ(k)
1 − β2

µ2

(
1− 1

Γ
(k)
0

)∣∣∣∣∣ ≤
∣∣∣∣∣β2

µ2

(
1− 1

Γ
(k)
0

)
− 1

∣∣∣∣∣
⇒


1

Γ
(k)
0

≤ 1− µ2

β2 : 1 ≤ Γ
(k)
1 ≤ 2β2

µ2

(
1− 1

Γ
(k)
0

)
− 1

1

Γ
(k)
0

≥ 1− µ2

β2 : 2β2

µ2

(
1− 1

Γ
(k)
0

)
− 1 ≤ Γ

(k)
1 ≤ 1

⇒ min

{
1,

2β2

µ2

(
1− 1

Γ
(k)
0

)
− 1

}
≤ Γ

(k)
1 ≤ max

{
1,

2β2

µ2

(
1− 1

Γ
(k)
0

)
− 1

}
.

We observe that we found a lower and upper bound for the choice of Γ(k)
1 . Next, in order to simplify

ϕ
(k)
11 as defined in Lemma 4.7, we can use Eq. 17 to write

Constraint 2:
1 + µα(k) −

(
µα(k)

)2
1 + µα(k)

≥ 2β2

µ2

(
1− 1

Γ
(k)
0

)
Γ
(k)
2 ,

in which Γ
(k)
2 ≥ 1 ensures that the constraint is satisfied, since we solved for Eq. 17 and found the

conditions on α(k), Γ(k)
0 and Γ

(k)
1 to do so. Hence, for the bounds defined in Lemma 4.7, we get

ϕ
(k)
11 ≤ 1− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k), ϕ

(k)
12 ≤

(
1 + Γ

(k)
1

)
d
(k)
maxβ2

mµ
α(k),

ψ
(k)
1 ≤ 2α(k)

µ

(
1 + Γ

(k)
1

)(
1− d(k)min

)
δ2 +

(
α(k)

)2
d
(k)
maxσ2

m
,

and there are no changes to the upper bounds of ϕ(k)21 , ϕ(k)22 and ψ(k)
2 , which were defined in Lemma

4.8. Note that matrix Φ(k) and vector Ψ(k) in Eq. 7 were used as upper bounds, therefore we can
always replace their values with new upper bounds for them. Furthermore, note that in ψ(k)

1 , the
term d

(k)
min was intentionally not interchanged with its lower bound. Consequently, with this new

value for ϕ(k)11 , we continue as

ϕ
(k)
11 > 0 ⇒ α(k) <

µ

2
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2

.
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Finally, we check the next conditions on ϕ(k)22 defined in Lemma 4.8, i.e., 0 < ϕ
(k)
22 ≤ 1. Note that

for ϕ(k)11 , ϕ(k)12 and ϕ(k)21 the lower bound is 0, but for ϕ(k)22 it is 1+ρ̃(k)

2 . Therefore, the lower-bound
condition of ϕ(k)22 > 0 is already met. For the upper-bound condition ϕ(k)22 ≤ 1, noting that we have
3+ρ̃(k)

4 < 1, we can write ϕ(k)22 ≤
3+ρ̃(k)

4 to enforce this constraint. We have

1 + ρ̃(k)

2
≤ ϕ(k)22 ≤

3 + ρ̃(k)

4
⇒ 0 ≤ α(k) ≤ 1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

Step 3: Determining the constraints. Now that we have made sure that (i) 0 < ϕ
(k)
11 ≤ 1 and (ii)

0 < ϕ
(k)
22 ≤ 1 in the previous step, we can continue to solve Eq. 15. For the left-hand side of the

inequality, we have

(
1− ϕ(k)11

)(
1− ϕ(k)22

)
=

[
2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k)

](
1− ϕ(k)22

)
≥

[
2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k)

]
1− ρ̃(k)

4
.

Now, putting this back to Eq. 15, we get

[
2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k)

]
1− ρ̃(k)

4
> ϕ

(k)
12 ϕ

(k)
21

⇒


(
1 + Γ

(k)
1

)
d
(k)
maxβ2

mµ
α(k)

[3md(k)max

1 + ρ̃(k)

1− ρ̃(k)
(
ζ2 + 2β2

(
1− d(k)min

))(
α(k)

)2]

<

[
2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k)

]
1− ρ̃(k)

4

⇒ α(k) <

√
Γ
(k)
2 − 1

√
1− 1

Γ
(k)
0

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

) .

Finally, we solve for Eq. 16. Noting that by solving Eq. 15 we made sure that 1 − ϕ(k)11 − ϕ
(k)
22 +

ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0, we can write

c > 0 ⇒ ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0 ⇒ ϕ

(k)
11 + ϕ

(k)
22 − 1 > 0

⇒ 1− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k) +

1 + ρ̃(k)

2
− 1 > 0

⇒ α(k) <
µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2

.
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Step 4: Putting all the constraints together. Reviewing all the constraints on α(k) from the begin-
ning of this appendix, we can collect all of the constraints together and simplify them as

α(k) < min

{
Γ
(k)
1

µ
,

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ

2
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2

,

µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2

,

√
Γ
(k)
2 − 1

√
1− 1

Γ
(k)
0

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)
}

= min

{
Γ
(k)
1

µ
,

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2

,

√
Γ
(k)
2 − 1

√
1− 1

Γ
(k)
0

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)
}
,

while satisfying

Γ
(k)
0 ≥ 1, Γ

(k)
2 > 1,

max

{
0,min

{
1,

2β2

µ2

(
1− 1

Γ
(k)
0

)
− 1

}}
≤ Γ

(k)
1 ≤ max

{
1,

2β2

µ2

(
1− 1

Γ
(k)
0

)
− 1

}
.

(18)

Note that one of the terms in the above minimization function was trivially removed since 1+ρ̃(k)

2 <

1. In order to simply the condition on α(k) further, we take the minimum of these terms with respect
to each variable separately to get

α(k) < min

{
min
Γ
(k)
1

{
Γ
(k)
1

µ
, min
Γ
(k)
2 ,Γ

(k)
0

{
µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2

,

√
Γ
(k)
2 − 1

√
1− 1

Γ
(k)
0

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)
}}

,

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

}
.

(19)

Solving for the inner minimization in Eq. 19 first using Γ
(k)
2 by defining c

(k)
1 =√

1− 1

Γ
(k)
0

(1−ρ̃(k))

√
6d

(k)
max

√
1+ρ̃(k)

√
ζ2+2β2

(
1−d

(k)
min

) and c(k)2 =
4
(
1+Γ

(k)
1

)(
1− 1

Γ
(k)
0

)
β2

µ(1+ρ̃(k))
, we have


c
(k)
1

√
Γ
(k)
2 − 1 ≤ 1

c
(k)
2 (Γ

(k)
2 −1)

; 1 < Γ
(k)
2 ≤ Γ⋆

2
(k)

1

c
(k)
2 (Γ

(k)
2 −1)

≤ c(k)1

√
Γ
(k)
2 − 1; Γ

(k)
2 ≥ Γ⋆

2
(k)

, (20)
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in which Γ
(k)
2 > 1 is due to Eq. 18. We can see that in Eq. 20, one of the expressions is increasing

with respect to Γ
(k)
2 , and the other one is decreasing. Thus, we find the optimal value for it Γ⋆(k)

2 as

√
Γ⋆
2
(k) − 1

3

=
1

c
(k)
1 c

(k)
2

⇒ Γ⋆
2
(k) =

1(
c
(k)
1 c

(k)
2

)2/3 + 1

⇒ Γ⋆
2
(k) =


√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)
√
1− 1

Γ
(k)
0

(
1− ρ̃(k)

) µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
1− 1

Γ
(k)
0

)
β2


2/3

+ 1

=

(1 + ρ̃(k)) 3
√
3 3

√
ζ2 + 2β2

(
1− d(k)min

)
2

(
1− 1

Γ
(k)
0

)
 d

(k)
maxµ

(1− ρ̃(k))
(
1 + Γ

(k)
1

)
β2

2/3

+ 1

Choosing Γ
(k)
2 = Γ

(k)⋆
2 , we get

min
Γ
(k)
2


µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2
,

√
Γ
(k)
2 − 1

√
1− d(k)min

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)


=
µ
(
1 + ρ̃(k)

) (
c
(k)
1 c

(k)
2

)2/3
4
(
1 + Γ

(k)
1

)(
1− d(k)min

)
β2

=

 (c
(k)
1 )

2

c
(k)
2

1/3

=

 µ

6(1 + Γ
(k)
1 )

(
ζ2 + 2β2

(
1− d(k)min

))
1/3(

1− ρ̃(k)

2d
(k)
maxβ

)2/3

.

Note that by making this minimization over Γ(k)
2 , the dependency on Γ

(k)
0 was removed as well.

Moving on to the second minimization in Eq. 19 using Γ
(k)
1 , we note that finding the optimal value

Γ
⋆(k)
1 would be analytically cumbersome due to the conditions that need to be satisfied for it; First,

Γ
(k)
1 > 0, and second, min

{
1, 2β

2

µ2

(
1− d(k)min

)
− 1
}
≤ Γ

(k)
1 ≤ max

{
1, 2β

2

µ2

(
1− d(k)min

)
− 1
}

.

Thus, in order to get a more intuitive upper bound for α(k), we settle for a possible suboptimal value
for it. If we choose Γ

(k)
1 = 1 which is the only point satisfying the conditions in Eq. 18 and it also

does not rely on the value of d(k)min, we get

α(k) < min

{
1

µ
,

 µ

12
(
ζ2 + 2β2

(
1− d(k)min

))
1/3(

1− ρ̃(k)

2d
(k)
maxβ

)2/3

,

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

}
.
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Step 5: Obtaining ρ(Φ(k)). We established ρ(Φ(k)) < 1 in the previous steps. The last step is to
determine what ρ(Φ(k)) is. We have

ρ
(
Φ(k)

)
=
−b+

√
b2 − 4ac

2a
=
ϕ
(k)
11 + ϕ

(k)
22 +

√(
ϕ
(k)
11 + ϕ

(k)
22

)2
− 4

(
ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21

)
2

=
ϕ
(k)
11 + ϕ

(k)
22 +

√(
ϕ
(k)
11 − ϕ

(k)
22

)2
+ 4ϕ

(k)
12 ϕ

(k)
21

2

=
1

2

[
1− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k) +

1 + ρ̃(k)

2

+ 3
1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2 (
ζ2 + 2β2

) ]
+
1

2

[(
1− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k)

− 1 + ρ̃(k)

2
− 3

1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2 (
ζ2 + 2β2

))2

+ 4

(
1 + Γ

(k)
1

)
d
(k)
maxβ2

mµ
α(k)3

1 + ρ̃(k)

1− ρ̃(k)
md(k)max

(
α(k)

)2 (
ζ2 + 2β2

(
1− d(k)min

))]1/2

=
3 + ρ̃(k)

4
− 1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k)

+
3

2

1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
ζ2 + 2β2

) (
α(k)

)2
+
1

2

[(
1− ρ̃(k)

2
− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− 1

Γ
(k)
0

)
β2α(k)

− 3
1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
ζ2 + 2β2

) (
α(k)

)2)2

+ 12

(
1 + Γ

(k)
1

)
β2

µ

1 + ρ̃(k)

1− ρ̃(k)
(
d(k)max

)2 (
ζ2 + 2β2

(
1− d(k)min

))(
α(k)

)3]1/2
.

Therefore, ρ(Φ(k)) follows as ρ(Φ(k)) = 3+ρ̃(k)

4 − A(k)α(k) + B(k)(α(k))
2

+

1
2

√
( 1−ρ̃(k)

2 − 2(A(k)α(k) +B(k)(α(k))
2
))

2
+ C(k)(α(k))

3
, where A(k) = 1

µ (Γ
⋆(k)
2 − 1)(1 −

1

Γ
(k)
0

)β2, B(k) = 3
2
1+ρ̃(k)

1−ρ̃(k) d
(k)
max(ζ2 + 2β2) and C(k) = 24β2

µ
1+ρ̃(k)

1−ρ̃(k) (d
(k)
max)

2
(ζ2 + 2β2(1 − d(k)min)).

The value for the constant Γ⋆(k)
2 > 1 was given in step 4.

F.4 PROOF OF THEOREM 4.11

Note that by the properties of spectral radius, we have that Φ∥ · ∥ ≤ ρ(Φ)∥ · ∥. Now, using Eq. 8,
we can write EΞ(K)

[∥∥θ̄(K+1) − θ⋆
∥∥2]

EΞ(K)

[∥∥Θ(K+1) − 1mθ̄
(K+1)

∥∥2]
 ≤ ρ(Φ)

K+1

[ ∥∥θ̄(0) − θ⋆∥∥2∥∥Θ(0) − 1mθ̄
(0)
∥∥2
]
+

K∑
r=1

ρ(Φ)
K−r+1

Ψ+Ψ.

We emphasize that the time index k in Φ(k) and Ψ(k) was dropped, since we are using a constant
learning rate, and substituting the bounds for d(k)max ≤ 1 and d(k)min ≥ dmin and ρ̃(k) ≤ ρ̃. This
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results in the constant matrix Φ(k) = Φ and the constant vector Ψ(k) = Ψ. Focusing on the term∑K
r=1 ρ(Φ)

K−r+1
Ψ+Ψ, we get

K∑
r=1

ρ(Φ)
K−r+1

Ψ+Ψ =

K+1∑
r=1

ρ(Φ)
K−r+1

Ψ =

(
K∑

u=0

ρ(Φ)
u

)
Ψ ≤

( ∞∑
u=0

ρ(Φ)
u

)
Ψ

=
1

1− ρ(Φ)
Ψ =

1

|1− ρ(Φ)|
Ψ.

Putting the above inequalities together concludes the proof of Eq. 9. Finally, noting that ρ(Φ) < 1
following 4.10, We can let K → ∞ to get Eq. 10. Note that 1 − ρ(Φ) ≥ 2Aα, where A =
β2

µ (Γ⋆
2 − 1)(1− 1

Γ0
) with Γ0,Γ

⋆
2 > 1 being constant scalars defined in Appendix F.3.

We also note that Eqs. 9 and 10 are derived for the consensus error and the average model error
themselves, i.e., their last iterates. As summarized in Table 1, this is an improvement over existing
works with sporadic aggregations (Koloskova et al., 2020; Lian et al., 2017; Sundhar Ram et al.,
2010) where only the Cesaro sums (i.e., the running averages of the iterates) of these error terms are
bounded.

G NON-CONVEX ANALYSIS

In this appendix, we analyze the convergence of our methodology when non-convex loss functions
are utilized. Our approach will be entirely different than the one done in Sec. 4, as we will be using
the non-convexity assumption (Assumption 4.2) instead of strong convexity (Assumption 4.1).

We will still characterize the expected consensus error as EΞ(k) [∥Θ(k+1) − 1mθ̄
(k+1)∥2], but con-

trary to what was done in Sec. 4, instead of the distance of the average model from the optimal
solution, we will analyze the norm of the average model gradients EΞ(k) [∥∇F (θ̄(k+1))∥2]. As an
alternative to Lemma 4.7, we first provide an upper bound on the average model performance at each
iteration for the non-convex case, i.e., EΞ(k) [F (θ̄(k+1))], in Lemma G.3. Then, as an alternative to
Lemma 4.8, we also calculate an upper bound on the consensus error for non-convex models, i.e.,
EΞ(k) [∥Θ(k+1) − 1mθ̄

(k+1)∥2], in Lemma G.4.

We first need two preliminary Lemmas, each of which will be useful in the proof of Lemmas G.3
and G.4, respectively.

Lemma G.1 (Gradient bounds for non-convex models) (See Appendix H.1) Let Assumptions 4.1-
(a), 4.1-(c) and M.1 hold. The following upper bounds related to the gradient of the global loss
function can be obtained in terms of the gradient norms EΞ(k−1) [∥∇F (θ̄(k))∥2] and the consensus
error EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2].

(a) EΞ(k) [∥∇F (θ̄(k))−∇v(k)∥
2

] ≤ 2ζ2(1 − d
(k)
min)EΞ(k−1) [∥∇F (θ̄(k))∥2] +

β2d(k)
max

m EΞ(k−1) [∥Θ(k) − 1mθ̄
(k)∥2] + 2(1− d(k)min)δ

2.

(b) −EΞ(k) [⟨∇F (θ̄(k)),∇v(k)⟩] ≤ −( 12 − ζ2(1 − d
(k)
min))EΞ(k−1) [∥∇F (θ̄(k))∥2] +

β2d(k)
max

2m EΞ(k−1) [∥Θ(k) − 1mθ̄
(k)∥2] + (1− d(k)min)δ

2.

(c) 1
2EΞ(k) [∥∇v(k)∥

2

] ≤ [1 + 2ζ2(1 − d
(k)
min)]EΞ(k−1) [∥∇F (θ̄(k))∥2] +

β2d(k)
max

m EΞ(k−1) [∥Θ(k) − 1mθ̄
(k)∥2] + 2(1− d(k)min)δ

2.

Next, we find an upper bound on the expected deviation of the gradients from their average for
non-convex models, similar to Lemma D.3 which was derived for strongly convex models.

Lemma G.2 (Gradient deviation bound for non-convex models) (See Appendix H.2 for the
proof.) Let Assumption 4.2 hold. For each iteration k ≥ 0, we have the following bound on the
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expected error of gradients from their average

EΞ(k)

[∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2] ≤ 8d(k)max

[
β2EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 2mζ2EΞ(k−1)

[∥∥∥∇F(θ̄(k))∥∥∥2]+ 2mδ2

]
.

in which∇(k) is a matrix whose rows are comprised of the gradient vectors∇Fi(θ
(k)
i ), and∇v(k) =

1
m

∑m
i=1∇Fi(θ

(k)
i )v

(k)
i .

Now, we can continue with our key lemmas for the non-convex case. Similar to the con-
vex case, we first derive counterparts for average model error and consensus error, i.e., Lem-
mas 4.7 and 4.8 for convex models, respectively. we first provide an upper bound on the aver-
age model performance EΞ(k) [F (θ̄(k+1))] (Lemma G.3), and also upper bound the consensus error
EΞ(k) [∥Θ(k+1) − 1mθ̄

(k+1)∥2] (Lemma G.4), at each k.

