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A APPENDIX

A.1 PROOFS

Theorem A.1. Let the tuple (M, M̄,G) be a grounded abstract model and a function � : S ! Z ✓

Rdz . The model satisfies that Bt(· | o0, ..., ot�1) = B̄t(· | o0, ..., ot�1) if and only if � is dynamics
preserving.

Proof. Let ��1(z) = {s 2 S | �(s) = z}. We construct T̄ and G such that it satisfies that,

T̄ (z0|z, o) =

Z

s02��1(z0)
T (s0|z, o)ds0;

G(s0|z, o, z0) =
T (s0|z, o)1[�(s0) = z0]

T̄ (z0|z, o)

If the dynamics preserving property holds, we have that there exists a mapping � such that
T (s0|s, o) = T (s0|�(s), o). Hence, by defining that abstract state as s̄ = (z, o, z0), we can build the
grounded abstract model such that it follows that Bt = B̄t, by construction.

To prove the converse, we assume that Bt = B̄t.

Hence, by construction, we have that P (st, ..., s0|o0, z0, ..., ot�1, zt�1) =Q
t P (st|o0, z0, ..., ot�1, zt�1). Therefore, we have that

B̄t(st, ..., s0|o0, ..., ot�1) =

Z tY

i=0

P (si|o0, z0, ..., oi�1, zt�1)P (zi, ..., z0|o0, ..., oi�1)dz0...zt

=

Z tY

i=0

P (si|zi, oi�1)P (zi, ..., z0|o0, ..., oi�1)dz0...zt

=

Z tY

i=0

G(si|zi�1, oi�1, zi)P (zi, ..., z0|o0, ..., oi�1)dz0...zt

=
tY

i=0

Z
G(si|zi�1, oi�1, zi)P (zi, zi�1|o0, ..., oi�1)dzizi�1

=
tY

i=0

Z
G(si|zi�1, oi�1, zi)T̄ (zi|zi�1, oi�1)P (zi�1|o0, ..., oi�2)dzizi�1

=
tY

i=0

Z
T̃ (si|zi�1, oi�1)P (zi�1|o0, ..., oi�2)dzi�1

Bt(st, ..., s0|o0, ..., ot�1) = p0(s0)
tY

i=1

T (si|si�1, oi�1)

=
tY

i=1

T (si|si�1, oi�1)P (si�1|o0, ..., ot�2)

Hence, we must have that for all si�1 2 zi�1 and all i 2 [t] and t � 0

Z
T (si|si�1, oi�1)P (si�1|o0, ..., ot�2)dsi�1 =

Z
T̃ (si|zi�1, oi�1)P (zi�1|o0, ..., oi�2)dzi�1

That is,
⇢
P (s0) = p0(s0) =

R
G(s|z0)p0(z0)ds for t = 0

P (s1|o0) =
R
T (s1|s0, o0)p0(s0)ds0 =

R
T̃ (s0|z0, o0)p0(z0)dz0 for t = 1
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By definition, t = 0 holds. For t = 1, we have

P (s1|o0) =

Z
T (s1|s0, o0)p0(s0)ds0

=

Z
T (s1|s0, o0)G(s0|z0)p0(z0)dz0ds0

=

Z
T̃ (s1|z0, o0)p0(z0)dz0

which follows from the equation at t = 0. Hence, it must be true that for any s0 2 ��1(z0), for any
z0 with p0(z0) > 0.

T̃ (s1|z0, o0) =

Z
T (s1|s0, o0)G(s0|z0)ds0

We can see that for any s0 2 ��1(z0) such that T (s1|s0, o0) 6= T̃ (s1|z0, o0), the abstract model
would commit a non-zero error in its prediction. Hence, it must be that T (s1|s0, o0) = T̃ (s1|z0, o0)
for s0 2 ��1(z0).

Let the equations at time t = i� 1 and t = i� 2 hold, then

P (si|o0, ..., oi�1) =

Z
T (si|si�1, oi�1)pi�1(si�1|o0, ...oi�2)dsi�1

=

Z
T (si|si�1, oi�1)T̃ (si�1|zi�2, oi�2)pi�2(zi�2|o0, ..., oi�3)dsi�1dzi�1dzi�2

=

Z
T (si|si�1, oi�1)G(si�1|zi�2, oi�2, zi�1)T̄ (zi�1|zi�2, oi�2)pi�2(zi�2|o0, ..., oi�3)dsi�1dzi�1dzi�2

=

Z
T̃ (si|zi�1, oi�1)pi�1(zi�1|o0, ..., oi�2)dzi�1

Because pi�1(zi�1|o0, ..., oi�2) =
R
T̄ (zi�1|zi�2, oi�2)pi�2(zi�2|o0, ..., oi�3)dzi�2 hold by con-

struction of the abstract MDP, we need the following to hold.

