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Abstract

The surprising discovery of the BYOL method shows the negative samples can be
replaced by adding a prediction head to the neural network. It is mysterious why
even when there exist trivial collapsed global optimal solutions, neural networks
trained by (stochastic) gradient descent can still learn competitive representations.
In this work, we present our empirical and theoretical discoveries on non-contrastive
self-supervised learning. Empirically, we find that when the prediction head is
initialized as an identity matrix with only its off-diagonal entries being trainable, the
network can learn competitive representations even though the trivial optima still
exist in the training objective. Theoretically, we characterized the substitution effect
and acceleration effect of the trainable, but identity-initialized prediction head. The
substitution effect happens when learning the stronger features in some neurons
can substitute for learning these features in other neurons through updating the
prediction head. And the acceleration effect happens when the substituted features
can accelerate the learning of other weaker features to prevent them from being
ignored. These two effects enable the neural networks to learn diversified features
rather than focus only on learning the strongest features, which is likely the cause
of the dimensional collapse phenomenon. To the best of our knowledge, this is
also the first end-to-end optimization guarantee for non-contrastive methods using
nonlinear neural networks with a trainable prediction head and normalization.

1 Introduction

Self-supervised learning is about learning representations of real-world vision or language data
without human supervision, and contrastive learning [62, 43, 41, 24, 20, 34] is one of the most
successful self-supervised learning approaches. It has been known that the behavior of contrastive
learning depends critically on the minimization of the negative term, which corresponds to contrasting
the representations of negative pairs, i.e., pairs of different data points. However, the surprising
finding of the Bootstrap Your Own Latent (BYOL) method by Grill et al. [37] initiated the research of
non-contrastive self-supervised learning, which refers to contrastive learning methods without using
the negative pairs. BYOL achieved state-of-the-art results in various computer vision benchmarks and
there are plenty of follow-up works [39, 26, 21, 17, 33, 87, 44, 61] in this direction.

On a high level, in non-contrastive self-supervised learning, one wishes to learn a network φ such that
φ(x) aligns in direction with φ(x′), where x and x′ are called the positive pair, generated by random
augmentations from the same sample. Without the negative samples, collapsed global optima exist in
the training objectives. The complete collapse is when φ(·) is a constant vector whose variance is
zero. Another trivial solutions called dimensional collapse by [44] is when all the coordinates φi(·)
are exactly aligned. Nevertheless, adding a trainable prediction head on top of (one branch of) φ(x)
magically avoids learning such solutions, even though the prediction head can possibly learn the
identity mapping and render itself useless. A more formal introduction will be given in Section 2.
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Since the proposition of BYOL, there have been lots of empirical studies trying to understand non-
contrastive learning. The SimSiam method by Chen and He [26] shows the exponential moving
average (EMA) is not necessary for avoiding collapsed solutions while stop-gradient is necessary.
[68] empirically disproved using batch normalization (BN) is the reason why BYOL can avoid collapse.
[21, 88] further explored other similar approaches. If one wishes to work without both asymmetry
and the negative pairs, one must add extra diversity-enforcing structures as in Barlow Twins [87]
or [33, 44, 17]. Although these previous papers provided some empirical insights, in theory, the
question of how the prediction head helps in learning those diverse features is still unanswered.

Despite the great empirical progress, there is very little theoretical progress towards explaining
them. Most of existing theories focus on contrastive learning, especially from the statistical learning
perspective [79, 81, 14, 80, 40, 82, 13, 15, 47, 45, 59]. However, due to the existence of trivial
collapsed global optimal solutions (even with the prediction head) of the non-contrastive methods, to
the best of our knowledge, there is no well-established statistical framework for those methods yet.
To explain the non-contrastive learning, it is inevitable to study how the solutions are chosen during
the optimization. Therefore, our research questions are:

Our theoretical questions: the role of prediction head
Why do most non-contrastive self-supervised methods learn collapsed solutions when the so-called
prediction head is absent in the network architecture? How does the trainable prediction head
help optimizing the neural network to learn more diversified representations in non-contrastive
self-supervised learning?