Lemma G.3 (Average model performance for non-convex models) (See Appendix H.3 for the
proof.) Let Assumptions 4.2 and 4.3 hold. For each iteration k ≥ 0, we have the following bound
on the expected average model performance:

EΞ(k) [F (θ̄(k+1))] ≤ EΞ(k−1) [F (θ̄(k))] − ϕ
(k)
11 EΞ(k−1) [∥∇F (θ̄(k))∥2] +

ϕ
(k)
12 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2] + ψ
(k)
1 ,

where ϕ(k)11 = α(k)[ 12 − ζ
2(1−d(k)min)−β(1+2ζ2(1−d(k)min))α

(k)], ϕ(k)12 =
β2d(k)

max

2m α(k)(1+2βα(k))

and ψ(k)
1 = α(k)[(1− d(k)min)(1 + 2βα(k))δ2 + β

2α
(k) dmaxσ

2

m ].

In Lemma G.3, the upper bound on the expected error at iteration k + 1 is expressed in terms of the
expected performance EΞ(k−1) [F (θ̄(k))], the scaled gradient norms ϕ(k)11 EΞ(k−1) [∥∇F (θ̄(k))∥2], the
scaled consensus error ϕ(k)12 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2] (which will be presented in Lemma G.4),
and a scalar ψ(k)

1 , all at iteration k. We next bound the consensus error in the following lemma.

Lemma G.4 (Consensus error for non-convex models) (See Appendix H.4 for the proof.) Let As-
sumptions 4.2, 4.3 and 4.4 hold. For each iteration k ≥ 0, we have the following bound on the
expected consensus error:

EΞ(k) [∥Θ(k+1) − 1mθ̄
(k+1)∥2] ≤ ϕ(k)21 EΞ(k−1) [∥∇F (θ̄(k))∥2]+ϕ(k)22 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2]+
ψ
(k)
2 ,

where ϕ(k)21 = 16 1+ρ̃(k)

1−ρ̃(k)md
(k)
max(α(k))

2
ζ2, ϕ(k)22 = 1+ρ̃(k)

2 + 8 1+ρ̃(k)

1−ρ̃(k) d
(k)
max(α(k))

2
β2 and ψ

(k)
2 =

m(α(k))
2
d
(k)
max(16

1+ρ̃(k)

1−ρ̃(k) δ
2 + σ2), where ρ̃(k) is defined in Definition 4.5 and Lemma D.4-(c).

From this point forward, our analysis method will differ from the one done in Sec. 4. Instead of
forming an error vector like Eq. 6 and analyzing their joint behavior, we first expand the consensus
error recursively to get the next lemma.

Lemma G.5 (Explicit consensus error for non-convex models) (See Appendix H.5 for the proof.)
Let Assumptions 4.2 and 4.4 hold. If the learning rate α(k) satisfies α(k) ≤ 1

Γ
(k)
1

1−ρ̃(k)

4β
√

d
(k)
max(1+ρ̃(k))

,

with Γ
(k)
1 > 1,

then for each iteration k ≥ 0, we have the following bound on the expected consensus error:

EΞ(k) [∥Θ(k+1) − 1mθ̄
(k+1)∥2] ≤ ϕ

(k:0)
22 ∥Θ(0) − 1mθ̄

(0)∥2 +∑k
r=0 ϕ

(k:r+1)
22 ϕ

(r)
21 EΞ(r−1) [∥∇F (θ̄(r))∥2] +

∑k
r=0 ϕ

(k:r+1)
22 ψ

(r)
2 ,

where ϕ(k:r)22 =
∏k

s=r ϕ
(s)
22 , and the values of ϕ(k)21 , ϕ(k)22 and ψ(k)

2 are given in Lemma G.4.
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Finally, we use the upper bound derived in Lemma G.5 in Lemma G.3 to derive the following
proposition.

Proposition G.6 (Explicit average model performance for non-convex models) (See Ap-
pendix H.6 for the proof.) Let Assumptions 4.2 and 4.3 hold. If a non-increasing learning rate is
used, i.e., α(k+1) ≤ α(k), which also satisfies the following condition

α(k) < min

{
Γ
(k)
3

2β
,

1

Γ
(k)
1

1− ρ̃(k)

4β

√
d
(k)
max(1 + ρ̃(k))

,
1

Γ
(k)
2

1
2 − ζ

2
(
1− d(k)min

)
β
(
1 + 2ζ2

(
1− d(k)min

)) ,
√(

1− 1

(Γ
(k)
1 )

2

)(
1− 1

Γ
(k)
2

)
4Γ

(k)
4

√
1 + Γ

(k)
3

√
1
2 − ζ2

(
1− d(k)min

)
d
(k)
maxζβ

1− ρ̃(k)√
1 + ρ̃(k)

}
,

then for each iteration k ≥ 0 we have the following bound on the expected average model perfor-
mance:

EΞ(k) [F (θ̄(k+1))] ≤ F (θ̄(0)) −
∑k

r=0 α
(r)w

(r)
1 EΞ(r−1) [∥∇F (θ̄(r))∥2] +

α(0)w
(0)
2 ∥Θ(0) − 1mθ̄

(0)∥2 +
∑k−1

r=0 α
(r)w

(r)
2 ψ

(r)
2 +

∑k
r=0 ψ

(r)
1 ,

in which w(k)
1 = ( 12 − ζ

2(1− d(k)min))(1− 1

Γ
(k)
2

)(1− 1

(Γ
(k)
4 )2

), w(k)
2 =

β2d(k)
max(1+Γ

(k)
3 )

m(1−ρ̃(k))(1− 1

(Γ
(k)
1 )

2 )
, and the

values of ψ(k)
1 and ψ(k)

2 were given in Lemmas G.3 and G.4.

H PROOFS FOR NON-CONVEX ANALYSIS

H.1 PROOF OF LEMMA G.1

(a) For this deviation term, we use Eq. 1 and triangle inequality to write∥∥∥∇F (θ̄(k))−∇v(k)∥∥∥2 =

∥∥∥∥∥ 1

m

m∑
i=1

(
∇Fi(θ̄

(k))−∇Fi(θ
(k)
i )v

(k)
i

)∥∥∥∥∥
2

≤ 1

m

m∑
i=1

∥∥∥∇Fi(θ̄
(k))−∇Fi(θ

(k)
i )v

(k)
i

∥∥∥2
=

1

m

m∑
i=1

v
(k)
i =1

∥∥∥∇Fi(θ̄
(k))−∇Fi(θ

(k)
i )
∥∥∥2 + 1

m

m∑
i=1

v
(k)
i =0

∥∥∥∇Fi(θ̄
(k))
∥∥∥2

≤ 1

m

m∑
i=1

v
(k)
i =1

β2
i

∥∥∥θ̄(k) − θ(k)i

∥∥∥2 + 2

m

m∑
i=1

v
(k)
i =0

(
δ2i + ζ2i

∥∥∥∇F (θ̄(k))∥∥∥2)

=
1

m

m∑
i=1

β2
i

∥∥∥θ̄(k) − θ(k)i

∥∥∥2v(k)i +
2

m

m∑
i=1

(
δ2i + ζ2i

∥∥∥∇F (θ̄(k))∥∥∥2)(1− v(k)i

)
,

where in the line second to last, smoothness and gradient diversity (Assumptions 4.2-(a) and 4.2-(b))
were used. Taking the expected value of the above inequality concludes the proof.

(b) Second, for this inner product term, we have

−
〈
∇F (θ̄(k)),∇v(k)

〉
= −

〈
∇F (θ̄(k)),∇v(k) −∇F (θ̄(k)) +∇F (θ̄(k))

〉
= −

∥∥∥∇F (θ̄(k))∥∥∥2 + 〈∇F (θ̄(k)),∇F (θ̄(k))−∇v(k)〉
≤ −1

2

∥∥∥∇F (θ̄(k))∥∥∥2 + 1

2

∥∥∥∇F (θ̄(k))−∇v(k)∥∥∥2.
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Now, taking the expected value of this inequality and using part (a) of this lemma, we get

−EΞ(k)

[〈
∇F (θ̄(k)),∇v(k)

〉]
≤ −1

2
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]
+
β2d

(k)
max

2m
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ ζ2
(
1− d(k)min

)
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]
+
(
1− d(k)min

)
δ2

≤ −
(
1

2
− ζ2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]
+
β2d

(k)
max

2m
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]+ (1− d(k)min

)
δ2.

(c) Finally, for the norm term, we have

1

2

∥∥∥∇v(k)∥∥∥2 =
1

2

∥∥∥∇v(k) −∇F (θ̄(k)) +∇F (θ̄(k))∥∥∥2 ≤ ∥∥∥∇F (θ̄(k))∥∥∥2 + ∥∥∥∇F (θ̄(k))−∇v(k)∥∥∥2.
Taking the expected value of this inequality and utilizing part (a) of this lemma

1

2
EΞ(k)

[∥∥∥∇v(k)∥∥∥2] ≤ EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]+ β2d
(k)
max

m
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 2ζ2
(
1− d(k)min

)
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]+ 2
(
1− d(k)min

)
δ2

≤
[
1 + 2ζ2

(
1− d(k)min

)]
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]+ β2d
(k)
max

m
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 2
(
1− d(k)min

)
δ2.

H.2 PROOF OF LEMMA G.2

We have using the definition of Frobenius norms on matrices and triangle inequality that∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2 =

m∑
i=1

∥∥∥∇Fi(θ
(k)
i )v

(k)
i −∇v(k)

∥∥∥2

=

m∑
i=1

∥∥∥∥∥∥ 1

m

m∑
j=1

(
∇Fi(θ

(k)
i )v

(k)
i −∇Fj(θ

(k)
j )v

(k)
j

)∥∥∥∥∥∥
2

≤ 1

m

m∑
i=1

m∑
j=1

∥∥∥∇Fi(θ
(k)
i )v

(k)
i −∇Fj(θ

(k)
j )v

(k)
j

∥∥∥2
≤ 1

m

m∑
i=1

m∑
j=1

∥∥∥∇Fi(θ
(k)
i )v

(k)
i −∇Fi(θ̄

(k))v
(k)
i +∇Fi(θ̄

(k))v
(k)
i −∇Fj(θ̄

(k))v
(k)
j

+∇Fj(θ̄
(k))v

(k)
j −∇Fj(θ

(k)
j )v

(k)
j

∥∥∥2
≤ 4

m

m∑
i=1

m∑
j=1

∥∥∥∇Fi(θ
(k)
i )−∇Fi(θ̄

(k))
∥∥∥2v(k)i +

∥∥∥∇Fi(θ̄
(k))
∥∥∥2v(k)i +

∥∥∥∇Fj(θ̄
(k))
∥∥∥2v(k)j

+
∥∥∥∇Fj(θ̄

(k))−∇Fj(θ
(k)
j )
∥∥∥2v(k)j

34



Published as a conference paper at ICLR 2025

≤ 4

m

m∑
i=1

m∑
j=1

β2
i

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i + 2

(
δ2i + ζ2i

∥∥∥∇F(θ̄(k))∥∥∥2) v(k)i

+ 2

(
δ2j + ζ2j

∥∥∥∇F(θ̄(k))∥∥∥2) v(k)j + β2
j

∥∥∥θ̄(k) − θ(k)j

∥∥∥2v(k)j

= 4

[
m∑
i=1

β2
i

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i + 2

m∑
i=1

(
δ2i + ζ2i

∥∥∥∇F(θ̄(k))∥∥∥2) v(k)i

+ 2

m∑
j=1

(
δ2j + ζ2j

∥∥∥∇F(θ̄(k))∥∥∥2) v(k)j +

m∑
j=1

β2
j

∥∥∥θ̄(k) − θ(k)j

∥∥∥2v(k)j

]

= 8

m∑
i=1

[
β2
i

∥∥∥θ(k)i − θ̄(k)
∥∥∥2 + 2

(
δ2i + ζ2i

∥∥∥∇F(θ̄(k))∥∥∥2)] v(k)i

≤ 8β2
m∑
i=1

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i + 16

(
ζ2
∥∥∥∇F(θ̄(k))∥∥∥2 + δ2

) m∑
i=1

v
(k)
i ,

where in the sixth line above, smoothness and gradient diversity assumptions of Assumption 4.2
were used. We next take the expected value of the expression above and use uncorrelatedness or
random variables of Assumption 4.3-(b) and Definition 4.6 to get

EΞ(k)

[∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2]

≤ 8β2
m∑
i=1

EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]Ev

(k)
i

[
v
(k)
i

]
+ 16

(
ζ2EΞ(k−1)

[∥∥∥∇F(θ̄(k))∥∥∥2]+ δ2
) m∑

i=1

E
v
(k)
i

[
v
(k)
i

]
≤ 8β2

m∑
i=1

EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]d(k)i + 16

(
ζ2EΞ(k−1)

[∥∥∥∇F(θ̄(k))∥∥∥2]+ δ2
) m∑

i=1

d
(k)
i

≤ 8β2d(k)maxEΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]+ 16md(k)max

(
ζ2EΞ(k−1)

[∥∥∥∇F(θ̄(k))∥∥∥2]+ δ2
)

= 8d(k)max

[
β2EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]+ 2mζ2EΞ(k−1)

[∥∥∥∇F(θ̄(k))∥∥∥2]+ 2mδ2
]
.

H.3 PROOF OF LEMMA G.3

We have

F (θ̄(k+1)) ≤ F (θ̄(k)) +
〈
∇F (θ̄(k)), θ̄(k+1) − θ̄(k)

〉
+
β

2

∥∥∥θ̄(k) − θ̄(k+1)
∥∥∥2

= F (θ̄(k)) +
〈
∇F (θ̄(k)),−α(k)gv(k)

〉
+
β

2

∥∥∥α(k)gv(k)
∥∥∥2

= F (θ̄(k))− α(k)
〈
∇F (θ̄(k)),∇v(k)

〉
− α(k)

〈
∇F (θ̄(k)), ϵv(k)

〉
+
β

2

(
α(k)

)2∥∥∥∇v(k)∥∥∥2 + β

2

(
α(k)

)2∥∥∥ϵv(k)∥∥∥2 + β
(
α(k)

)2 〈
∇v(k), ϵv(k)

〉
,

in which the relationship in each of the three lines follow from (i) Smoothness (Assumption 4.2-(a)),
(ii) Eq. 5, (iii) g(k)

i = ∇(k)
i + ϵ

(k)
i for all i ∈ M. Next, we take the expected value of the above
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inequality and use Assumptions 4.3, and Lemmas D.2 and G.1 to get

EΞ(k)

[
F (θ̄(k+1))

]
≤ EΞ(k−1)

[
F (θ̄(k))

]
− α(k)

(
1

2
− ζ2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]
+
β2d

(k)
max

2m
α(k)EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]+ α(k)

(
1− d(k)min

)
δ2

+ β
[
1 + 2ζ2

(
1− d(k)min

)](
α(k)

)2
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]
+
β3d

(k)
max

m

(
α(k)

)2
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 2β
(
1− d(k)min

)
δ2
(
α(k)

)2
+
β

2

(
α(k)

)2
d(k)max

σ2

m

≤ EΞ(k−1)

[
F (θ̄(k))

]
− α(k)

[
1

2
− ζ2

(
1− d(k)min

)
− β

(
1 + 2ζ2

(
1− d(k)min

))
α(k)

]
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]
+
β2d

(k)
max

2m
α(k)

(
1 + 2βα(k)

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ α(k)

[(
1− d(k)min

)(
1 + 2βα(k)

)
δ2 +

β

2
α(k) dmaxσ

2

m

]
.

H.4 PROOF OF LEMMA G.4

Note that we proved a similar bound for the case of convex models in Lemma 4.8. Thus, we start
from Eq. 14 derived in the proof of that lemma in Appendix 4.8. We take the expected value of the
inequality in Eq. 14 and use Lemmas D.2, G.2 and D.4-(c) to get

EΞ(k)

[∥∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥∥2] ≤ 1 + ρ̃(k)

2ρ̃(k)
ρ̃(k)EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+8
1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2[
β2EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 2mζ2EΞ(k−1)

[∥∥∥∇F(θ̄(k))∥∥∥2]+ 2mδ2

]

−2α(k)EΞ(k)\E(k)

[〈
P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)
,

(
Im −

1

m
1m1T

m

)
V(k)EE(k)

[
E(k)

]〉]

+m
(
α(k)

)2
d(k)maxσ

2

≤

[
1 + ρ̃(k)

2
+ 8

1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2
β2

]
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 16
1 + ρ̃(k)

1− ρ̃(k)
md(k)max

(
α(k)

)2
ζ2EΞ(k−1)

[∥∥∥∇F(θ̄(k))∥∥∥2]
+m

(
α(k)

)2
d(k)max

(
16

1 + ρ̃(k)

1− ρ̃(k)
δ2 + σ2

)
.
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H.5 PROOF OF LEMMA G.5

We expand the bound derived in Lemma G.4 to get

EΞ(k)

[∥∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥∥2] ≤(
k∏

r=0

ϕ
(r)
22

)∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2 + k∑

r=0

(
k∏

s=r+1

ϕ
(s)
22

)[
ϕ
(r)
21 EΞ(r−1)

[∥∥∥∇F(θ̄(r))∥∥∥2]+ ψ
(r)
2

]
.

We need to make sure that the consensus error diminishes over the iterations. Towards this goal, we
ensure that ϕ(k)22 < 1 for all k ≥ 0. Using the definition of ϕ(k)22 from Lemma G.4, we have

1 + ρ̃(k)

2
+ 8

1 + ρ̃(k)

1− ρ̃(k)
d(k)max(α

(k))
2
β2 < 1 ⇒ α(k) <

1− ρ̃(k)

4β

√
d
(k)
max(1 + ρ̃(k))

.

We will find it useful later in the proof of Proposition G.6 to define the following equivalent con-
straint

α(k) ≤ 1

Γ
(k)
1

1− ρ̃(k)

4β

√
d
(k)
max(1 + ρ̃(k))

, Γ
(k)
1 > 1.

This results in ϕ(k)22 ≤
1+ρ̃(k)

2 + 1

(Γ
(k)
1 )

2
1−ρ̃(k)

2 .