T̃ (si|zi�1, oi�1) =

Z
T (si|si�1, oi�1)G(si�1|zi�2, oi�2, zi�1)dsi�1. (4)

Therefore, as in the base case, we need that T̃ (si|zi�1, oi�1) = T (si|si�1, oi�1) for all si�1 2

��1(zi�1) that have G(si�1|zi�2, oi�2, zi�1) > 0. Then, � must be dynamics preserving.

Corollary A.2. Let the tuple (M, M̄,G) be a grounded abstract model. Let the strong subgoal
property (Konidaris et al., 2018) for an option o be defined as, Pr(s0|s, o) = Pr(s0|o). The dynamics
preserving property holds with a finite abstract state space Z = [N ] for some N 2 N if and only if
the strong subgoal property holds.

Proof. If the strong subgoal property holds, we have that Pr(s0|s, o) = Pr(s0|o). Then, for any
function � : S ! Z , it holds that P (s0|�(s), o) = P (s0|s, o).

Therefore, it is only important to be able to know if a given option is executable in a given abstract
state. Therefore, we can construct the function IO(s) = [I0(s), ..., I|O|(s)] that returns a binary
vector that indicates which options are executable in s.

Define the equivalence relation s0 ⇠O s1 iff IO(s1) = IO(s2). We can define the abstract state
space as Z , S/ ⇠O, that is, the set of equivalent classes. Given that there at most 2|O|

2 N classes,
then the abstract MDP is finite.
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We assume that the dynamics preserving property holds and that the abstract state space Z is finite
to prove the converse. Then, there exists � : S ! Z such that P (s0|�(s), o) = P (s0|s, o) and
P (Io = 1|s) = P (Io = 1|�(s)).

We can construct a factored �(s) = [�D(s),�I(s)], such that, P (s0|�(s), o) = P (s0|�D(s), o) and
P (Io = 1|�(s)) = P (Io = 1|�I(s)).

If we define �I based on the function IO, as before, then �I maps to a set of at most 2|O| elements.
As Z = ZD ⇥ZI is finite, then ZD is also finite. Thus, we construct ZD = [M ] and for each option
o and equivalence class m 2 [M ] options from each option o such that Pr(s0|om) , Pr(s0|m, o).
Then, the strong subgoal property holds for every om.

Proposition A.3. Let � be a dynamics-preserving abstraction and s̄ = (ẑ, ô, z). For ✏ > 0, if
kGz(s)�Gs̄(s)k21  ✏, then there exists ✏T > 0 and ✏R > 0 such that kT (s0|s, o)�T̃ (s0|z, o)k21  ✏T
and kR(s, o)� R̃(z, o)k21  ✏R.

Proof. First, we prove that the bounded grounding error implies bounded transition distribu-
tion error. If � is a dynamics abstraction, then we can learn T̃ (z0|z, o) and we have that
T (s0|s, o) = T (s0|z, o) =

R
Gs̄(s)T̄ (z0|z, o)dz0 and its corresponding approximation T̃ (s0|z, o) =R

Gz0(s)T̄ (z0|z, o)dz0

kT (s0|s, o)� T̃ (s0|z, o)k1 =

����
Z �

G0

s̄(s)T̄ (z
0
|z, o)�Gz0(s)T̄ (z0|z, o)

�
dz0

����



Z
T̄ (z0|z, o)|Gs̄0(s)�Gz0(s)|dz0ds


p
✏

Analogously, we can bound the error of the reward function.

kR̄(z0, o)� R̃(z0, o)k1 =

����
Z

Gs̄0(s)R(s, o)ds�

Z
Gz0(s)R(s, o)ds

����



Z
|Gs̄0(s)�Gz0(s)| |R(s, o)| ds

 RMax

Z
|Gs̄0(s)�Gz0(s)| ds

 RMax
p
✏

Then, it follows from Minkowski’s inequality that

kR(s, o)� R̄(z0, o)k1 = kR(s, o)� R̃(z0, o) + R̃(z0, o)� R̄(z0, o)k1

 kR(s, o)� R̃(z0, o)k1 + kR̃(z0, o)� R̄(z0, o)k1


p
✏+RMax

p
✏ =

p
✏R

Theorem A.4 (Value Loss Bound). Let (M, M̄,G) be a grounded abstract model and T̃ (s0|s̄, o) =R
Gs̄0(s0)T̄ (s̄0|s̄, o)ds̄0 be the approximate transition dynamics from the grounded model. If the follow-