Due to the existence of trivial collapsed optimal solutions of the non-contrastive learning objective,
we need to understand the implicit bias in optimization posed by the prediction head. However, to
the best of our knowledge, all of the previous implicit biases theories focus only on the supervised
learning tasks, and thus cannot be applied to our question. On a high level, the results in this paper
are summarized as follows:
Our empirical contributions. In non-contrastive self-supervised learning, we obtain the following
experimental results:

• We discover empirically that even when the prediction head is linear and initialized as an
identity matrix with only off-diagonal entries being trainable, the performance of learned
representation is comparable to using the usual non-linear two-layer MLP or randomly
initialized (trainable) linear prediction head. See Figure 1.

• We empirically verified that even when the prediction head is an identity-initialized matrix
(with fixed diagonal entries), its off-diagonal entries display a rise-and-fall pattern, and it
does not always converge to a symmetric matrix. See Figure 3.

Our theoretical contributions. We based our theory on a very simple setting, where the data
consist of two features: the strong feature and the weak feature. Intuitively, the strong features in
a dataset are the ones that show up more frequently or with large magnitude, and weak features as
those that show up rarely or with small magnitude. We consider learning with a two-layer non-linear
neural network with output normalization using (stochastic) gradient descent. Under this setting:

• We prove that without a prediction head, even with BN on the output to avoid complete
collapse, the networks will still converge to dimensional collapsed solutions, which provides
a theoretical explanation to the dimensional collapse phenomenon observed in [44].

• We prove that the trainable prediction head, combined with suitable output normalization
and stop-gradient operation, can learn diversified features to avoid the dimensional collapse
problem. We characterize two effects leveraged by the prediction head: the substitution
effect and the acceleration effect, as intuitively described below:

The effects of the trainable prediction head
In our setting, we prove that the trainable prediction head can help to learn diversed features by
leveraging two effects: the substitution effect and the acceleration effect. The substitution effect
happens when by learning the prediction head, the learned stronger features in some neurons can
substitute for learning the same features in other neurons. The acceleration effect happens when
the substituted features from the prediction head further accelerate learning the weaker features
in those substituted neurons.

Besides the above effects, we also explain in our setting, how the two common components in
non-contrastive learning: stop-gradient operation and output normalization, can assist the prediction
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(a) CIFAR-10 Accuracy (b) CIFAR-100 Accuracy (c) STL-10 Accuracy

(d) CIFAR-10 Loss (e) CIFAR-100 Loss (f) STL-10 Loss

Figure 1: Performances of using different prediction heads. Here in CIFAR-10, CIFAR-100 and STL-10,
identity-initialized linear prediction head can achieve good accuracies comparable to commonly used two-layer
non-linear MLP or randomly-initialized linear head. All the prediction heads are trainable, while for identity-init
prediction head only the off-diagonals are trainable. Here BN or L2norm represents the output normalization,
and EMA represents using exponential moving average to update the target network as in BYOL [39].

head in creating those effects during training, which will be further discussed in Section 5.3. There are
already some theoretical papers [78, 83, 63] that try to address similar questions. Our results provide
a completely different perspective compared to them: We explain why training the prediction head
can encourage the network to learn diversified features and avoid dimensional collapses, even
when the trivial collapsed optima still exist in the training objective, which is not covered by the prior
works, as shall be discussed below.

1.1 Comparison to Similar Studies

In this section, we will clarify the differences between our results and some similar studies. We point
out that all the claims below are derived only in our theoretical setting and are partially verified in
experiments over datasets such as CIFAR-10, CIFAR-100, and STL-10.

Can eigenspace alignment explain the effects of training the prediction head? The paper [78]
presented a theoretical statement that (symmetric) linear prediction head will converge to a matrix
that commutes with the covariance matrix of linear representations at the end of training, and they
provided experiments to support their theory. However, our theory suggests that the intermediate
stage of training the prediction head matters more to the feature learning of the encoder network
than the convergence. Indeed, as shown in Figure 3, in many cases, the trainable projection head will
converge back to identity after training, which commutes with any covariance matrix. Moreover,
the experiments in Figure 3a shows the training trajectory of the prediction head displays a clear
two-stage separation, which demonstrates that the convergence result (e.g., the eigenspace alignment
result in [78]) is not sufficient to understand the trainable prediction head.