H.6 PROOF OF PROPOSITION G.6

Step 1: Recursively expanding consensus error. We substitute the upper bound derived in
Lemma G.5 in Lemma G.3 to get

EΞ(k)

[
F (θ̄(k+1))

]
≤ EΞ(k−1)

[
F (θ̄(k))

]
− ϕ(k)11 EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]
+ϕ

(k)
12

{
ϕ
(k−1:0)
22

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2

+

k−1∑
r=0

ϕ
(k−1:r+1)
22

[
ϕ
(r)
21 EΞ(r−1)

[∥∥∥∇F(θ̄(r))∥∥∥2]+ ψ
(r)
2

]}
+ ψ

(k)
1

≤ EΞ(k−1)

[
F (θ̄(k))

]
− ϕ(k)11 EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]+ ϕ
(k)
12 ϕ

(k−1:0)
22

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2

+ ϕ
(k)
12

k−1∑
r=0

ϕ
(k−1:r+1)
22 ϕ

(r)
21 EΞ(r−1)

[∥∥∥∇F(θ̄(r))∥∥∥2]+ ϕ
(k)
12

k−1∑
r=0

ϕ
(k−1:r+1)
22 ψ

(r)
2 + ψ

(k)
1 .

Now, summing both sides of the inequality from k = 0 to k = K, we get

EΞ(K)

[
F (θ̄(K+1))

]
≤ F (θ̄(0))−

K∑
k=0

ϕ
(k)
11 EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]

+

K∑
k=0

ϕ
(k)
12 ϕ

(k−1:0)
22

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2

+

K∑
k=0

ϕ
(k)
12

k−1∑
r=0

ϕ
(k−1:r+1)
22 ϕ

(r)
21 EΞ(r−1)

[∥∥∥∇F(θ̄(r))∥∥∥2]

+

K∑
k=0

ϕ
(k)
12

k−1∑
r=0

ϕ
(k−1:r+1)
22 ψ

(r)
2 +

K∑
k=0

ψ
(k)
1
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= F (θ̄(0))−
K∑

k=0

ϕ
(k)
11 EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]+ ∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2 K∑

k=0

ϕ
(k)
12 ϕ

(k−1:0)
22

+

K−1∑
r=0

ϕ
(r)
21 EΞ(r−1)

[∥∥∥∇F(θ̄(r))∥∥∥2] K∑
k=r+1

ϕ
(k)
12 ϕ

(k−1:r+1)
22

+

K−1∑
r=0

ψ
(r)
2

K∑
k=r+1

ϕ
(k)
12 ϕ

(k−1:r+1)
22 +

K∑
k=0

ψ
(k)
1

= F (θ̄(0))−
K−1∑
k=0

[
ϕ
(k)
11 − ϕ

(k)
21

K∑
r=k+1

ϕ
(r)
12 ϕ

(r−1:k+1)
22

]
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]

− ϕ(K)
11 EΞ(K−1)

[∥∥∥∇F (θ̄(K))
∥∥∥2]+ ∥∥∥Θ(0) − 1mθ̄

(0)
∥∥∥2 K∑

k=0

ϕ
(k)
12 ϕ

(k−1:0)
22

+

K−1∑
k=0

ψ
(k)
2

K∑
r=k+1

ϕ
(r)
12 ϕ

(r−1:k+1)
22 +

K∑
k=0

ψ
(k)
1

Step 2: Simplifying using non-increasing learning rate. Using the definitions of ϕ(k)12 and ϕ(k)22

from Lemmas G.3 and G.4, a non-increasing learning rate means that the upper bounds for ϕ(k)12 and
ϕ
(k)
22 is non-increasing as well, knowing that d(k)i ≤ 1 and ρ̃(k) < 1. Thus, we have

EΞ(K)

[
F (θ̄(K+1))

]
≤ F (θ̄(0))

−
K−1∑
k=0

[
ϕ
(k)
11 − ϕ

(k)
21 ϕ

(k+1)
12

K∑
r=k+1

(
ϕ
(k+1)
22

)r−1−k
]
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]

− ϕ(K)
11 EΞ(K−1)

[∥∥∥∇F (θ̄(K))
∥∥∥2]+ ∥∥∥Θ(0) − 1mθ̄

(0)
∥∥∥2ϕ(0)12

K∑
k=0

(
ϕ
(0)
22

)k
+

K−1∑
k=0

ψ
(k)
2 ϕ

(k+1)
12

K∑
r=k+1

(
ϕ
(k+1)
22

)r−1−k

+

K∑
k=0

ψ
(k)
1

≤ F (θ̄(0))−
K−1∑
k=0

[
ϕ
(k)
11 − ϕ

(k)
21 ϕ

(k+1)
12

K−1−k∑
u=0

(
ϕ
(k+1)
22

)u]
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]

− ϕ(K)
11 EΞ(K−1)

[∥∥∥∇F (θ̄(K))
∥∥∥2]+ ∥∥∥Θ(0) − 1mθ̄

(0)
∥∥∥2ϕ(0)12

∞∑
k=0

(
ϕ
(0)
22

)k
+

K−1∑
k=0

ψ
(k)
2 ϕ

(k+1)
12

K−1−k∑
u=0

(
ϕ
(k+1)
22

)u
+

K∑
k=0

ψ
(k)
1

≤ F (θ̄(0))−
K−1∑
k=0

[
ϕ
(k)
11 − ϕ

(k)
21 ϕ

(k+1)
12

∞∑
u=0

(
ϕ
(k+1)
22

)u]
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]

− ϕ(K)
11 EΞ(K−1)

[∥∥∥∇F (θ̄(K))
∥∥∥2]+ ∥∥∥Θ(0) − 1mθ̄

(0)
∥∥∥2ϕ(0)12

∞∑
k=0

(
ϕ
(0)
22

)k
+

K−1∑
k=0

ψ
(k)
2 ϕ

(k+1)
12

∞∑
u=0

(
ϕ
(k+1)
22

)u
+

K∑
k=0

ψ
(k)
1
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≤ F (θ̄(0))−
K−1∑
k=0

[
ϕ
(k)
11 −

ϕ
(k)
21 ϕ

(k+1)
12

1− ϕ(k+1)
22

]
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]

− ϕ(K)
11 EΞ(K−1)

[∥∥∥∇F (θ̄(K))
∥∥∥2]+ ∥∥Θ(0) − 1mθ̄

(0)
∥∥2ϕ(0)12

1− ϕ(0)22

+

K−1∑
k=0

ψ
(k)
2 ϕ

(k+1)
12

1− ϕ(k+1)
22

+

K∑
k=0

ψ
(k)
1

≤ F (θ̄(0))−
K−1∑
k=0

[
ϕ
(k)
11 −

ϕ
(k)
21 ϕ

(k)
12

1− ϕ(k)22

]
EΞ(k−1)

[∥∥∥∇F (θ̄(k))∥∥∥2]

− ϕ(K)
11 EΞ(K−1)

[∥∥∥∇F (θ̄(K))
∥∥∥2]+ ∥∥Θ(0) − 1mθ̄

(0)
∥∥2ϕ(0)12

1− ϕ(0)22

+

K−1∑
k=0

ψ
(k)
2 ϕ

(k)
12

1− ϕ(k)22

+

K∑
k=0

ψ
(k)
1

Step 3: We need to ensure that the gradient descents result in lowering the average model loss.

Thus, we need to make sure that ϕ(k)11 > 0 and ϕ(k)11 −
ϕ
(k)
21 ϕ

(k)
12

1−ϕ
(k)
22

> 0. Using the definitions of ϕ(k)11

from Lemmas G.3, we first solve for ϕ(k)11 > 0 to get

α(k)

[
1

2
− ζ2

(
1− d(k)min

)
− β

(
1 + 2ζ2

(
1− d(k)min

))
α(k)

]
> 0

⇒ 0 < α(k) <

1
2 − ζ

2
(
1− d(k)min

)
β
(
1 + 2ζ2

(
1− d(k)min

)) .
Note that the above inequality implicitly assumes the following constraint as well

1

2
− ζ2

(
1− d(k)min

)
> 0 ⇒ d

(k)
min > 1− 1

2ζ2
,

which alternatively is equal to

d
(k)
min ≥ 1− 1

Γ
(k)
0

1

2ζ2
, Γ

(k)
0 > 1.

Next, to solve for ϕ(k)11 −
ϕ
(k)
21 ϕ

(k)
12

1−ϕ
(k)
22

> 0, we need two extra constraints on α(k). The first one follows
as

α(k) ≤ 1

Γ
(k)
2

1− 1

Γ
(k)
0

2β

(
1 + 1

Γ
(k)
0

) , Γ
(k)
2 > 1,

which results in ϕ(k)11 ≥ α(k)

2

(
1− 1

Γ
(k)
0

)(
1− 1

Γ
(k)
2

)
. The second constraint on α(k) would be

α(k) ≤ Γ
(k)
3

2β
, Γ

(k)
3 > 0,

which implies ϕ(k)12 ≤
β2d(k)

max

2m (1 + Γ
(k)
3 )α(k). Using the previous two results and the upper bound

for ϕ(k)22 derived in Lemma G.5, we can continue as

α(k)

2

(
1− 1

Γ
(k)
0

)(
1− 1

Γ
(k)
2

)
1− ρ̃(k)

2

(
1− 1

(Γ
(k)
1 )

2

)
> ϕ

(k)
21 ϕ

(k)
12
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⇒ α(k)

2

(
1− 1

Γ
(k)
0

)(
1− 1

Γ
(k)
2

)
1− ρ̃(k)

2

(
1− 1

(Γ
(k)
1 )

2

)

>

(
16

1 + ρ̃(k)

1− ρ̃(k)
md(k)max

(
α(k)

)2
ζ2
)(

β2d
(k)
max

2m
α(k)

(
1 + Γ

(k)
3

))

⇒ α(k) <

√(
1− 1

(Γ
(k)
1 )

2

)(
1− 1

Γ
(k)
2

)
4
√
2

√
1 + Γ

(k)
3

1− ρ̃(k)√
1 + ρ̃(k)

√
1− 1

Γ
(k)
0

ζβd
(k)
max

Finally, setting the following constraint

α(k) ≤ 1

Γ
(k)
4

√(
1− 1

(Γ
(k)
1 )

2

)(
1− 1

Γ
(k)
2

)
4
√
2

√
1 + Γ

(k)
3

1− ρ̃(k)√
1 + ρ̃(k)

√
1− 1

Γ
(k)
0

ζβd
(k)
max

, Γ
(k)
4 > 1,

we obtain

ϕ
(k)
11 −

ϕ
(k)
21 ϕ

(k)
12

1− ϕ(k)22

≥ α(k)

2

(
1− 1

Γ
(k)
0

)(
1− 1

Γ
(k)
2

)1− 1(
Γ
(k)
4

)2
 .

H.7 PROOF OF THEOREM 4.12

We are given that a constant learning rate α(k) = α is being used, and we have that ρ̃(k) ≤ ρ̃ with
ρ̃ = max0≤k≤K ρ̃(k) for the spectral radius and d(k)i ≥ dmin with dmin = min0≤k≤K,i∈M d

(k)
i for

SGD probabilities. Thus, we can simplify the results of Proposition G.6 to get

EΞ(K)

[
F (θ̄(K+1))

]
≤ F

(
θ̄(0)
)
− w1α

K∑
r=0

EΞ(r−1)

[∥∥∥∇F (θ̄(r))∥∥∥2]
+ αw2

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2 + αw2ψ2K + ψ1(K + 1).

Therefore, if the learning rate satisfies

α < min

{
Γ3

2β
,
1

Γ1

1− ρ̃
4β
√
1 + ρ̃

,
1

2Γ2

1− 1
Γ0

β
(
1 + 1

Γ0

) ,
√(

1− 1
Γ1

)(
1− 1

Γ2

)
4
√
2Γ4

√
1 + Γ3

√
1− 1

Γ0

ζβ

1− ρ̃√
1 + ρ̃

}
,

then we have

1

K + 1

K∑
r=0

EΞ(r−1)

[∥∥∥∇F (θ̄(r))∥∥∥2] ≤ 1

αw1(K + 1)

[
F
(
θ̄(0)
)
− F ⋆ +

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2αw2

+ αw2ψ2K + ψ1(K + 1)

]
.

≤ 1

w1

[
F
(
θ̄(0)
)
− F ⋆

α(k + 1)
+

∥∥Θ(0) − 1mθ̄
(0)
∥∥2w2

k + 1
+ α2w2w3 + (1− dmin)w4 + αw5

]
,

where w1 = 1
2 (1 −

1
Γ0

)(1 − 1
Γ2

)(1 − 1
Γ2
4
), w2 = β2dmax(1+Γ3)

m(1−ρ̃)
(
1− 1

Γ1

) , w3 = mdmax(16
1+ρ̃
1−ρ̃δ

2 + σ2),

w4 = (1+Γ3)δ
2 and w5 = βdmaxσ

2

2m . Also, the conditions on the constant scalars Γi with 0 ≤ i ≤ 4
are Γ0,Γ1,Γ2,Γ4 > 1 and Γ3 > 0.
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I DIMINISHING LEARNING RATE POLICY FOR CONVEX MODELS

In this appendix, we do the convergence analysis of our methodology under a diminishing learning
rate policy, i.e., when α(k+1) < α(k) for all k ≥ 0. We will show that convergence to the globally
optimal point is possible if the frequency of SGDs, i.e., d(k)i , is increasing over time. Thus, a
few preliminary lemmas are first required, to re-derive the counterpart of Proposition 4.10 for the
increasing d(k)i strategy.

Proposition I.1 (Spectral radius with diminishing learning rate) (See Appendix J.1 for the
proof.) Let Assumptions 4.1, 4.3 and 4.4 hold. If the SGD probabilities are chosen as d(k)i =

1 − η(k)i α(k) with 0 ≤ η
(k)
i ≤ 1

α(k) and η(k)min = mini∈M η
(k)
i , and the learning rate satisfies the

following condition for all k ≥ 0

α(k) < min

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,

 µ

6
(
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)(
1 + Γ

(k)
1

)
1/3(

1− ρ̃(k)

2β

)2/3
}
.

then we have ρ
(
Φ(k)

)
< 1 for all k ≥ 0, in which ρ(·) denotes the spectral radius of a given matrix,

and Φ(k) is given in the linear system of inequalities of Eq. 7. ρ(Φ(k)) is given by

ρ(Φ(k)) = 1 − h(α(k)), where h(α(k)) = 1−ρ̃(k)

4 + A(k)α(k) − B(k)(α(k))
2 −

1
2

√
( 1−ρ̃(k)

2 − 2(A(k)α(k) +B(k)(α(k))
2
))

2
+ C(k)(α(k))

3, andA(k) =
η
(k)
minΓ

(k)
1

µ (1+Γ
(k)
1 )(Γ

⋆(k)
2 −

1)β2, B(k) = 3
2
1+ρ̃(k)

1−ρ̃(k) (ζ
2 + 2β2), and C(k) = 12

(1+Γ
(k)
1 )β2

µ
1+ρ̃(k)

1−ρ̃(k) (ζ
2 + 2η

(k)
minΓ

(k)
1

β2

µ ). The value

for Γ⋆(k)
2 is given in Appendix J.1, and 0 < Γ

(k)
1 < 1/(1+2β2η

(k)
min/µ

2) is an arbitrary scalar value.

Proposition I.1 implies that limk→∞ Φ(k:0) = 0 in Eq. 8. However, note that this is only the
asymptotic behaviour of Φ(k:0), and the exact convergence rate will depend on the choice of
the learning rate α(k). Furthermore, noting that the first expression in Eq. 8 asymptotically ap-
proaches zero, Proposition I.1 also implies that the optimality gap is determined by the terms∑k

r=1 Φ
(k:r)Ψ(r−1) +Ψ(k), and it can be made zero if the learning rate α(k) satisfies certain con-

ditions, which we will discuss in Theorem I.5.

Proposition I.1 outlines the necessary constraint on the learning rate α(k) at each iteration k ≥ 0.
We next provide a corollary to Proposition I.1, in which we show that under certain conditions, the
above-mentioned constraint needs to be satisfied only on the initial value of the learning rate, i.e,
α(0).

Corollary I.2 (Constraint on diminishing learning rate initialization for convex models)
(Corollary to Proposition I.1) If the learning rate α(k) is non-increasing, i.e., α(k+1) ≤ α(k), the
SGD probabilities are determined as d(k)i = 1− ηiα(k) with 0 ≤ ηi ≤ 1

α(0) and ηmin = mini∈M ηi,

for all k ≥ 0, and we have constant aggregations probabilities b(k)ij = bij , then the constraints in
Proposition I.1 simplify to

α(0) < min

{
Γ1

µ
,

1

2
√
3

1− ρ̃√
1 + ρ̃

1√
ζ2 + 2β2

,

 µ

6
(
ζ2 + 2ηminΓ1

β2

µ

)
(1 + Γ1)

1/3(
1− ρ̃
2β

)2/3
}
.

This also results in time-invariant scalars A = A(k), B = B(k) and C = C(k), where these
quantities were defined in Proposition I.1.

In the above Corollary, we obtained the constraints on the initial value of the learning rate, i.e.,
α(0), that lead to the spectral radius of Φ(k) being less than 1, i.e., ρ(Φ(k)) < 1. Note that since
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the learning rate is diminishing, i.e., limk→∞ α(k) = 0, it follows that d(0)i = 1 − ηiα
(0) and

limk→∞ d
(k)
i = 1, which means that all clients will basically do SGDs at every iteration for large

enough values of k.

Two final building blocks are necessary for the proof of Theorem I.5. We present these in the
following lemmas.

Lemma I.3 (Bound for product in summation form) (See Lemma 1 in Zehtabi et al. (2022) for
the proof.) Let {ζr}∞r=0 be a scalar sequence where 0 < ζr ≤ 1, ∀r ≥ 0. For any p ≥ 1, we have

k∏
r=s

(1− ζr)p ≤
1

p
∑k

r=s ζr
.

Next, we outline another crucial lemma for our analysis.

Lemma I.4 (Bounds for learning-rate-based quantities) (See Appendix J.2 for the proof.) Let a
diminishing learning rate α(k) = α(0)/

√
1 + k/γ be used, which satisfies the properties

α(k+1) < α(k),

∞∑
k=0

α(k) =∞,
∞∑
k=0

(
α(k)

)2
<∞3. (21)

Under the setup of Proposition I.1 for the SGD probabilities, i.e., d(k)i , if the aggregation proba-
bilities are constant, i.e., b(k)ij = bij for all i ∈ M and (i, j) ∈ E(k), then the following bounds
hold

(a)
∑k

q=r α
(q) ≥ 2α(0)

(√
1 + k

γ −
√
1 + r

γ

)
,

(b) h(α(k)) ≥ 2Aα(k),

(c)
∑k

r=1
(α(r−1))

2∑k
q=r h(α(q))

≤ α(0)

4A

[
1√

1+ k
γ −
√

1+ 1
γ

+ 2(γ+1)√
1+ k

γ

(
ln
√

1 + k
γ + ln 1√

1+ 1
γ+k−1−1

)
+

2
√

1+ k
γ

1+ k−1
γ

]
.

where h(α(k)) and the constant A(k) were defined in Proposition I.1.