ing conditions hold for all o 2 O and all s 2 S with Gs̄(s) > 0: (1) kT (s0|s, o)� T̃ (s0|s̄, o)k21  ✏T ,
and (2)|R(s, o)� R̄(s̄, o)|2  ✏R; then, for any policy ⇡,

|Q⇡(s, o)�Q⇡(s̄, o)| 

p
✏R + �VMax

p
✏T

1� �
.
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Proof. We proceed by induction on Q⇡
n(s̄, o), where

v⇡0 (s̄) = Es⇠s̄ [v
⇡(s)] , (5)

Q⇡
1 (s̄, o) =

Z

s2S

P (s) (R(s, o) + �⌧v⇡0 (s̄
0)) ds, (6)

=

Z

s2S

P (s)

✓
R(s, o) + �⌧

Z

s02S

T s,o,s0v⇡(s0)ds0
◆
ds, (7)

Q⇡
i (s̄, o) =

Z

s2S

P (s)
�
R(s, o) + �⌧v⇡i�1(s̄

0)
�
ds, (8)

with s̄0 = T (· | s, o). I use P (s) as shorthand for P (s ⇠ s̄) and T s,o,s0 for T (s0 | s, o), and let

✏Q,n =
nX

i=0

p
✏R + �i (VMAX

p
✏T ) . (9)

Base Case: Q⇡
⇡ Q⇡

1 .

Q⇡(s, o)�Q⇡
1 (s̄, o) (10)

= R(s, o) + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 �

Z

s
P (s) (R(s̄, o)� �⌧v⇡0 (s̄

0)ds) , (11)

= R(s, o)�R(s̄, o)| {z }

p
✏R

+�⌧

Z

s0
T s,o,s0v⇡(s0)ds0 �

Z

s
P (s)�⌧v⇡0 (s̄

0)ds, (12)


p
✏R + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s
P (s)s0⇠s̄0 [v

⇡(s0)]ds (13)


p
✏R + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s
P (s)

Z

s0
P (s0 ⇠ s̄0)v⇡(s0)ds0 ds, (14)


p
✏R + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s
P (s)

Z

s0
T s,o,s0v⇡(s0)ds0 ds, (15)


p
✏R + �⌧ VMAX

Z

s0
T s,o,s0

�

Z

s
P (s)T s,o,s0ds ds0

| {z }

p
✏T

, (16)


p
✏R + �⌧ VMAX

p
✏T . (17)

This concludes the base case.

Inductive Case: Q⇡
⇡ Q⇡

n =) Q⇡
⇡ Q⇡

n+1. We assume that, for every s 2 S and any o,

Q⇡(s, o)�Q⇡
n(s̄, o)  ✏Q,n, (18)

and prove that
Q⇡(s, o)�Q⇤

n+1(s̄, o)  ✏Q,n+1. (19)

By algebra,

Q⇡(s, o)�Q⇡
n+1(s̄, o) (20)

= R(s, o) + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 �

Z

s
P (s) (R(s, o) + �⌧v⇡n(s̄

0)) ds, (21)

= R(s, o)�R(s̄, o)| {z }

p
✏R

+�⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s
P (s)v⇡n(s̄

0)ds, (22)


p
✏R + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s
P (s)v⇡n(s̄

0)ds, (23)

=
p
✏R + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s
P (s) v⇡n(s̄

0)| {z }
�s0⇠s̄0 [v

⇡(s0)]�✏Q,n

ds, (24)
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
p
✏R + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s
P (s) (s0⇠s̄0 [v

⇡(s0)]� ✏Q,n) ds, (25)

=
p
✏R + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s
P (s)

Z

s0
T s,o,s0v⇡(s0)ds0 ds+ �⌧ ✏Q,n, (26)

=
p
✏R + �⌧

Z

s0
T s,o,s0v⇡(s0)ds0 � �⌧

Z

s0

Z

s
P (s)T s,o,s0

| {z }
=T s̄,o,s0

v⇡(s0)ds ds0 + �⌧ ✏Q,n, (27)


p
✏R + �⌧ VMAX

Z

s0
T s,o,s0

� T s̄,o,s0ds0

| {z }

p
✏T

+�⌧ ✏Q,n, (28)


p
✏R + �⌧ VMAX

p
✏T + �⌧ ✏Q,n, (29)


p
✏R + �VMAX

p
✏T + �✏Q,n, (30)

= ✏Q,n+1. (31)

This concludes the inductive case.