Using Corollary I.2 and Lemmas I.3 and I.4, our main theorem follows.

Theorem I.5 (Strongly-convex convergence result with a diminishing learning rate) (See Ap-
pendix J.3 for the proof.) Let Assumptions 4.1, 4.3 and 4.4 hold. If a diminishing learning rate
policy α(k) = α(0)/

√
1 + k/γ with γ > 0 satisfying the conditions outlined in Corollary I.2 is

employed, and the SGD probabilities are set to d(k)i = 1 − ((1 − d(0)i )/α(0))α(k) for all i ∈ M,
while aggregation probabilities are set to constant values, i.e., b(k)ij = bij for all i ∈ M and
(i, j) ∈ E(k), then we can rewrite Eq. 8 as

ν(K+1) ≤ O
(

1√
K

)
ν(0)

+
(
α(0)

)2(
3O
(

1√
K

)
+O

(
lnK√
K

)
+O

(
1

k

)) 2(1+µα(0))(1−d(0)
max)

µα(0) δ2 + σ2

m

m
(
3 1+ρ̃
1−ρ̃δ

2 + σ2
)  .

(22)
Letting K →∞, we get

lim
K→∞

ν(K+1) = 0. (23)

3Note that the last condition implies limk→∞ α(k) = 0

42



Published as a conference paper at ICLR 2025

The bound in Eq. 22 of Theorem I.5 indicates that by using a diminishing learning rate policy of
α(k) = α(0)/

√
1 + k/γ, DSpodFL achieves a sub-linear convergence rate of O(lnK/

√
K), and

Eq. 23 shows that asymptotic zero optimality gap as k →∞ can be achieved.

However, it is worth noting that choosing the SGD probabilities based on the learning rate, i.e.,
d
(k)
i = 1 − α(k)/α(0) for all i ∈ M and k ≥ 0, is only of theoretical value in this paper. This

is because our motivation of introducing the notion of SGD probabilities was to capture compu-
tational capabilities of heterogeneous clients in real-world settings, therefore, it is an independent
uncontrollable parameter and cannot be chosen based on the learning rate.

Finally, note that setting d(k)i = 1−α(k)/α(0) is equivalent to having all clients in the decentralized
system to conduct SGD at each iteration as k → ∞. This result is akin to Wang & Nedić (2023),
in which an increasing similarity between the learning rates of clients is needed for convergence,
despite them being initially uncoordinated.

J PROOFS FOR DIMINISHING LEARNING RATE POLICY FOR CONVEX
MODELS

J.1 PROOF OF PROPOSITION I.1

Let the SGD probabilities d(k)i be chosen as the following for all i ∈M:

d
(k)
i = 1− η(k)i α(k), 0 ≤ η(k)i ≤ 1

α(k)
, η(k)max = max

i∈M
η
(k)
i , η

(k)
min = min

i∈M
η
(k)
i ,

where α(k) is the learning rate with a diminishing policy, i.e., limk→∞ α(k) = 0. Based on this
relationship that we put between the SGD probabilities and the learning rate, we first rewrite the
bounds for matrices Φ(k) and Ψ(k) which were given in Lemmas 4.7 and 4.8. We have

ϕ
(k)
11 = 1− µα(k)

(
1 + µα(k) −

(
µα(k)

)2)
+

2η
(k)
min

(
α(k)

)2
µ

(
1 + µα(k)

)
β2,

ϕ
(k)
12 =

(
1 + µα(k)

)(
1− η(k)maxα

(k)
) α(k)β2

mµ
,

ϕ
(k)
21 = 3

1 + ρ̃(k)

1− ρ̃(k)
m
(
1− η(k)maxα

(k)
)(

α(k)
)2 (

ζ2 + 2β2η
(k)
minα

(k)
)

ϕ
(k)
22 =

1 + ρ̃(k)

2
+ 3

1 + ρ̃(k)

1− ρ̃(k)
(
1− η(k)maxα

(k)
)(

α(k)
)2 (

ζ2 + 2β2
)
,

ψ
(k)
1 =

(
α(k)

)2 [2η(k)min

µ

(
1 + µα(k)

)
δ2 +

(
1− η(k)maxα

(k)
) σ2

m

]
,

ψ
(k)
2 = m

(
1− η(k)maxα

(k)
)(

α(k)
)2(

3
1 + ρ̃(k)

1− ρ̃(k)
δ2 + σ2

)
.

(24)

The important difference with the terms in Eq. 24 and the corresponding ones outlined in Lemmas
4.7 and 4.8 is the fact that we get a

(
α(k)

)2
factor for ψ(k)

1 and ψ(k)
2 . This factor will help us show

in Theorem I.5 that zero optimality gap can be reached, which follows mainly from Eq. 21.

Next, we do an analysis similar to the proof of Proposition 4.10, which was given in Appendix F.3.

Step 1: Setting up the proof. We skip repeating the explanations for this step, as they are exactly
the same as step 1 in Appendix F.3.

Step 2: Simplifying the conditions. Recall that we have to ensure (i) 0 < ϕ
(k)
11 ≤ 1 and (ii)

0 < ϕ
(k)
22 ≤ 1. For ϕ(k)11 as defined in Eq. 24, we have

ϕ
(k)
11 ≤ 1 ⇒

1 + µα(k) −
(
µα(k)

)2(
1 + µα(k)

)
α(k)

≥ 2β2η
(k)
min

µ2
. (25)
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We then put the following constraint on α(k) to get a tighter lower bound for Eq. 25. We have

Constraint 1: α(k) ≤ Γ
(k)
1

µ
, ⇒ µα(k) >

2β2η
(k)
min

µ2
Γ
(k)
1

(
1 + Γ

(k)
1

)
+
(
Γ
(k)
1

)2
− 1,

where Γ
(k)
1 > 0 is a scalar. In order to avoid a positive lower-bound on the learning rate α(k), we

find the conditions under which the right-hand side of the above inequality is negative. We have

2β2η
(k)
min

µ2
Γ
(k)
1

(
1 + Γ

(k)
1

)
+
(
Γ
(k)
1

)2
− 1 < 0

⇒

(
1 +

2β2η
(k)
min

µ2

)(
Γ
(k)
1

)2
+

2β2η
(k)
min

µ2
Γ
(k)
1 − 1 < 0,

⇒

((
1 +

2β2η
(k)
min

µ2

)
Γ
(k)
1 − 1

)(
Γ
(k)
1 + 1

)
< 0 ⇒ −1 < Γ

(k)
1 <

1

1 +
2β2η

(k)
min

µ2

.

Next, in order to simplify ϕ(k)11 further, we add another constraint using Eq. 25 to parameterize the
lower bound in Eq. 25. We have

1 + µα(k) −
(
µα(k)

)2
1 + µα(k)

≥ 2β2η
(k)
min

µ2
Γ
(k)
1 ,

Constraint 2:
1 + µα(k) −

(
µα(k)

)2
1 + µα(k)

>
2β2η

(k)
min

µ2
Γ
(k)
1 Γ

(k)
2 , Γ

(k)
2 > 1,

in which Γ
(k)
2 > 1 makes sure that the constraint in Eq. 25 is satisfied. Hence, we can update the

entries of matrices Φ(k) and Ψ(k) as

ϕ
(k)
11 ≤ 1− 2η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k),

ϕ
(k)
12 ≤

(
1 + Γ

(k)
1

)
β2

mµ
α(k), ϕ

(k)
21 ≤ 3

1 + ρ̃(k)

1− ρ̃(k)
m
(
α(k)

)2(
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)
ϕ
(k)
22 ≤

1 + ρ̃(k)

2
+ 3

1 + ρ̃(k)

1− ρ̃(k)
(
α(k)

)2 (
ζ2 + 2β2

)
,

ψ
(k)
1 ≤

(
α(k)

)2 [2η(k)min

µ

(
1 + Γ

(k)
1

)
δ2 +

σ2

m

]
, ψ

(k)
2 ≤ m

(
α(k)

)2(
3
1 + ρ̃(k)

1− ρ̃(k)
δ2 + σ2

)
.

Note that matrix Φ(k) and vector Ψ(k) in Eq. 7 were used as upper bounds, therefore we can always
replace their values with new upper bounds for them. Consequently, with this new value for ϕ(k)11 ,
we continue as

ϕ
(k)
11 > 0 ⇒ α(k) <

µ

2η
(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
.

Finally, we check the next condition 0 < ϕ
(k)
22 ≤ 1. Noting that we have 3+ρ̃(k)

4 < 1, we can enforce

ϕ
(k)
22 ≤ 1 by setting ϕ(k)22 ≤

3+ρ̃(k)

4 . We have

1 + ρ̃(k)

2
≤ ϕ(k)22 ≤

3 + ρ̃(k)

4
⇒ 0 ≤ α(k) ≤ 1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

.

Step 3: Determining the constraints. Having made sure that (i) 0 < ϕ
(k)
11 ≤ 1 and (ii) 0 < ϕ

(k)
22 ≤ 1

in the previous step, we can continue to solve Eq. 15. For the left-hand side of the inequality, we
have (

1− ϕ(k)11

)(
1− ϕ(k)22

)
=

[
2η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

](
1− ϕ(k)22

)
≥

[
2η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

]
1− ρ̃(k)

4
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Now, putting this back to Eq. 15, we get[
2η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

]
1− ρ̃(k)

4
> ϕ

(k)
12 ϕ

(k)
21

⇒


(
1 + Γ

(k)
1

)
β2

mµ
α(k)

[3m1 + ρ̃(k)

1− ρ̃(k)

(
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)(
α(k)

)2]

<

[
2η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

]
1− ρ̃(k)

4

⇒ α(k) <

√√√√√ η
(k)
minΓ

(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

) .
Finally, we solve for Eq. 16, i.e., c = ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0. Noting that by solving Eq. 15 we

made sure that 1− ϕ(k)11 − ϕ
(k)
22 + ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0, we can write

c > 0 ⇒ ϕ
(k)
11 + ϕ

(k)
22 − 1 > 0

⇒ 1− 2η
(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k) +

1 + ρ̃(k)

2
− 1 > 0

⇒ α(k) <
µ
(
1 + ρ̃(k)

)
4η

(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

in which we have used the value of ϕ(k)11 itself, but the lower bound of ϕ(k)22 .

Step 4: Putting all the constraints together. Reviewing all the constraints on α(k) from the
beginning of this appendix, we can collect all of the constraints together and simplify them as

α(k) < min

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ

2η
(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

µ
(
1 + ρ̃(k)

)
4η

(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ η
(k)
minΓ

(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)}

= min

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ
(
1 + ρ̃(k)

)
4η

(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ η
(k)
minΓ

(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)},
(26)

while satisfying

max {−1, 0} = 0 < Γ
(k)
1 < min

1,
1

1 +
2β2η

(k)
min

µ2

 =
1

1 +
2β2η

(k)
min

µ2

,

Γ
(k)
2 > 1, 0 ≤ η(k)min ≤

1

α(k)
.

(27)
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Note that one of the terms in Eq. 26 was trivially removed since 1+ρ̃(k)

2 < 1. Consequently, we
obtain

α(k) < min
Γ
(k)
1

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

, min
Γ
(k)
2 ,η

(k)
min

{
µ
(
1 + ρ̃(k)

)
4η

(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ η
(k)
minΓ

(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)}},
(28)

First, we focus on minimizing the inner expression in Eq. 28 using Γ
(k)
2 by defining c

(k)
1 =√

η
(k)
minΓ

(k)
1 (1−ρ̃(k))

2

6(1+ρ̃(k))
(
ζ2+2η

(k)
minΓ

(k)
1

β2

µ

) and c(k)2 =
4η

(k)
minΓ

(k)
1

(
1+Γ

(k)
1

)
β2

µ(1+ρ̃(k))
. We can see that one of the above

expressions is increasing with respect to Γ
(k)
2 , and the other one is decreasing. Thus, we have

c
(k)
1

√
Γ
(k)
2 − 1 ≤ 1

c
(k)
2

(
Γ
(k)
2 −1

) ; 1 < Γ
(k)
2 ≤ Γ⋆

2
(k)

1

c
(k)
2

(
Γ
(k)
2 −1

) ≤ c(k)1

√
Γ
(k)
2 − 1; Γ

(k)
2 ≥ Γ⋆

2
(k).

in which Γ
(k)
2 > 1 is due to Eq. 27. Hence, we find the optimal value for it, i.e., Γ⋆(k)

2 , as√
Γ⋆
2
(k) − 1

3

=
1

c
(k)
1 c

(k)
2

⇒ Γ⋆
2
(k) =

1(
c
(k)
1 c

(k)
2

)2/3 + 1

⇒ Γ⋆
2
(k) =


√√√√√6

(
1 + ρ̃(k)

) (
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)
η
(k)
minΓ

(k)
1

(
1− ρ̃(k)

)2 µ
(
1 + ρ̃(k)

)
4η

(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)
β2


2/3

+ 1

=
1 + ρ̃(k)

2η
(k)
minΓ

(k)
1 β

3
(
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)
β

1/3 µ(
1− ρ̃(k)

) (
1 + Γ

(k)
1

)
2/3

+ 1.

We choose Γ
(k)
2 = Γ

⋆(k)
2 (see the explanation given in related step of Appendix F.3) to get

min
Γ
(k)
2

 µ
(
1 + ρ̃(k)

)
4η

(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ η
(k)
minΓ

(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)


≥
µ
(
1 + ρ̃(k)

) (
c
(k)
1 c

(k)
2

)2/3
4η

(k)
minΓ

(k)
1

(
1 + Γ

(k)
1

)
β2

=

 (c
(k)
1 )

2

c
(k)
2

1/3

=

 µ

6
(
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)(
1 + Γ

(k)
1

)
1/3(

1− ρ̃(k)

2β

)2/3

.

Note that in the process of minimizing Eq. 28 over Γ(k)
2 , two out of the three dependencies on η(k)min,

and two out of four dependencies on Γ
(k)
1 were removed. Hence, we get

α(k) < min

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,

 µ

6
(
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)(
1 + Γ

(k)
1

)
1/3(

1− ρ̃(k)

2β

)2/3
}
.
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Finally, we make a remark that we do not minimize over η(k)min here, as we take it as a given deter-
ministic value based on the choice of d(k)i = 1− η(k)i α(k).

Step 5: Obtaining ρ(Φ(k)). We established ρ(Φ(k)) < 1 in the previous steps. The last step is to
determine what ρ(Φ(k)) is. We have

ρ
(
Φ(k)

)
=
−b+

√
b2 − 4ac

2a
=
ϕ
(k)
11 + ϕ

(k)
22 +

√(
ϕ
(k)
11 + ϕ

(k)
22

)2
− 4

(
ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21

)
2

=
ϕ
(k)
11 + ϕ

(k)
22 +

√(
ϕ
(k)
11 − ϕ

(k)
22

)2
+ 4ϕ

(k)
12 ϕ

(k)
21

2

=
1− 2η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k) + 1+ρ̃(k)

2 + 3 1+ρ̃(k)

1−ρ̃(k)

(
α(k)

)2 (
ζ2 + 2β2

)
2

+
1

2

[(
1− 2η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k) − 1 + ρ̃(k)

2

− 3
1 + ρ̃(k)

1− ρ̃(k)
(
α(k)

)2 (
ζ2 + 2β2

))2

+ 4

(
1 + Γ

(k)
1

)
β2

mµ
α(k)3

1 + ρ̃(k)

1− ρ̃(k)
m
(
α(k)

)2(
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)]1/2

=
3 + ρ̃(k)

4
− η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k) +

3

2

1 + ρ̃(k)

1− ρ̃(k)
(
α(k)

)2 (
ζ2 + 2β2

)
+
1

2

[(
1− ρ̃(k)

2
− 2η

(k)
minΓ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

− 3
1 + ρ̃(k)

1− ρ̃(k)
(
α(k)

)2 (
ζ2 + 2β2

))2

+ 12

(
1 + Γ

(k)
1

)
β2

µ

1 + ρ̃(k)

1− ρ̃(k)
(
α(k)

)3(
ζ2 + 2η

(k)
minΓ

(k)
1

β2

µ

)]1/2

=
3 + ρ̃(k)

4
−A(k)α(k) +B(k)

(
α(k)

)2
+

1

2

√(
1− ρ̃(k)

2
− 2

(
A(k)α(k) +B(k)

(
α(k)

)2))2

+ C(k)
(
α(k)

)3
.

J.2 PROOF OF LEMMA I.4

(a) Since α(k) = α(0)√
1+ k

γ

, we have

k∑
q=r

α(q) =

k∑
q=r

α(0)√
1 + q

γ

≥
∫ k

r

α(0) dx√
1 + x

γ

≥ 2α(0)

(√
1 +

k

γ
−
√

1 +
r

γ

)
.

(b) Based on the equation ρ(Φ(k)) = 1− h(α(k)) given in Proposition I.1, h(α(k)) was given as

h(α(k)) =
1− ρ̃
4

+Aα(k) −B
(
α(k)

)2
− 1

2

√(
1− ρ̃
2
− 2

(
Aα(k) +B

(
α(k)

)2))2

+ C
(
α(k)

)3
.
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Further note that since we established 0 ≤ ρ
(
Φ(k)

)
< 1 in Proposition I.1, it would mean 0 <

h(α(k)) ≤ 1. Using triangle inequality, we have

h(α(k)) ≥ 1− ρ̃
4

+Aα(k) −B
(
α(k)

)2
−
(
1− ρ̃
4
−
(
Aα(k) +B

(
α(k)

)2))
−
√
C

2

(
α(k)

)3/2
≥ 2Aα(k).

(c)

k−1∑
r=1

(α(r−1))
2∑k

q=r h(α
(q))
≤

k∑
r=1

(α(r−1))
2∑k

q=r 2A
(k)α(q)

=
1

2A(k)

k∑
r=1

(
α(0)√
1+ r−1

γ

)2

∑k
q=r α

(q)

≤ 1

2A(k)

k∑
r=1

(α(0))
2

1+ r−1
γ

2α(0)
(√

1 + k
γ −

√
1 + r

γ

)
=

α(0)

4A(k)

k−1∑
r=1

1(
1 + r−1

γ

)(√
1 + k

γ −
√

1 + r
γ

)
≤ α(0)

4A(k)

k−1∑
r=1

1 + 1
γ(

1 + r
γ

)(√
1 + k

γ −
√
1 + r

γ

)
≤ α(0)

4A(k)

 1√
1 + k

γ −
√
1 + 1

γ

+

∫ k−1

1

(
1 + 1

γ

)
dx(

1 + x
γ

)(√
1 + k

γ −
√
1 + x

γ

)
 .

Focusing only on the integral and defining u(x) =
√
1 + x

γ , we have

∫ k−1

1

(
1 + 1

γ

)
dx(

1 + x
γ

)(√
1 + k

γ −
√

1 + x
γ

) =

∫ k−1

1

2γ
(
1 + 1

γ

)
du(x)

u(x) (u(k)− u(x))

=

∫ k−1

1

2 (γ + 1)

u(k)

(
1

u(x)
+

1

u(k)− u(x)

)
du(x)

=
2 (γ + 1)

u(k)

(
ln
u(k − 1)

u(1)
+ ln

u(k)− u(1)
u(k)− u(k − 1)

)

=
2 (γ + 1)

u(k)
ln

u(k − 1)u(k)

u(k)− u(k − 1)
=

2 (γ + 1)

u(k)

lnu(k) + ln
1

u(k)
u(k−1) − 1



=
2 (γ + 1)√

1 + k
γ

ln

√
1 +

k

γ
+ ln

1√
1 + 1

γ+k−1 − 1

 .

Putting everything back together concludes the proof.
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J.3 PROOF OF THEOREM I.5

First, using the fact that Φ(k)∥ · ∥ ≤ ρ(Φ(k))∥ · ∥ for each iteration k ≥ 0, we can rewrite Eq. 8 to
get EΞ(k)

[∥∥θ̄(k+1) − θ⋆
∥∥2]

EΞ(k)

[∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥2]
 ≤ ( k∏

q=0

ρ
(
Φ(q)

))[ ∥∥θ̄(0) − θ⋆∥∥2∥∥Θ(0) − 1mθ̄
(0)
∥∥2
]

+

k∑
r=1

(
k∏

q=r

ρ
(
Φ(q)

))(
α(r−1)

)2  2(1−d(0)
max)

µα(0)

(
1 + µα(0)

)
δ2 + σ2

m

m
(
3 1+ρ̃
1−ρ̃δ

2 + σ2
) +Ψ(k),

(29)
where the Ψ(k) matrix was written using Eq. 24.

Next, in order to obtain Eq. 22 when k →∞, we need to simplify each of the three terms in Eq. 29.
The easiest one to show is the last term, i.e., Ψ(k). Based on Eq. 24, both of its entries ψ(k)

1 and ψ(k)
2

have a factor (α(k))
2

multiplied by a value that can be upper-bounded by a constant. Thus, we have

Ψ(k) ≤
(
α(0)

)2
1 + k

γ

 2(1+µα(0))(1−d(0)
max)

µα(0) δ2 + σ2

m

m
(
3 1+ρ̃
1−ρ̃δ

2 + σ2
)  .

Regarding the first and the second term, i.e.,
∏k

q=0 ρ
(
Φ(q)

)
and

∑k
r=1

(∏k
q=r ρ

(
Φ(q)

)) (
α(r−1)

)2
,

respectively, we have
k∏

q=0

ρ
(
Φ(q)

)
=

k∏
q=0

(
1− h(α(q))

)
≤ 1∑k

q=0 h(α
(q))

,

k∑
r=1

(
k∏

q=r

ρ
(
Φ(q)

))(
α(r−1)

)2
=

k∑
r=1

(
k∏

q=r

(
1− h(α(q))

))(
α(r−1)

)2
≤

k∑
r=1

(
α(r−1)

)2∑k
q=r h(α

(q))
,

in both of which Lemma I.3 was used, since 0 ≤ h(α(k)) < 1. Next, we employ Lemma I.4 on the
above expressions. The proof easily follows. Note that ln 1√

1+ 1
γ+k−1−1

≤ O(ln k).

K DIMINISHING LEARNING RATE POLICY FOR NON-CONVEX MODELS

In this appendix, we do the convergence analysis of our methodology under a diminishing learning
rate policy, i.e., when α(k+1) < α(k) for all k ≥ 0. We will show that convergence to a stationary
point with zero optimality error is possible if the frequency of SGDs, i.e., d(k)i , is increasing over
time.

First, we rewrite the coefficients ϕ(k)ij and ψ(k)
i with 1 ≤ i, j ≤ 2, using the fact that the SGD

probability is chosen as d(k)i = 1− η(k)i α(k).

Corollary K.1 (Average model performance and consensus error simplifications) (Corollary
to Lemmas G.3 and G.4) Let Assumptions 4.2, 4.3 and 4.4 hold. If the SGD probabilities are chosen
as d(k)i = 1 − η

(k)
i α(k) with 0 ≤ η

(k)
i ≤ 1

α(k) and η(k)min = mini∈M η
(k)
i , then the quantities in

Lemma G.3 simplify to

ϕ
(k)
11 = α(k)[ 12 − (ζ2η

(k)
min + β(1 + 2ζ2η

(k)
min))α

(k)], ϕ(k)12 = β2

2mα
(k)(1 + 2βα(k)) and

ψ
(k)
1 = [η

(k)
min(1 + 2βα(k))δ2 + βσ2

2m ](α(k))
2
.

Similarly, the quantities in Lemma G.4 also simplify to

ϕ
(k)
21 = 16 1+ρ̃(k)

1−ρ̃(k)mζ
2(α(k))

2
, ϕ(k)22 = 1+ρ̃(k)

2 + 8 1+ρ̃(k)

1−ρ̃(k) β
2(α(k))

2
and

ψ
(k)
2 = m(16 1+ρ̃(k)

1−ρ̃(k) δ
2 + σ2)(α(k))

2
.
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Next, using the simplified results derived in Corollary K.1 we further simplify the results of Propo-
sition G.6 to arrive at the following Proposition.

Proposition K.2 (Stationary point for non-convex models with a diminishing learning rate)
(See Appendix L.1 for the proof.) Let Assumptions 4.2 and 4.3 hold. If the SGD probabilities are
chosen as d(k)i = 1− η(k)i α(k) and a non-increasing learning rate is used, i.e., α(k+1) ≤ α(k), then
the constraints on the learning rate given in Proposition G.6 are simplified to

α(k) < min

{
Γ
(k)
3

2β
,

1

Γ
(k)
1

1− ρ̃(k)

4β
√

1 + ρ̃(k)
,

1

Γ
(k)
2

1
2

ζ2η
(k)
min + β

(
1 + 2ζ2η

(k)
min

) ,
√(

1− 1

(Γ
(k)
1 )

2

)(
1− 1

Γ
(k)
2

)
4
√
2Γ

(k)
4

√
1 + Γ

(k)
3

1

ζβ

1− ρ̃(k)√
1 + ρ̃(k)

}
,

where η(k)min = mini∈M η
(k)
i . Consequently, for each iteration k ≥ 0, we get the following bound on

the expected average model performance:

EΞ(k) [F (θ̄(k+1))] ≤ F (θ̄(0)) −
∑k

r=0 α
(r)w

(r)
1 EΞ(r−1) [∥∇F (θ̄(r))∥2] +

α(0)w
(0)
2 ∥Θ(0) − 1mθ̄

(0)∥2 +
∑k−1

r=0 α
(r)w

(r)
2 ψ

(r)
2 +

∑k
r=0 ψ

(r)
1 ,

in which w(k)
1 = 1

2 (1−
1

Γ
(k)
2

)(1− 1

(Γ
(k)
4 )2

), w(k)
2 =

β2(1+Γ
(k)
3 )

m(1−ρ̃(k))(1− 1

(Γ
(k)
1 )2

)
, and the values of ψ(k)

1 and

ψ
(k)
2 were given in Corollary K.1.

Note that the conditions laid out for the learning rate in Proposition K.2 have to be satisfied for all
iterations k ≥ 0. As one last step, we outline the sufficient conditions under which we can derive a
single constraint on the initial value of the learning rate.

Corollary K.3 (Constraint on diminishing learning rate initialization for non-convex models)
(Corollary to Proposition K.2) If the learning rate α(k) is non-increasing, i.e., α(k+1) ≤ α(k), the
SGD probabilities are determined as d(k)i = 1− ηiα(k) with 0 ≤ ηi ≤ 1

α(0) and ηmin = mini∈M ηi,

for all k ≥ 0, and we have constant aggregations probabilities b(k)ij = bij , then the constraints in
Proposition K.2 simplify to

α(0) < min

{
Γ3

2β ,
1
Γ1

1−ρ̃
4β

√
1+ρ̃

, 1
Γ2

1
2

ζ2ηmin+β(1+2ζ2ηmin)
,

√(
1− 1

Γ2
1

)(
1− 1

Γ2

)
4
√
2Γ4

√
1+Γ3

1
ζβ

1−ρ̃√
1+ρ̃

}
,

This also results in time-invariant scalars A = A(k), B = B(k) and C = C(k), where these
quantities were defined in Proposition K.2.

With Corollary K.3, we have most of the ingredients required to prove the main Theorem. We will
just need two extra upper bounds on summations involving the learning rate, as presented in the next
Lemma.

Lemma K.4 (Bounds for powers of learning rate sums) (See Appendix L.2 for the proof.) Let a
diminishing learning rate α(k) = α(0)/

√
1 + k/γ be used, which satisfies the properties in Eq. 21.

Under the setup of Proposition K.2 for the SGD probabilities, i.e., d(k)i , if the aggregation proba-
bilities are constant, i.e., b(k)ij = bij for all i ∈ M and (i, j) ∈ E(k), then the following bounds
hold

(a)
∑k

q=r

(
α(q)

)2 ≤ (α(0)
)2

(1 + γ ln (1 + k/γ)),

(b)
∑k

q=r

(
α(q)

)3 ≤ (α(0)
)3

(1 + 2γ).
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Theorem K.5 (Non-convex convergence result with a diminishing learning rate) (See Ap-
pendix L.3 for the proof.) Let Assumptions 4.2, 4.3 and 4.4 hold. If a diminishing learning rate
policy α(k) = α(0)/

√
1 + k/γ with γ > 0 satisfying the conditions outlined in Corollary K.3 is

employed, and the SGD probabilities are set to d(k)i = 1 − ((1 − d(0)i )/α(0))α(k) for all i ∈ M,
while aggregation probabilities are set to constant values, i.e., b(k)ij = bij for all i ∈ M and
(i, j) ∈ E(k), then we have

1∑K
r=0 α

(r)

K∑
r=0

α(r)EΞ(r−1)

[∥∥∥∇F (θ̄(r))∥∥∥2] ≤ 1

2w1

[
F (θ̄(0))− F ⋆

α(0)
O
(

1√
K

)
+ w2

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2O( 1√

K

)
+ w2w3

(
α(0)

)2
(1 + 2γ)O

(
1√
K

)
+ w4α

(0)

(
1 + γO

(
lnK√
K

))]
.

(30)

in which F ⋆ = minθ∈Rn F (θ), and the values of scalars wi with 1 ≤ i ≤ 5 are given in Ap-
pendix H.7. On letting K →∞, we obtain

lim
K→∞

1∑K
r=0 α

(r)

K∑
r=0

α(r)EΞ(r−1)

[
∥∇F (θ̄(r))∥

2
]
= 0. (31)

Eq. 30 in Theorem K.5 illustrates the convergence rate that can be achieved when a diminishing
learning rate policy is used to train non-convex models. We recover the well-known O(lnK/

√
K)

rate for DGD methods here. Furthermore, letting K → ∞ in Eq. 30, we observe in Eq. 31 that the
stationarity gap becomes zero.

L PROOFS FOR DIMINISHING LEARNING RATE POLICY FOR NON-CONVEX
MODELS

L.1 PROOF OF PROPOSITION K.2

Considering the fact that the learning rate is diminishing, we can simplify the learning rate con-
straints in Proposition G.6. Using the updated coefficients derived in Corollary K.1, we rewrite the
constraints from Appendix G.5 and Step 3 in Appendix H.6 to get

(i)

ϕ
(k)
22 < 1 ⇒ α(k) <

1− ρ̃(k)

4
√
1 + ρ̃(k)β

⇒ α(k) ≤ 1

Γ
(k)
1

1− ρ̃(k)

4
√

1 + ρ̃(k)β
, Γ

(k)
1 > 1

⇒ 1− ϕ(k)22 ≥
1− ρ̃(k)

2

(
1− 1

(Γ
(k)
1 )

2

)
.

(ii)

ϕ
(k)
11 > 0 ⇒ 0 < α(k) <

1
2

ζ2η
(k)
min + β(1 + 2ζ2η

(k)
min)

⇒ α(k) ≤ 1

Γ
(k)
2

1
2

ζ2η
(k)
min + β(1 + 2ζ2η

(k)
min)

⇒ Γ
(k)
2 > 1

⇒ ϕ
(k)
11 ≥

1

2

(
1− 1

Γ
(k)
2

)
α(k).
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(iii)

α(k) ≤ Γ
(k)
3

2β
, Γ

(k)
3 > 0

⇒ ϕ
(k)
12 ≤

β2

2m
(1 + Γ

(k)
3 )α(k), ψ

(k)
1 ≤

[
η
(k)
min(1 + Γ

(k)
3 )δ2 +

βσ2

2m

](
α(k)

)2
.

(iv)

ϕ
(k)
11 −

ϕ
(k)
21 ϕ

(k)
12

1− ϕ(k)22

> 0

⇒ 1

2

(
1− 1

Γ
(k)
2

)
α(k) − 16(1 + ρ̃(k))ζ2(α(k))

3
β2(1 + Γ

(k)
3 )

(1− ρ̃(k))2
(
1− 1

(Γ
(k)
1 )

2

) > 0

⇒ α(k) <

√(
1− 1

Γ
(k)
2

)(
1− 1

(Γ
(k)
1 )

2

)
(1− ρ̃(k))

4
√
2
√
1 + ρ̃(k)ζβ

√
1 + Γ

(k)
3

⇒ α(k) ≤ 1

Γ
(k)
4

√(
1− 1

Γ
(k)
2

)(
1− 1

(Γ
(k)
1 )

2

)
(1− ρ̃(k))

4
√
2
√

1 + ρ̃(k)ζβ

√
1 + Γ

(k)
3

, Γ
(k)
4 > 1

⇒ ϕ
(k)
11 −

ϕ
(k)
21 ϕ

(k)
12

1− ϕ(k)22

≥ 1

2

(
1− 1

Γ
(k)
2

)(
1− 1

(Γ
(k)
4 )

2

)
α(k).

Putting together all of these constraints concludes the proof.

L.2 PROOF OF LEMMA K.4

(a)
k∑

r=0

(
α(r)

)2
≤
(
α(0)

)2
+

∫ k

0

(
α(x)

)2
dx =

(
α(0)

)2
+

∫ k

0

(
α(0)

)2
1 + x/γ

dx

=
(
α(0)

)2
+
(
α(0)

)2
γ ln (1 + k/γ) =

(
α(0)

)2
(1 + γ ln (1 + k/γ)) .

(b)
k∑

r=0

(
α(r)

)3
≤
(
α(0)

)3
+

∫ k

0

(
α(x)

)3
dx =

(
α(0)

)3
+

∫ k

0

(
α(0)

)3
(1 + x/γ)

3/2
dx

=
(
α(0)

)3
+ 2
(
α(0)

)3
γ

(
1− 1√

1 + k/γ

)
≤
(
α(0)

)3
(1 + 2γ) .

L.3 PROOF OF THEOREM K.5

For each iteration k ≥ 0, (i) the learning rate being diminishing, (ii) the fact that d(k)i = 1 − ((1 −
d
(0)
i )/α(0))α(k) and (iii) b(k)ij = bij which results in ρ̃(k) = ρ̃, results in Proposition K.2 implying

EΞ(k)

[
F (θ̄(k+1))

]
≤ F (θ̄(0))− w1

k∑
r=0

α(r)EΞ(r−1)

[∥∥∥∇F (θ̄(r))∥∥∥2]+ α(0)w2

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2

+ w2

k−1∑
r=0

α(r)ψ
(r)
2 +

k∑
r=0

ψ
(r)
1 .
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Substituting the values of ψ(k)
1 and ψ(k)

2 from Corollary K.1, then rearranging the inequality and
dividing it by

∑k
r=0 α

(r), we get

1∑k
r=0 α

(r)

k∑
r=0

α(r)EΞ(r−1)

[∥∥∥∇F (θ̄(r))∥∥∥2] ≤ 1

w1

∑k
r=0 α

(r)

[
F (θ̄(0))− F ⋆

+ α(0)w2

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2 + w2w3

k−1∑
r=0

(
α(r)

)3
+ w4

k∑
r=0

(
α(r)

)2]
.

in which w1 = 1
2 (1 −

1
Γ2

)(1 − 1
(Γ4)2

), w2 = β2(1+Γ3)

m(1−ρ̃)(1− 1
(Γ1)2

)
, w3 = m(16 1+ρ̃

1−ρ̃δ
2 + σ2) and

w4 =
1−d(0)

max

α(0) (1 + Γ3)δ
2 + βσ2

2m .

Finally, using Lemmas I.4-(a) and K.4, we conclude that

1∑k
r=0 α

(r)

k∑
r=0

α(r)EΞ(r−1)

[∥∥∥∇F (θ̄(r))∥∥∥2] ≤ 1

2w1α(0)
(√

1 + k/γ − 1
)[F (θ̄(0))− F ⋆

+ α(0)w2

∥∥∥Θ(0) − 1mθ̄
(0)
∥∥∥2 + w2w3

(
α(0)

)3
(1 + 2γ) + w4

(
α(0)

)2
(1 + γ ln (1 + k/γ))

]
.

M NON-CONVEX ANALYSIS UNDER THE PL CONDITION

In this appendix, we make the convergence analysis of our developed framework when non-convex
ML models satisfying the PL condition are employed. Our approach will be quite similar to Sec. 4,
with the key difference that we will use the milder Polyak-Lojasiewicz (PL) condition (Xin et al.,
2021) (Assumption M.1) instead of strong convexity (Assumption 4.1-(b)) to make this generaliza-
tion.