Thus, by induction and the convergence of the geometric series, for any s, o,⇡, we conclude that

Q⇡(s, o)�Q⇡(s̄, o) 

p
✏R + �VMAX

p
✏T

1� �
. (32)

A.2 TPC IS DYNAMICS PRESERVING

We start by considering that by learning an abstract state space such that MI(S0;Z,O) is maximized.
The following decomposition based on the mutual information chain rule corresponds to the TPC
algorithm (Nguyen et al., 2021). In the original paper, they work at the primitive action level and all
actions available always, hence, there’s no need to consider initiation sets.

MI(S0, Z 0;Z,O)
(a)
= MI(S0;Z,O) +MI(Z 0;Z,O|S0)| {z }

=0

;

(b)
= MI(Z 0;Z,O) +MI(S0;Z,O|Z 0)| {z }

(1)

;

(c)
= MI(Z 0;Z,O) +MI(S0;Z,A)�MI(S0;Z 0) +MI(S0;Z 0

|Z,O);

where (a) follows from the fact that give s0 we can determine z0, (b) follows from decomposing the
term on the left-hand size and (c) from decomposing term (1).

The above implies that MI(Z 0;Z,O) = MI(S0;Z 0)�MI(S0;Z 0
|Z,O). Therefore, if we maximize

both sides of this identity, we must have a latent space that preserve only the information of the state
s0 that is predictable from the previous (z, a) pair. MI(Z 0;Z,O) ensures that the next abstract state
is predictable from the (z, o) tuple. MI(S;Z) ensures that the abstract state has information about
the ground state which is measured by g(s|z).

MI(S;O) =

Z
p(s, z) log

g(s|z)

p(s)
dsdz (33)

The following decomposition shows the two extra terms required by the TPC algorithm to estabilize
the optimization. Term (a) is the (differential) entropy of � which tends to infinity for a deterministic
function. This is solved by smoothing it with Gaussian noise of 0 mean and fixed standard deviation,
as done in TPC. The second term (b) corresponds to the consistency term, that is, the transition
function p(z0|z, a) must have low entropy, which ensures that the abstract dynamics are learnt.
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M(S0;Z 0
|Z,O) =

Z
p(s0, z0, z, o) log

p(s0, z0|z, o)

p(s0|z, o)p(z0|z, o)
ds0dz0dzdo

=

Z
p(s0, z0, z, o) log

p(z0|s0)

p(z0|z, o)

=

Z
p(s0, z0) log p(z0|s0)ds0dz0

| {z }
(a)

�

Z
p(z0, z, o) log p(z0|z, o)dz0dzdo

| {z }
(b)

By maximizing MI(Z 0;Z,O) and MI(S0;Z 0) using InfoNCE (Oord et al., 2018), we obtain the
TPC algorithm.

B EXPERIMENTS

For all our planning experiments we use DDQN (Van Hasselt et al., 2016) modified to consider
initiation sets for action selection and target computation to make it compatible with options. We
use Adam (Kingma and Ba, 2014) as optimizer. As exploration, we use linearly decaying ✏-greedy
exploration.

B.1 EXPERIMENTS

B.1.1 ENVIRONMENTS

Pinball Domain (Konidaris and Barto, 2009) We use a continuous action variant of the original
environment. The state space s = (x, y, ẋ, ẏ) with (x, y) 2 [0, 1]2 and (ẋ, ẏ) 2 [�1, 1]. The action
space is the ball acceleration expressed in the form of �(ẋ, ẏ 2 [�1, 1]2. The layout of the obstacles
is as in the original environment, show in Figure 8. The reward function takes �5 per unit of
acceleration. The discount factor is � = 0.9997.

Pinball Options Pinball options were designed to the agent in the coordinate dimensions by step
size 0.04. The initiation set are all the position in which the ball would not hit an obstacle by moving
in the desired direction. The termination probability is determined by a Gaussian centered in the
goal position with standard deviation as 0.01. For the policy, we handcrafted PI controllers for the
position with constants Kp = 50 and Ki = 8.

Antmazes We consider the U-Maze and Medium-Play mazes implemented by D4RL (Fu et al.,
2020) with the Mujoco ant. In Figure 9 we show diagrams of the considered mazes. The state space
is S 2 R29, where the first two dimensions corresponds to the position of the ant in the maze and the
rest is proprioception for the ant controls. The action space is A ⇢ [�1, 1]8 to control the ant joints.