Assumption M.1 (PL inequality) The global loss function F meets the PL condition ∥∇F (θ)∥2 ≥
2µ (F (θ)− F ⋆) with some µ > 0, where F ⋆ is the optimal value of F .

Under this assumption, we further know that F satisfies the quadratic growth condition (QG-
condition) ∥θ − θ⋆∥2 ≤ (2/µ)(F (θ)− F ⋆), where θ⋆ is the nearest point to the optimal solution of
the minimization problem under consideration. This will also be useful in our analysis.

We will still characterize the expected consensus error as EΞ(k) [∥Θ(k+1) − 1mθ̄
(k+1)∥2], but con-

trary to what was done in Sec. 4, the distance of the average model from the optimal solution will
be captured via EΞ(k) [F (θ̄(k+1)) − F ⋆]. As an alternative to Lemma 4.7, we first provide an upper
bound on the expected error in the average model at each iteration for the non-convex case, i.e.,
EΞ(k) [F (θ̄(k+1))− F ⋆], in Lemma M.3. Then, as an alternative to Lemma 4.8, we also calculate an
upper bound on the consensus error for non-convex models, i.e., EΞ(k) [∥Θ(k+1) − 1mθ̄

(k+1)∥2], in
Corollary M.4.

We first need a preliminary Lemma which will be useful in the proof of Lemma M.3.

Lemma M.2 (Gradient bounds under the PL condition) (See Appendix N.1 for the proof.) Let
Assumptions 4.1-(a), 4.1-(c) and M.1 hold. The following upper bounds related to the gradient of
the global loss function can be obtained in terms of the optimality error EΞ(k−1) [F (θ̄(k))− F ⋆] and
the consensus error EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2].

(a) EΞ(k) [∥∇F (θ̄(k))−∇v(k)∥
2

] ≤ 4β2

µ (1 − d
(k)
min)EΞ(k−1) [F (θ̄(k))− F ⋆] +

β2d(k)
max

m EΞ(k−1) [∥Θ(k) − 1mθ̄
(k)∥2] + 2(1− d(k)min)δ

2.

(b) −EΞ(k) [⟨∇F (θ̄(k)),∇v(k)⟩] ≤ −µ(1 − 2β2

µ2 (1 − d
(k)
min))EΞ(k−1) [F (θ̄(k))− F ⋆] +

β2d(k)
max

2m EΞ(k−1) [∥Θ(k) − 1mθ̄
(k)∥2] + (1− d(k)min)δ

2.
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(c) 1
2EΞ(k) [∥∇v(k)∥

2

] ≤ 2β2

µ (3 − 2d
(k)
min)EΞ(k−1) [F (θ̄(k))− F ⋆] +

β2d(k)
max

m EΞ(k−1) [∥Θ(k) − 1mθ̄
(k)∥2] + 2(1− d(k)min)δ

2.

Now can continue with the key lemma and corollary.

Lemma M.3 (Average error for non-convex models satisfying the PL condition) (See Ap-
pendix N.2 for the proof.) Let Assumptions 4.1-(a), 4.1-(c), 4.3 and M.1 hold. For each iteration
k ≥ 0, we have the following bound on the expected average model error

EΞ(k) [F (θ̄(k+1))− F ⋆] ≤ ϕ(k)11 EΞ(k−1) [F (θ̄(k))− F ⋆] + ϕ
(k)
12 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2] + ψ
(k)
1 ,

where ϕ(k)11 = 1 + 2β3

µ (3 − 2d
(k)
min)(α

(k))
2 − µα(k)(1 − 2β2

µ2 (1 − d(k)min)), ϕ
(k)
12 =

β2d(k)
max

2m α(k)(1 +

2βα(k)), and
ψ
(k)
1 = α(k)(1− d(k)min)δ

2 + β
2 (α

(k))
2
[4(1− d(k)min)δ

2 + dmaxσ
2

m ].

Similar to our discussion around Lemma 4.7, note again how the coefficients simplify when d(k)min =
1, which is essentially equivalent to the conventional DFL setup where clients perform SGDs at
every iteration, i.e., v(k)i = 1 for all i ∈M.

We next bound the consensus error at each iteration, i.e., EΞ(k) [∥Θ(k+1) − 1mθ̄
(k+1)∥2], which

measures the deviation of ML model parameters of clients from the average non-convex ML model.

Corollary M.4 (Consensus error for non-convex models satisfying the PL condition)
(Corollary to Lemma 4.8) Let Assumptions 4.1-(a), 4.1-(c), 4.3, 4.4 and M.1 hold. For each
iteration k ≥ 0, we have the following bound on the expected consensus error

EΞ(k) [∥Θ(k+1) − 1mθ̄
(k+1)∥2] ≤ ϕ(k)21 EΞ(k−1) [F (θ̄(k))−F ⋆]+ϕ

(k)
22 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2]+
ψ
(k)
2 ,

where ϕ(k)21 = 6
µ

1+ρ̃(k)

1−ρ̃(k)md
(k)
max(α(k))

2
(ζ2 + 2β2(1− d(k)min)),

ϕ
(k)
22 = 1+ρ̃(k)

2 + 3 1+ρ̃(k)

1−ρ̃(k) d
(k)
max(α(k))

2
(ζ2 + 2β2), and ψ(k)

2 = m(α(k))
2
d
(k)
max(3

1+ρ̃(k)

1−ρ̃(k) δ
2 + σ2).

Proof. Lemma 4.8 states that EΞ(k) [∥Θ(k+1) − 1mθ̄
(k+1)∥2] ≤ ϕ

(k)
21 EΞ(k−1) [∥θ̄(k) − θ⋆∥2] +

ϕ
(k)
22 EΞ(k−1) [∥Θ(k) − 1mθ̄

(k)∥2] + ψ
(k)
2 . Now, using the PL condition (Assumption M.1), we know

that ∥θ̄(k) − θ⋆∥2 ≤ 2
µ (F (θ̄

(k))− F ⋆). Hence, we get ϕ(k)21 ← 2
µϕ

(k)
21 .

Corollary M.4 is almost the same as Lemma 4.8, with the only difference being in ϕ(k)21 . Note again
that ϕ(k)21 = 0 in the conventional DFL setup, where (a) ζ = 0 and (b) d(k)min = 1, resulting d(k)i = 1
for all i ∈M.

Let us denote the error vector at iteration k with ν(k)nc , defined as

ν(k)nc =

[
EΞ(k−1)

[
F
(
θ̄(k)

)
− F ⋆

]
EΞ(k−1)

[∥∥Θ(k) − 1mθ̄
(k)
∥∥2]
]
. (32)

With this definition, putting the results of Lemmas 4.7 and 4.8 together form the following linear
system of inequalities:

Putting the results of Lemma M.3 and Corollary M.4 together form the following linear system of
inequalities:

ν(k+1)
nc ≤ Φ(k)ν(k)nc +Ψ(k), (33)

with Φ(k) = [ϕ
(k)
ij ]

1≤i,j≤2
and Ψ(k) = [ψ

(k)
1 ψ

(k)
2 ]T . Recursively expanding the inequalities in

Eq. 33 gives us an explicit relationship between the expected model error and consensus error at
each iteration and their initial values:

ν(k+1)
nc ≤ Φ(k:0)ν(k)nc +

k∑
r=1

Φ(k:r)Ψ(r−1) +Ψ(k), (34)
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where we have defined Φ(k:s) = Φ(k)Φ(k−1) · · ·Φ(s) for k > s, and Φ(k:k) = Φ(k).

In order for us formalize the convergence bound of DSpodFL, we have to show that the spectral
radius of matrix Φ(k) given in Eq. 33 is less than one, i.e., ρ(Φ(k)) < 1. This part was outlined in
Proposition M.5 in the main text.

Proposition M.5 (Spectral radius under the PL condition) (See Appendix N.3 for the proof.) Let
Assumptions 4.1-(a), 4.1-(c), 4.3, 4.4 and M.1 hold. If the learning rate satisfies the following
condition for all k ≥ 0

α(k) < min

{
1− 2β2

µ2

(
1− d(k)min

)
10
(
3− 2d

(k)
min

) µ2

β3
,

5
(
1 + ρ̃(k)

)
8µ
(
1− 2β2

µ2

(
1− d(k)min

)) ,
1

6

√
2d

(k)
max

µ

β2

1− ρ̃(k)√
1 + ρ̃(k)

√√√√√1− 2β2

µ2

(
1− d(k)min

)
1 + 2β2

ζ2

(
1− d(k)min

)},
then we have ρ(Φ(k)) < 1 for all k ≥ 0, in which ρ(·) denotes the spectral radius of a
given matrix, and Φ(k) is the linear system of inequalities of governing the dynamics of optimal-
ity and consensus errors. ρ(Φ(k)) follows as ρ(Φ(k)) = 3+ρ̃(k)

4 − A(k)α(k) + B(k)(α(k))
2
+

1
2

√
( 1−ρ̃(k)

2 − 2(A(k)α(k) +B(k)(α(k))
2
))

2
+ C(k)(α(k))

3, where A(k) = 2µ
5 (1− 2β2

µ2 (1− d(k)min)),

B(k) = 3
2
1+ρ̃(k)

1−ρ̃(k) (ζ
2 + 2β2) and C(k) = 72β2

5µ
1+ρ̃(k)

1−ρ̃(k) (d
(k)
max)

2
(ζ2 + 2β2(1− d(k)min)).

Proposition M.5 enables us to guarantee convergence of DSpodFL when non-convex models are
used. The argument follows along the lines of the things we discussed in Sec. 4.4. Proposition M.5
implies that limk→∞ Φ(k:0) = 0 in Eq. 34. However, this is only the asymptotic behavior of Φ(k:0),
and the exact convergence rate will depend on the choice of the learning rate α(k). Furthermore,
since the first expression in Eq. 34 asymptotically approaches zero, Proposition M.5 also implies
that the non-negative optimality gap is determined by the terms

∑k
r=1 Φ

(k:r)Ψ(r−1) +Ψ(k), and it
can be either zero or a positive value depending on the choice of α(k).

Proposition M.5 outlines the necessary constraint on the learning rate α(k) at each iteration k ≥ 0.
We next provide a corollary to Proposition M.5, in which we show that under certain conditions, the
above-mentioned constraint needs to be satisfied only on the initial value of the learning rate, i.e,
α(0).

Corollary M.6 (Constraint on learning rate initialization under the PL condition) (Corollary
to Proposition M.5) If the learning rate α(k) is non-increasing and the probabilities of SGDs d(k)i

and aggregations b(k)ij are constant, i.e., α(k+1) ≤ α(k), d(k)i = di, b
(k)
ij = bij , for all k ≥ 0, and we

have then the constraints in Proposition M.5 simplify to

α(0) < min

{
1− 2β2

µ2 (1− dmin)

10 (3− 2dmin)

µ2

β3
,

5

8µ
(
1− 2β2

µ2 (1− dmin)
) ,

1

6
√
2dmax

ζ

β2

1− ρ̃√
1 + ρ̃

√
µ2 − 2β2 (1− dmin)

ζ2 + 2β2 (1− dmin)

}
.

Theorem M.7 (Non-convex result under the PL condition) (Proof is similar to the proof of The-
orem 4.11 given in Appendix F.4.) Let Assumptions 4.1-(a), 4.1-(c) and 4.3, 4.4 and M.1 hold. Let
a constant learning rate α(k) = α with α > 0 satisfying the conditions of Proposition M.5 be
employed, and the probabilities of SGDs and aggregations be time-invariant, i.e., d(k)i = di and
b
(k)
ij = bij , for all k ≥ 0. Then, the convergence rate is geometric, specifically ρ(Φ)K+1, with an

optimality gap
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lim
K→∞

ν(k+1)
nc ≤ 1

A

(1− dmin)δ
2 + αβ

2

(
4 (1− dmin) δ

2 + σ2

m

)
mα

(
3 1+ρ̃
1−ρ̃δ

2 + σ2
)  , (35)

for Φ given in Lemma M.3 and Corollary M.4, and ν(k)nc defined in Eq. 32. Proposition M.5 ensures
ρ(Φ) < 1.

We see that the optimality gap in Eq. 35 can be decreased by choosing a smaller learning rate α and
a larger minimum SGD probability dmin, similar to the argument made for Theorem 4.11.

N PROOFS FOR NON-CONVEX ANALYSIS UNDER THE PL CONDITION

N.1 PROOF OF LEMMA M.2

(a) For this deviation term, we have

∥∥∥∇F (θ̄(k))−∇v(k)∥∥∥2 =

∥∥∥∥∥ 1

m

m∑
i=1

(
∇Fi(θ̄

(k))−∇Fi(θ
(k)
i )v

(k)
i

)∥∥∥∥∥
2

≤ 1

m

m∑
i=1

∥∥∥∇Fi(θ̄
(k))−∇Fi(θ

(k)
i )v

(k)
i

∥∥∥2
=

1

m

m∑
i=1

v
(k)
i =1

∥∥∥∇Fi(θ̄
(k))−∇Fi(θ

(k)
i )
∥∥∥2 + 1

m

m∑
i=1

v
(k)
i =0

∥∥∥∇Fi(θ̄
(k))
∥∥∥2

≤ 1

m

m∑
i=1

v
(k)
i =1

β2
i

∥∥∥θ̄(k) − θ(k)i

∥∥∥2 + 2

m

m∑
i=1

v
(k)
i =0

(
β2
i

∥∥∥θ̄(k) − θ⋆∥∥∥2 + δ2i

)

=
1

m

m∑
i=1

β2
i

∥∥∥θ̄(k) − θ(k)i

∥∥∥2v(k)i +
2

m

m∑
i=1

(
2β2

i

µ

(
F (θ̄(k))− F ⋆

)
+ δ2i

)(
1− v(k)i

)
,

where in the last two lines, (i) Smoothness (Assumption 4.1-(a)) and Lemma D.1-(b) and (ii) PL con-
dition (Assumption M.1) was used, respectively. Taking the expected value of the above inequality
concludes the proof.

(b) Second, for this inner product term, we have

−
〈
∇F (θ̄(k)),∇v(k)

〉
= −

〈
∇F (θ̄(k)),∇v(k) −∇F (θ̄(k)) +∇F (θ̄(k))

〉
= −

∥∥∥∇F (θ̄(k))∥∥∥2 + 〈∇F (θ̄(k)),∇F (θ̄(k))−∇v(k)〉
≤ −1

2

∥∥∥∇F (θ̄(k))∥∥∥2 + 1

2

∥∥∥∇F (θ̄(k))−∇v(k)∥∥∥2.
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Now, taking the expected value of this inequality and using part (a) of this lemma alongside the PL
condition (Assumption M.1), we get

−EΞ(k)

[〈
∇F (θ̄(k)),∇v(k)

〉]
≤ −µEΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+
β2d

(k)
max

2m
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+
2β2

µ

(
1− d(k)min

)
EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+
(
1− d(k)min

)
δ2

≤ −µ
(
1− 2β2

µ2

(
1− d(k)min

))
EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+
β2d

(k)
max

2m
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+
(
1− d(k)min

)
δ2.

(c) Finally, for the norm term, we have

1

2

∥∥∥∇v(k)∥∥∥2 =
1

2

∥∥∥∇v(k) −∇F (θ̄(k)) +∇F (θ̄(k))∥∥∥2 ≤ ∥∥∥∇F (θ̄(k))∥∥∥2 + ∥∥∥∇F (θ̄(k))−∇v(k)∥∥∥2.
Taking the expected value of this inequality and utilizing part (a) of this lemma alongside the PL
condition (Assumption M.1)

1

2
EΞ(k)

[∥∥∥∇v(k)∥∥∥2] ≤ 2β2

µ
EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+
β2d

(k)
max

m
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+
4β2

µ

(
1− d(k)min

)
EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+ 2

(
1− d(k)min

)
δ2

≤ 2β2

µ

(
3− 2d

(k)
min

)
EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+
β2d

(k)
max

m
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 2
(
1− d(k)min

)
δ2.

N.2 PROOF OF LEMMA M.3

Using Lemma D.1-(b) on θ̄(k), the average model parameters at iteration k, and then employing
Assumption M.1, we get∥∥∥∇F (θ̄(k))∥∥∥2 ≤ β2

∥∥∥θ̄(k) − θ⋆∥∥∥2 ≤ 2β2

µ

(
F (θ̄(k))− F ⋆

)
.

Now, we can write

F (θ̄(k+1))− F ⋆ ≤ F (θ̄(k)) +
〈
∇F (θ̄(k)), θ̄(k+1) − θ̄(k)

〉
+
β

2

∥∥∥θ̄(k) − θ̄(k+1)
∥∥∥2 − F ⋆

= F (θ̄(k)) +
〈
∇F (θ̄(k)),−α(k)gv(k)

〉
+
β

2

∥∥∥α(k)gv(k)
∥∥∥2 − F ⋆

= F (θ̄(k))− F ⋆ − α(k)
〈
∇F (θ̄(k)),∇v(k)

〉
− α(k)

〈
∇F (θ̄(k)), ϵv(k)

〉
+
β

2

(
α(k)

)2∥∥∥∇v(k)∥∥∥2 + β

2

(
α(k)

)2∥∥∥ϵv(k)∥∥∥2
+ β

(
α(k)

)2 〈
∇v(k), ϵv(k)

〉
,

in which the relationship in each of the three lines follow from (i) Smoothness (Assumption 4.1-(a)),
(ii) Eq. 5, (iii) g(k)

i = ∇(k)
i + ϵ

(k)
i for all i ∈ M. Next, we take the expected value of the above

inequality and use Assumption 4.3, and Lemmas D.2 and M.2 to get
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EΞ(k)

[
F (θ̄(k+1))− F ⋆

]
≤ EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
− µα(k)

(
1− 2β2

µ2

(
1− d(k)min

))
EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+
β2d

(k)
max

2m
α(k)EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]+ α(k)

(
1− d(k)min

)
δ2

+
2β3

µ

(
3− 2d

(k)
min

)(
α(k)

)2
EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+
β3d

(k)
max

m

(
α(k)

)2
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]+ 2β

(
1− d(k)min

)
δ2
(
α(k)

)2
+
β

2

(
α(k)

)2
d(k)max

σ2

m

≤
[
1 +

2β3

µ

(
3− 2d

(k)
min

)(
α(k)

)2
− µα(k)

(
1− 2β2

µ2

(
1− d(k)min

))]
EΞ(k−1)

[
F (θ̄(k))− F ⋆

]
+
β2d

(k)
max

2m
α(k)

(
1 + 2βα(k)

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]+ α(k)

(
1− d(k)min

)
δ2

+
β

2

(
α(k)

)2 [
4
(
1− d(k)min

)
δ2 +

dmaxσ
2

m

]
.

N.3 PROOF OF PROPOSITION M.5

We will do an analysis similar to the proof of Propositions 4.10 and I.1, which were given in Ap-
pendices F.3 and J.1, respectively.

Step 1: Setting up the proof. We skip repeating the explanations for this step, as they are exactly
the same as step 1 in Appendix F.3.

Step 2: Simplifying the conditions. Recall that we have to ensure (i) 0 < ϕ
(k)
11 ≤ 1 and (ii)

0 < ϕ
(k)
22 ≤ 1. For ϕ(k)11 as defined in Lemma M.3, we have

ϕ
(k)
11 ≤ 1 ⇒ α(k) ≤

µ2
(
1− 2β2

µ2

(
1− d(k)min

))
2β3

(
3− 2d

(k)
min

) ⇒ d
(k)
min > 1− µ2

2β2
.

We can see that we got a requirement for d(k)min here, and it should be lower bounded. Therefore,
contrary to when strongly convex models were being used that d(k)i could have had any value for all
i ∈ M and k ≥ 0, when using a non-convex model this is no longer the case, and d(k)i have to be
larger than a threshold 1 − µ2

2β2 . To put this into better context, note that 1 − µ2

2β2 >
1
2 , and thus at

the best possible scenario we can allow d
(k)
i > 1

2 .

We then put the following constraint on α(k) to get a more compact form for ϕ(k)11 , defined in Lemma
M.3. We have

Constraint 1: α(k) ≤ Γ
(k)
1

µ2
(
1− 2β2

µ2

(
1− d(k)min

))
2β3

(
3− 2d

(k)
min

) , 0 < Γ
(k)
1 ≤ 1,

Note that although the above constraint has to be satisfied for α(k), we also obtain an upper bound
for the condition for theoretical analysis purposes. We have

α(k) ≤ Γ
(k)
1

µ2

2β3
≤ Γ

(k)
1

2β
.
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Hence, we can update ϕ(k)11 and ϕ(k)12 as defined in Lemma M.3 as the follows

ϕ
(k)
11 ≤ 1−

(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k), ϕ

(k)
12 ≤

β2d
(k)
max

2m

(
1 + Γ

(k)
1

)
α(k).

Note that other entries of matrices Φ(k) and Ψ(k) remain the same as initially given in Lemma M.3
and Corollary M.4. Moreover, since matrix Φ(k) and vector Ψ(k) in Eq. 33 were used as upper
bounds, therefore we can always replace their values with new upper bounds for them. Conse-
quently, with this new value for ϕ(k)11 , we continue as

ϕ
(k)
11 > 0 ⇒ α(k) <

1

µ
(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

)) .
Finally, we check the next condition 0 < ϕ

(k)
22 ≤ 1. Noting that we have 3+ρ̃(k)

4 < 1, we can enforce

ϕ
(k)
22 ≤ 1 by setting ϕ(k)22 ≤

3+ρ̃(k)

4 . We have

1 + ρ̃(k)

2
≤ ϕ(k)22 ≤

3 + ρ̃(k)

4
⇒ 0 ≤ α(k) ≤ 1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

.

Step 3: Determining the constraints. Having made sure that (i) 0 < ϕ
(k)
11 ≤ 1 and (ii) 0 < ϕ

(k)
22 ≤ 1

in the previous step, we can continue to solve Eq. 15. For the left-hand side of the inequality, we
have (

1− ϕ(k)11

)(
1− ϕ(k)22

)
=

[(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k)

](
1− ϕ(k)22

)
≥
[(

1− Γ
(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k)

]
1− ρ̃(k)

4

Now, putting this back to Eq. 15, we get[(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k)

]
1− ρ̃(k)

4
> ϕ

(k)
12 ϕ

(k)
21

⇒

[
β2d

(k)
max

2m

(
1 + Γ

(k)
1

)
α(k)

] [
6

µ

1 + ρ̃(k)

1− ρ̃(k)
md(k)max

(
α(k)

)2 (
ζ2 + 2β2

(
1− d(k)min

))]
<

[(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k)

]
1− ρ̃(k)

4

⇒ α(k) <
1

2
√
3d

(k)
max

√√√√1− Γ
(k)
1

1 + Γ
(k)
1

1− ρ̃(k)√
1 + ρ̃(k)

µ

βζ

√√√√√1− 2β2

µ2

(
1− d(k)min

)
1 + 2β2

ζ2

(
1− d(k)min

) .
Finally, we solve for Eq. 16, i.e., c = ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0. Noting that by solving Eq. 15 we

made sure that 1− ϕ(k)11 − ϕ
(k)
22 + ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0, we can write

c > 0 ⇒ ϕ
(k)
11 + ϕ

(k)
22 − 1 > 0

⇒ 1−
(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k) +

1 + ρ̃(k)

2
− 1 > 0

⇒ α(k) <
1 + ρ̃(k)

2µ
(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

)) ,
in which we have used the value of ϕ(k)11 itself, but the lower bound of ϕ(k)22 .
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Step 4: Putting all the constraints together. Reviewing all the constraints on α(k) from the
beginning of this appendix, we can collect all of the constraints together and simplify them as

α(k) < min

{
Γ
(k)
1

µ2
(
1− 2β2

µ2

(
1− d(k)min

))
2β3

(
3− 2d

(k)
min

) ,
1

µ
(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

)) ,
1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,

1

2
√
3d

(k)
max

√√√√1− Γ
(k)
1

1 + Γ
(k)
1

1− ρ̃(k)√
1 + ρ̃(k)

µ

βζ

√√√√√1− 2β2

µ2

(
1− d(k)min

)
1 + 2β2

ζ2

(
1− d(k)min

) ,
1 + ρ̃(k)

2µ
(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))}

= min

{
Γ
(k)
1

µ2
(
1− 2β2

µ2

(
1− d(k)min

))
2β3

(
3− 2d

(k)
min

) ,
1 + ρ̃(k)

2µ
(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

)) ,
1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,

1

2
√
3d

(k)
max

√√√√1− Γ
(k)
1

1 + Γ
(k)
1

1− ρ̃(k)√
1 + ρ̃(k)

µ

βζ

√√√√√1− 2β2

µ2

(
1− d(k)min

)
1 + 2β2

ζ2

(
1− d(k)min

)}

(36)

while satisfying

0 < Γ
(k)
1 ≤ 1.

Note that one of the terms in Eq. 36 was trivially removed since 1+ρ̃(k)

2 < 1. Furthermore, for the
last two terms, we have

(a)
1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

>
1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
6β
,

(b)
1

2
√
3d

(k)
max

√√√√1− Γ
(k)
1

1 + Γ
(k)
1

1− ρ̃(k)√
1 + ρ̃(k)

µ

βζ

√√√√√1− 2β2

µ2

(
1− d(k)min

)
1 + 2β2

ζ2

(
1− d(k)min

)
<

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1

ζ

√
d
(k)
max

√√√√1− Γ
(k)
1

1 + Γ
(k)
1

.

We found a lower bound for (a), and an upper bound for (b). Since the constraint on α(k) includes
the minimum of these two terms, showing that the upper bound for (b) is less than the lower bound
for (a), will constitute the fact that the (b) ≤ (a). We have

1− Γ
(k)
1

1 + Γ
(k)
1

≤ ζ2d
(k)
max

6β2
⇒ Γ

(k)
1 ≥

1− ζ2d(k)
max

6β2

1 + ζ2d
(k)
max

6β2

= Γ⋆
1.

Therefore, choosing Γ
(k)
1 = Γ⋆

1 will give us tightest possible bounds. However, in order to get
simpler expressions for the first two terms in Eq. 36 which would give us better intuition, we choose
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the infimum of Γ(k)
1 for them, i.e., 1/5, to obtain

α(k) < min

{
µ2
(
1− 2β2

µ2

(
1− d(k)min

))
10β3

(
3− 2d

(k)
min

) ,
5

4

1 + ρ̃(k)

2µ
(
1− 2β2

µ2

(
1− d(k)min

)) ,
1

6

√
2d

(k)
max

µ

β2

1− ρ̃(k)√
1 + ρ̃(k)

√√√√√1− 2β2

µ2

(
1− d(k)min

)
1 + 2β2

ζ2

(
1− d(k)min

)}

Step 5: Obtaining ρ(Φ(k)). We established ρ(Φ(k)) < 1 in the previous steps. The last step is to
determine what ρ(Φ(k)) is. We have

ρ
(
Φ(k)

)
=
−b+

√
b2 − 4ac

2a
=
ϕ
(k)
11 + ϕ

(k)
22 +

√(
ϕ
(k)
11 + ϕ

(k)
22

)2
− 4

(
ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21

)
2

=
ϕ
(k)
11 + ϕ

(k)
22 +

√(
ϕ
(k)
11 − ϕ

(k)
22

)2
+ 4ϕ

(k)
12 ϕ

(k)
21

2

=
1−

(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k) + 1+ρ̃(k)

2 + 3 1+ρ̃(k)

1−ρ̃(k)

(
α(k)

)2 (
ζ2 + 2β2

)
2

+
1

2

[(
1−

(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k) − 1 + ρ̃(k)

2

− 3
1 + ρ̃(k)

1− ρ̃(k)
(
α(k)

)2 (
ζ2 + 2β2

))2

+ 4
β2d

(k)
max

2m

(
1 + Γ

(k)
1

)
α(k) 6

µ

1 + ρ̃(k)

1− ρ̃(k)
md(k)max

(
α(k)

)2 (
ζ2 + 2β2

(
1− d(k)min

))]1/2

=
3 + ρ̃(k)

4
− 1

2

(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min

))
µα(k) +

3

2

1 + ρ̃(k)

1− ρ̃(k)
(
α(k)

)2 (
ζ2 + 2β2

)
+
1

2

[(
1− ρ̃(k)

2
−
(
1− Γ

(k)
1

)(
1− 2β2

µ2

(
1− d(k)min
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µα(k)

− 3
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1− ρ̃(k)
(
α(k)

)2 (
ζ2 + 2β2

))2

+
12β2

µ

(
1 + Γ

(k)
1

) 1 + ρ̃(k)

1− ρ̃(k)
(
d(k)max

)2(
α(k)

)3 (
ζ2 + 2β2

(
1− d(k)min

))]1/2

=
3 + ρ̃(k)

4
−A(k)α(k) +B(k)

(
α(k)

)2
+

1

2

√(
1− ρ̃(k)

2
− 2

(
A(k)α(k) +B(k)

(
α(k)

)2))2

+ C(k)
(
α(k)

)3
.

O FURTHER EXPERIMENTS

O.1 ACCURACY VS. DELAY WITH UNIFORM DISTRIBUTION

In the experiments we provided in Fig. 2, the SGD and aggregation probabilities were sampled from
a Beta distribution, e.g., d(k)i , b

(k)
ij ∼ Beta(α, β). In this section, we investigate sampling these

probabilities from the uniform distribution, denoted as U(0, 1].
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Figure 5: Accuracy vs. latency plots obtained in different setups where the SGD and aggregation
probabilities are sampled from the uniform distribution U(0, 1]. DSpodFL achieves the target accu-
racy much faster with less delay, emphasizing the benefit of sporadicity in DFL for SGD iterations
and model aggregations simultaneously.
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(b) Varying the radius of the ran-
dom geometric network graph.
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Figure 6: Effects of system parameters on FMNIST, where client and link capabilities di and bij
are sampled from a Beta distribution Beta(0.5, 0.5). The overall results confirm the advantage of
DSpodFL in various settings.

We have provided experimental results for only the non-IID cases in Fig. 5, under exactly the same
setup outlined in Sec. 5. It can be observed that the findings discussed in Sec. 5 also hold here.
In other words, our DSpodFL method outperforms the baselines in terms of accuracy per overall
delay.

We will explain the intuitive reason of why DSpodFL is outperforming other baselines in both
Figs. 2 and 5. Let G = (M, E) be given a network graph, and assume there exits two paths between
nodes i and j. Let one of these paths have a communication cost k times more than the other path,
where k ≫ 1. In our DSpodFL method, the path with lower cost will be utilized roughly k times
more than the other path, thus resulting in lower communication overhead while still preserving
information flow between nodes i and j. Meanwhile, other methods, especially DGD and DFedAvg
methods, do not take this into account.

O.2 EFFECTS OF SYSTEM PARAMETERS WITH BETA DISTRIBUTION

In the experiments we provided in Fig. 3, specifically Figs. 3a, 3b and 3c, the SGD and aggregation
probabilities were sampled from a uniform distribution, e.g., d(k)i , b

(k)
ij ∼ U(0, 1]. In this section,

we investigate sampling these probabilities from the Beta distribution, denoted as Beta(0.5, 0.5).
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Figure 7: Effects of system parameters on CIFAR10. In all figures, client and link capabilities di and
bij are sampled from a Beta distribution Beta(0.8, 0.8). The overall results confirm the advantage
of DSpodFL in various settings.
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Figure 8: Accuracy vs. latency plots when SGD and aggregation probabilities are time-varying.
DSpodFL achieves the target accuracy much faster with less delay, emphasizing the benefit of
sporadicity in DFL for SGD iterations and model aggregations simultaneously.

We have provided experimental results for only the non-IID cases in Fig. 6, under exactly the same
setup outlined in 5. It can be observed that the findings discussed in Sec. 5 also hold here. In other
words, the performance gain of our DSpodFLmethod compared to the baselines is robust regardless
of the variation in system parameters, i.e, (i) data heterogeneity level, (ii) level of graph connectivity
level and (iii) number of clients in the system.

O.3 EFFECTS OF SYSTEM PARAMETERS ON CIFAR10

In both Sections 5 and O.2, we analyzed the effects of system parameters on the FMNIST dataset.
Here, we will provide similar experimental results for the CIFAR10 dataset. Note that while an
SVM model was trained on the FMNIST dataset, for CIFAR10 we use the VGG11 model. We
sample the SGD and aggregation probabilities from the Beta distribution, i.e., d(k)i ∼ Beta(0.8, 0.8)

and b(k)ij ∼ Beta(0.8, 0.8), respectively.

The results in Fig. 7 are carried out in the non-IID regime as well, under the setup described in
Sec. 5. Again, the findings discussed in Sec. 5 and O.2 can be validated here, showing that DSpodFL
outperforms the state-of-the-art in various settings. This demonstrates that our results hold regardless
of the dataset in question and the ML model being used, adding yet another dimension of robustness
to our methodology.

O.4 DYNAMIC SGD AND AGGREGATION PROBABILITIES

In the experiments done in Sec. 5, the SGD and aggregations probabilities where set to constant
values for all clients, i.e., d(k)i = di and b(k)ij = bij , for all k ≥ 0. In this section, we conduct exper-
iments by letting these probabilities to be time-varying. This setup corresponds to situations where
the computation/communication resources of clients vary over time. To be specific, we change prob-
abilities d(k)i and b(k)ij every 1000 iterations of model training. However, note that we still randomly
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Algorithm IID Non-IID
Iter. 1000 Iter. 2500 Iter. 3500 Iter. 5000 Iter. 10000 Iter. 15000

DGD 0.80 0.81 0.82 0.72 0.73 0.75
DFedAvg 0.79 0.81 0.81 0.39 0.41 0.41

RG 0.80 0.82 0.82 0.60 0.65 0.64
Sporadic SGDs 0.77 0.80 0.80 0.70 0.74 0.74

DSpodFL 0.77 0.80 0.80 0.63 0.67 0.70

Table 2: Accuracy vs. iteration results for experiments in Fig. 2 done for the FMNIST dataset.

Algorithm IID Non-IID
Iter. 1500 Iter. 3000 Iter. 4500 Iter. 3000 Iter. 6000 Iter. 9500

DGD 0.73 0.73 0.74 0.77 0.80 0.81
DFedAvg 0.73 0.74 0.75 0.56 0.70 0.76

RG 0.72 0.74 0.74 0.73 0.80 0.80
Sporadic SGDs 0.74 0.74 0.75 0.71 0.76 0.79

DSpodFL 0.72 0.73 0.73 0.65 0.72 0.76

Table 3: Accuracy vs. iteration results for experiments in Fig. 2 done for the CIFAR10 dataset.

sample them from the same distribution, i.e., Beta(0.5, 0.5) for FMNIST and Beta(0.8, 0.8) for
CIFAR10.

It can be observed that the findings discussed in Sec. 5 also hold here. In other words, our DSpodFL
method outperforms the baselines in terms of accuracy per overall delay regardless of the time-
variation in SGD and aggregation probabilities.

O.5 ACCURACY VS. ITERATION

We have provided the accuracy vs. iteration results for the experiments done in Fig. 2. In Tables 2
and 3, we give the results for several sampled iterations.

We observe that given enough time, i.e., after sufficient epochs, the achievable accuracy for
DSpodFL matches the achievable accuracy for the other baselines. The accuracy for DSpodFL
being slightly lower than DGD at some iterations is due to the fact that gradient and consensus op-
erations occur at every iteration for all devices in DGD, without taking resource availability into
account. In DSpodFL, on the other hand, at each iteration some devices do not compute gradients
and/or some of the links are not utilized for communications. Thus, it is not unexpected for the
accuracy of DSpodFL to be lower than DGD across the iterations, since it is actually designed to
achieve faster convergence in terms of the actual physical delay incurred as seen in Fig. 2. Regard-
less, the final achievable accuracy is the same for all baselines, as they all fit within the DSpodFL
framework, and we theoretically prove in the paper that all of these algorithms will converge to the
same global ML model.

O.6 DECOMPOSING ACCURACY VS. DELAY RESULTS

In Tables 4 and 5, we have decomposed the results from Fig. 2 into their processing and transmis-
sion delay components. We have reported how long it takes for different algorithms to achieve a
specific accuracy in terms of 1) processing delay, 2) transmission delay and 3) overall delay. We
can see that to reach a certain accuracy, DSpodFL strikes the best balance between transmission
and processing delays, leading to a better overall delay. Specifically, it obtains a similar processing
delay to the Sporadic SGDs algorithm and transmission delay to RG, which are the best baselines in
those respective categories. Note that the reported delays below are in units of time.