Antmaze Options We consider options that move the ant in the 8 directions (North, South, East,
West, North-East, North-West, South-East, South-West) by a distance of 1 unit. For the position
controller, we train a goal-conditioned policy using HER (Andrychowicz et al., 2017) and TD3
(Fujimoto et al., 2018) that would take a goal position in an drive walk the ant to it. This is generally
hard for arbitrary goals given the separation between the current position and the goal, however, we
only needed the policy to become accurate for short distances, so we sampled initial positions within
1.5 of the desired goal. The goals were sampled uniformly over the possible positions in the maze.
Then we learned the initiation sets as classifiers were the option execution would be successful. The
termination condition is a threshold of 0.5 distance to the goal.

B.1.2 NETWORK ARCHITECTURES

Pixel Observations As encoder for pixel observation, we use ResNet Convolutional Networks,
as used in Dreamer (Hafner et al., 2021). The ResNet starts with an initial 24 depth and doubles in
depth until reaching the minimal resolution. See Table 1.
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Figure 5: Pinball from pixels. Ground baseline vs Abstract planning. Each goal learning curve is
averaged over 5 seeds and 1 standard deviation shown in the shaded area of each curve. The gray
area corresponds to the offset that corresponds to samples used to pre-train the model. Although is
shown in every plot, it is common to all goals.
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Figure 6: Medium Play Antmaze. Ground baseline vs Abstract planning. Each goal learning curve
is averaged over 5 seeds and 1 standard deviation shown in the shaded area of each curve. The gray
area corresponds to the offset that corresponds to samples used to pre-train the model. Although is
shown in every plot, it is common to all goals.

Figure 7: U-Maze Antmaze.

21



Under review as a conference paper at ICLR 2024

Figure 8: U-Maze Antmaze.

(a) U-Maze (b) Medium Play Maze (c) Pinball Domain

Figure 9: Ground truth visualization of possible positions of the agent in the evaluation Environments
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Table 1: ResNet CNN Configuration

Parameter Value

in width 50
in height 50
color channels 1
depth 24
cnn blocks 2
min resolution 4
mlp layers [256, ]
outdim 4
mlp activation silu
cnn activation silu

MLP Architectures For all other models, we use MLPs with the relevant input and output di-
mensions. This includes encoder, initiation classifiers, transition function, reward function and
duration. For the reward function we use the symlog transformation (Hafner et al., 2021) and a log
transformation for the option duration network.

Table 2: MLP Configuration

Parameter Value

hidden dims [128, 128]
activation relu

Density Estimation We use mixture of Gaussians with 4 components and Gaussians with diagonal
covariance matrices. We use the reparameterization trick (Kingma and Welling, 2013) to optimize
the mean and variance functions.

B.1.3 AGENT HYPERPARAMETERS

To train our baseline DDQN agent with the following parameters that we tune by doing grid search
for 5 goal positions and 2 seeds, we use all these parameters to learn for all goals.

Pinball Domain For pixel observations we use the same architecture as described before for the
world model encoder. For simpler observation, we use an MLP as before.

Table 3: Pinball ground DDQN parameters

Parameter Value

final exploration steps 500000
final epsilon 0.1
eval epsilon 0.001
replay start size 10000
replay buffer size 500000
target update interval 10000
steps 1250000
update interval 5
num step return 1
learning rate 10�5

� 0.9997

B.1.4 WORLD MODEL HYPERPARAMETERS

23



Under review as a conference paper at ICLR 2024

Table 4: Ground DDQN Parameters for the Antmazes

Parameter Value

final exploration steps 350, 000
final epsilon 0.1
eval epsilon 0.001
replay start size 1, 000
replay buffer size 100, 000
target update interval 1, 000
steps 1, 000, 000
update interval 5
num step return 1
learning rate 5⇥ 10�4

� 0.995

Table 5: U-Maze Imagination DDQN Parameters

Parameter Value

final exploration steps (proportion) 30% of agent training steps
final epsilon 0.1
eval epsilon 0.001
replay start size 1000
replay buffer size 100000
target update interval 10000
update interval 5
num step return 1
learning rate 1⇥ 10�4

rollout length 100

Table 6: World Model Parameters

Parameter Value

buffer size 100, 000
batch size 16
learning rate 1⇥ 10�4

train every 8
max rollout length 64
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