O.7 RESULTS WITH A TRUNCATED GAUSSIAN DISTRIBUTION

In Fig. 9 we have further explored the performance of DSpodFL under a truncated Gaussian distri-
bution N̂[0,1](µ, σ

2) to generate probabilities di and bij , which for small values of variance σ2 gives
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Algorithm IID, with accuracy = 0.75 Non-IID, with accuracy = 0.40
Process. Transm. Overall Process. Transm. Overall

DGD 4605.26 1915.95 6521.22 2470.37 1027.76 3498.14
DFedAvg 5947.19 88.82 6036.01 221418.66 3070.60 224489.26

RG 6130.19 331.40 6461.58 9180.18 451.15 9631.18
Sporadic SGDs 591.84 7614.84 8206.68 127.38 1270.18 1397.56

DSpodFL 593.69 893.32 1487.00 257.68 430.96 688.65

Table 4: Decomposition of accuracy vs. delay results in Fig. 2 for the FMNIST dataset into their
processing an transmission delay components.

Algorithm IID, with accuracy = 0.65 Non-IID, with accuracy = 0.30
Process. Transm. Overall Process. Transm. Overall

DGD 3462.06 2571.64 6033.70 2250.12 8807.37 11057.49
DFedAvg 2784.81 482.01 3266.83 9627.35 2065.34 11692.70

RG 3462.06 614.68 4076.74 2250.12 161.15 2411.27
Sporadic SGDs 440.73 2888.25 3328.98 160.13 13081.37 13241.50

DSpodFL 628.97 990.24 1619.21 327.27 647.24 974.51

Table 5: Decomposition of accuracy vs. delay results in Fig. 2 for the CIFAR10 dataset into their
processing an transmission delay components.

the setting of relatively homogeneous and static clients. Fig. 9a demonstrates accuracy vs. latency
when using this distribution with a mean and standard deviation of 0.5, and Fig. 9b shows the result
for different σ2. We see a wider margin of improvement with a relatively larger σ2. This confirms
that DSpodFL is most advantageous relative to the baselines under extreme levels of heterogeneity
and dynamics, similar to how the improvements under the inverted bell-shaped beta distribution are
more pronounced than those under the uniform distribution as seen in Fig. 3d. We have also ex-
perimented with fixing the variance of the truncated Gaussian distribution and varying its mean in
Fig. 9c.

O.8 FURTHER GENERALIZATION AND SCALABILITY VERIFICATION

In Fig. 10, we present further experimental results under different settings than the setup given in
the main text. In Fig. 10a, we analyze the effect of graph connectivity on the overall performance
when a total of m = 50 clients are present in the network. We observe that the improvement
gap between DSpodFL and other baselines becomes even more significant compared to Fig. 3b.
In Figs. 10b and 10c, we isolate the effect of varying bij and di separately, in contrast to Fig. 3d
where both the SGD probabilities di (i.e., computation capabilities) and aggregation probabilities
bij (i.e., communication capabilities) were varied together. The results are show that DSpodFL is
more robust to variations in bij or di compared to the baselines, respectively. In Figs. 10b (and
10c), while the heterogeneity in computational (communication) resources is preserved across the
whole experiment, moving from α = β = 0.5 to α = β = 1 brings us from a heterogeneous
regime to a homogeneous one in terms of communication (computational) resources. Thus, the
Sporadic SGDs (Sporadic Aggregations) component of DSpodFL, i.e., green curve (red curve),
becomes key to improvement over other baselines when communication (computational) resources
are homogeneous.

O.9 EFFECT OF LEARNING RATE

We vary the learning rate in the range α ∈ {0.0001, 0.001, 0.01, 0.1} in our experiments. In Fig. 11,
we present the test accuracy results for our DSpodFL algorithm and other baselines, when they reach
a total delay of τ = 500 for FMNIST and τ = 5000 for CIFAR10. For FMNIST, we observe that
even the best performance of the baselines is lower than our DSpodFL algorithm with learning rates
α = 0.01 or α = 0.1. For CIFAR10, we make a similar observation where the best performance of
the baselines is lower than DSpodFL with learning rates α = 0.001 and α = 0.01.
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Figure 9: We investigate the FMNIST, Non-IID setup from Figs. 2 and 3 using a Truncated Gaussian
Distribution to sample SGD and aggregation probabilities di and bij , respectively. We denote this
distribution as Ñ[0,1](µ, σ

2), which only has values in the interval [0, 1].
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Figure 10: Further investigation of DSpodFL’s generalization to various setups.

P REMARKS

P.1 EFFECT OF COMMUNICATION SPORADICITY ON ANALYTICAL BOUNDS

We will make a remark about this in two parts:

1. Effect of bij on the spectral radius ρ̃(k): As mentioned in Sec. 4.4’s “Discussion on conver-
gence”, the probabilities bij affect the bounds through the spectral radius of the expected mixing
matrix, i.e., ρ̃(k) = ρ(R̃(k) − (1/m)1m1T

m) from Definition 4.5. We can refer to the elements of
matrix R̃(k) in Appendix E.4-(b), given as

R̃(k) ≜
(
R̄(k)

)2
+


[
−2b(k)ij

(
1− b(k)ij

)
r2ij

]
1≤i,j≤m

i ̸= j[∑m
l=1 2b

(k)
il

(
1− b(k)il

)
r2il

]
1≤i≤m

i = j

where R̄(k) is defined in Lemma D.4-(a) as

R̄(k) =


[
b
(k)
ij rij

]
1≤i,j≤m

i ̸= j[
1−

∑m
j=1 b

(k)
ij rij

]
1≤i,j≤m

i = j

As we can see, the values of b(k)ij directly affect R̃(k), and hence the communication sporadicity

parameters b(k)ij affect all the convergence bounds and learning rate constraints through ρ̃(k), the
spectral radius of R̃(k) − (1/m)1m1T

m.

From the definition of R̃(k), we can draw some intuitions on the relation between b(k)ij and ρ̃(k): If

b
(k)
ij → 0 for all (i, j) ∈ E , we will have a diagonal R̃(k), meaning that ρ̃(k) = 1. On the other
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Figure 11: Effect of the learning rate α.

extreme, if b(k)ij → 1 for all (i, j) ∈ E , we will have the main diagonal of R̃(k) = R2, meaning
that ρ̃(k) = ρ2r . This would be the lowest achievable spectral radius ρ̃(k), as it is utilizing all the
communication links as frequently as possible. All other cases of b(k)ij result in ρ̃(k) between these
two extremes, with higher connectivity decreasing ρ̃(k).

2. Effect of ρ̃(k) on the analytical bounds: Based on the relationship between b(k)ij and ρ̃(k), we can

establish the connection between b(k)ij and the convergence bound. We can see in Propositions 4.10

and G.6 (convex and non-convex cases) that if ρ̃ = 1 (one possible scenario being that all b(k)ij =

0, as explained in the previous paragraph) the constraint on the learning rate becomes α(k) < 0.
Intuitively, no learning rate can make DSpodFL converge if none of the communication links are
ever utilized. On the other hand, having all b(k)ij = 1 results in the minimum achievable ρ̃, allowing
a larger learning rate to be chosen based on the constraints given in Propositions 4.10 and G.6. In
other words, as the connectivity of the graph induced by b(k)ij increases, larger step sizes can be
tolerated while still guaranteeing convergence in Theorems 4.11 and 4.12.

P.2 PERFORMANCE SUPERIORITY OF DSPODFL

Our performance improvements over the baselines come from sporadic operations of both local
SGDs and aggregations. In decentralized FL, resource availability is often heterogeneous and dy-
namic, as discussed in Sec. 1: there are (i) variations in computation capabilities at clients, causing
bottlenecks in assuming consistent participation in SGD computations, and (ii) variations in link
bandwidth, causing bottlenecks during model aggregation. Referring to Algorithm 1 in Appendix B,
DSpodFL overcomes these limitations as follows:

• Client i conducts an SGD in iteration k only if v(k)i = 1 (line 7), which has a probability
di proportional to its processing availability. Consider that multiple clients may possess
overlapping data distributions. In such scenarios, the system can benefit from more fre-
quent SGD updates from the clients with the highest resource availability, as they provide
information representative of multiple clients and finish iterations faster.

• Link (i, j) is used for model sharing in iteration k only if v(k)ij = 1 (line 12), which has a
probability bij proportional to its bandwidth availability. DSpodFL takes advantage of the
fact that model information can propagate through the system rapidly over the fastest links
in the graph. For example, if link (i, j) has low bandwidth, our method will make client i’s
relevant local update information reach client j more rapidly through a series of other high
bandwidth links.

Unlike DSpodFL, the baselines evaluated in Sec. 5 work under (a) fixed SGDs and/or (b) fixed
aggregations. DGD assumes local SGDs and aggregations at every iteration, RG employs constant
SGDs (but sporadic aggregations), Sporadic SGDs assumes constant aggregations, and DFedAvg is
DGD with decreased communication frequencies.
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P.3 COMPARISON METRICS FOR EXPERIMENTS

As outlined in Sec. 5, the average total delay τ (k)total at iteration k is defined as the sum of aver-
age processing delay τ (k)proc and average transmission delay τ (k)trans up to iteration k. At each iter-
ation, depending on whether a client i computed SGDs or not, i.e., v(k)i ∈ {0, 1}, there will be
a processing delay incurred to finish the computation proportional to 1/d

(k)
i . Similarly, depend-

ing on v̂(k)ij ∈ {0, 1}, some of the links (i, j) in the network graph will be utilized for commu-

nications, incurring a transmission delay proportional to 1/b
(k)
ij for that link. In order to obtain

comparable result regardless of the size, connectivity and the topology of the underlying graph,
we normalize (i.e., average) both processing and transmission delay to obtain τ (k)proc, τ (k)trans. For-
mally, these are defined as τ (k)trans = [

∑m
i=1 (1/|Ni|)

∑
j v̂

(k)
ij /bij ]/[

∑m
i=1 (1/|Ni|)

∑
j 1/bij ] and

τ
(k)
proc = [

∑m
i=1 v

(k)
i /di]/[

∑m
i=1 1/di]. Finally, we define τ (k)total = τ

(k)
trans+ τ

(k)
proc as the average total

delay as a metric to compare DSpodFL with the baselines.

Having explained the average total delay τ
(k)
total = τ

(k)
trans + τ

(k)
proc above, we can now see what

happens to different baselines under our proposed heterogeneity framework, and how di and bij
translate to the speed of a client and a link, respectively. In DGD, we have that computations and
communications occur at every iteration, i.e., v(k)i = v̂

(k)
ij = 1 for all i ∈ M, (i, j) ∈ E and k ≥ 0.

Thus, we will have that τ (k)trans = [
∑m

i=1 (1/|Ni|)
∑

j 1/bij ]/[
∑m

i=1 (1/|Ni|)
∑

j 1/bij ] = 1 and

τ
(k)
proc = [

∑m
i=1 1/di]/[

∑m
i=1 1/di] = 1, and thus each iteration of training will incur a total average

delay of τ (k)total = 2 for this baseline. For DFedAvg, we still have τ (k)proc = 1 as SGDs occur at
every iteration. But since aggregations occur every D iterations, i.e., clients conduct D consecutive
iterations of local SGD steps before communications, we will have τ (k)trans = 0 for D iterations and
then τ (k)trans = 1 for the next iteration. This deterministic cycle will then continue for DFedAvg.

In RG and the Sporadic SGDs baselines, we only have one of these operations occurring at every
iteration, i.e., computations and communications, respectively. This means that in RG, we have
v
(k)
i = 1 is deterministic but v̂(k)ij is stochastic, and for Sporadic SGDs, we have deterministic

v̂ij(k) = 1 but stochastic v(k)i . Thus, for RG we will have τ (k)total = τ
(k)
trans + 1 < 2 implied by

τ
(k)
proc = 1, and for Sporadic SGDs, we will have that τ (k)total = 1 + τ

(k)
proc < 2 implied by τ (k)trans = 1.

However, note that in DSpodFL, both computation and communication operations are carried out
in a stochastic way, and thus each iteration of training requires less delay incurred on the whole
decentralized system to start the next round of training. Note however, that less computation and
communication might come at the cost of losing performance at each iteration, but our motivation in
DSpodFL was to prove that in fact if we evaluate these algorithms based on their total delay, it can
outperform existing baselines. The intuition is that due to the data distribution of clients available in
the network, their processing capabilities, the graph topology and the link bandwidth capabilities, it
is not necessary to over utilize all of these resources at every iteration for fast convergence. In fact, a
resource-aware approach like DSpodFL, takes a step at optimally utilizing the resources to achieve
the same final solutions in a shorter amount of time.

P.4 CONVERGENCE RATE COMPARISON WITH RELATED WORK

Convergence rate in Big O notation. First, we note that as outlined in Table 1 of Sec. 1, we pro-
vide convergence for last iterates of model parameters when dealing with strongly-convex models
in our paper, in contrast to the majority of existing literature which only provide convergence for
average iterates (Koloskova et al., 2020). Therefore when dealing with strongly-convex models, we
can compare our theoretical results only for the DGD baseline because the DGD-like algorithms
given in Mishchenko et al. (2022); Maranjyan et al. (2022) are among the few to show convergence
for the last iterates of model parameters as well. According to Theorems 3.6, 5.5, 5.7 and D.1
in Mishchenko et al. (2022) and Theorems 3.5, 4.5 and B.2 in Maranjyan et al. (2022), the conver-
gence rate of the algorithms ProxSkip, Decentralized Scaffnew, SplitSkip (Mishchenko et al., 2022),
GradSkip, GradSkip+ and VR-GradSkip+ (Maranjyan et al., 2022) are all geometric, i.e., O(ρK)
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with 0 < ρ < 1 (note that most of these algorithms are FL algorithms, and not decentralized FL
algorithms). This rate agrees with the rate we provide in Eq. 9 of Theorem 4.11.

When dealing with non-convex models, we can compare our rate with all the baselines, i.e., Nedic &
Ozdaglar (2009) for DGD, Koloskova et al. (2020) for RG and Sun et al. (2022) for DFedAvg. Since
DGD is a special case of RG with no sporadicity in aggregations, i.e., bij = 1 for all (i, j) ∈ E ,
we will compare our work with the more recent paper Koloskova et al. (2020). For DGD and RG,
Lemma 17 of Koloskova et al. (2020) shows the convergence upper bound before tuning the constant
learning rate α, which is

O
(
E[F (θ̄(0))]− F ⋆

α(K + 1)

)
+O(α) +O(α2).

For DFedAvg, Theorem 1 in Sun et al. (2022) with a zero momentum (θ = 0) obtains the bound

O
(
E[F (θ̄(0))]− F ⋆

α(K + 1)

)
+O(α) +O(α2) +O(α3).

We observe that by setting dmin = 1 in Theorem 4.12 of our paper, these convergence rates are
recovered. Recall that as discussed in Fig. 1 of our paper, all of these baseline algorithms fit within
the general framework of DSpodFL with di = 1 for all clients i ∈ M. That is why we can
substitute dmin = 1 in Theorem 4.12 to compare our analytical results with the ones provided in
Nedic & Ozdaglar (2009); Koloskova et al. (2020); Sun et al. (2022).

Comparison of convergence bound for non-convex models with Koloskova et al. (2020). Let us
examine the bound derived in the proof of Lemma 16 in Koloskova et al. (2020) before tuning the
learning rate, i.e.,

1

2(T + 1)

T∑
t=0

∥∇f(x̄(t))∥
2

2 ≤
Ef(x̄(0))− f⋆

(T + 1)η
+
Lσ̂2

n
η + 64

L2[2σ̂2 + 2( 6τp +M)ζ̂2]τ

p
η2.

Translating these parameters to the setup of our paper, we have

T → K, t→ r, f → F, x→ θ, η → α,L→ β, σ̂ → σ, n→ m, τ → 1, p→ 1− ρ̃,M → 0.

As a consequence, the bound in Koloskova et al. (2020) using the notation and setup of our paper
becomes

1

2(K + 1)

K∑
r=0

∥∇F (θ̄(r))∥
2
≤ EF (θ̄(0))− F ⋆

(K + 1)α
+
βσ2

m
α+ 128

β2[σ2 + 6
1−ρ̃δ

2]

1− ρ̃
α2.

Now, we compare this with the non-asymptotic bound we obtain for non-convex models in Theo-
rem 4.12, which is

w1

K + 1

K∑
r=0

∥∇F (θ̄(r))∥
2
≤F (θ̄

(0))− F ⋆

α(K + 1)
+

1 + Γ3

1− 1
Γ1

β2

m(1− ρ̃)
∥Θ(0) − 1 mθ̄(0)∥2

K + 1

+
1 + Γ3

1− 1
Γ1

β2(16 1+ρ̃
1−ρ̃δ

2 + σ2)

1− ρ̃
α2 + (1 + Γ3)(1− dmin)δ

2 +
βσ2

2m
α.

where we used the fact that dmax ≤ 1.

We can see how our bound compares with the one derived in Koloskova et al. (2020). The exact
value of w1 in our paper depends on the arbitrarily chosen scalars Γ0, ...,Γ4, but we have in general
that w1 ≤ 1

2 . For common terms that our analysis has with Koloskova et al. (2020), we see how
their coefficients are also very similar. For example, for the term proportional to α2, we observe that
both our bound and the one in Koloskova et al. (2020) are proportional to β2

(1−ρ̃) and (σ2 + q
1−ρ̃δ

2),
with slight differences in the value of q. Furthermore, for the term proportional to α, both our bound
and Koloskova et al. (2020) are proportional to βσ2

2m .

However, we can observe that our bound consists of two extra terms compared to Koloskova et al.

(2020). The first one, 1+Γ3

1− 1
Γ1

β2

m(1−ρ̃)
∥Θ(0)−1 mθ̄(0)∥2

K+1 , is capturing the effect of different model ini-

tializations for the clients. The second one, (1+Γ3)(1− dmin)δ
2 is capturing the effect of sporadic
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SGDs in our DSpodFL framework. We observe that if all clients conduct SGDs at every iteration,
i.e., d(k)i = 1 for all i ∈ M and k ≥ 0, this term becomes equal to zero, giving us the bound for
non-sporadic methods outlined in Koloskova et al. (2020). Therefore, as we have claimed in Sec. 4.5
of our paper, our convergence bounds recover well-known results in the literature in the degenerate
case of dmin = 1.
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