Can the symmetric prediction head explain the trainable prediction head? In the paper [78],
experiments over the STL-10 dataset showed that the linear prediction head converges to a symmetric
matrix during training. And the follow-up paper [83] established a theory under the symmetric
prediction head (which is not trained but manually set at each iteration). Specifically, under their
linear network setting, where W is the weight matrix of the base encoder, they manually set the
prediction head Wp at iteration t to be W (t)

p ← W (t)Ex1x1x
>
1 (W (t))> and the outputs of both

online and target network are not normalized. Under this manual update rule of the prediction head,
they proved a subspace learning result over spherical gaussian data. Nevertheless, our experiments in
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(a) Average of off-diag entries (b) F-norm of off-diag matrix (c) Maximum of off-diag entries

Figure 2: Trajectories of the identity-initialized prediction head with a (min,max) confidence band, average
over 3 runs. In all three datasets, we observe a consistent rise and fall trajectory pattern.

Figure 1 and Figure 3b show that even if we initialize the prediction head using a symmetric matrix
(identity), the trainable prediction head can be very asymmetric at the early training stage when
the encoder network learn most of its features. Actually, in the presence of feature imbalance (e.g.,
Ex1x1x

>
1 has huge eigen-gap), the symmetric prediction head is also likely to learn a rank-one matrix

where W focus on learning the largest eigenvector of Ex1x1x
>
1 .

The role of stop-gradient and output-normalization. It is discussed in the theory of Tian et al.
[78] that without the stop-gradient, the linear network will learn the zero (constant) solution. [83]
also incorporated the stop-gradient into their theory, but did not explain why it is necessary for their
setting. As a comparison, we proved in our setting that the stop-gradient and output-normalization
together can turn the features substituted via the prediction head into a factor in the gradient of the
slower learning neurons, thereby creating the acceleration effect. In contrast, analyses in [78, 83]
did not incorporate the output normalization, even though their experiments have used certain forms
of normalizations. To the best of our knowledge, our paper is the first to explain the effects of
output-normalization in optimizing nonlinear neural networks in self-supervised learning.

2 Preliminaries on Non-contrastive Learning

In this section, we formally define what is non-contrastive self-supervised learning. To do this, we
first introduce contrastive learning following [24, 85] as background. We use [N ] as a shorthand for
the index set {1, . . . , N}.

Background on contrastive learning. Letting φW (·) be the neural networks, contrastive learning
aims to learn good representations φW via contrasting representations of similar data samples to
those of dissimilar ones. Usually we are given a batch of data points {Xi}i∈[N ], and we construct for
each i ∈ [N ] a positive pair (X

(1)
i , X

(2)
i ) by applying random data augmentations to Xi, and collect

negative pairs (X
(1)
i , X

(2)
j ) for i 6= j ∈ [N ]. Now given zi = φW (X

(1)
i ), z′i = φW (X

(2)
i ), i ∈ [N ],

we train the network φW to minimize the contrastive loss:

Lcontrastive(φW ) :=
1

N

∑
i∈[N ]

−sim(zi, z
′
i)/τ︸ ︷︷ ︸

positive term

+ log

∑
j∈[N ]

exp
(
sim(zi, z

′
j)/τ

)
︸ ︷︷ ︸

negative term

(2.1)

where sim(·, ·) is the similarity metric, often defined as the cosine similarity, and τ is the so-called
temperature hyper-parameter. Intuitively, minimizing the contrastive loss can be roughly viewed as
trying to classify the representation zi as z′i instead of z′j , j 6= i. It is a common belief that in order
for the network φW to be able to “distinguish” data points Xi from Xj , j 6= i, merely minimizing
the positive term of contrastive loss is not sufficient.

Non-contrastive self-supervised learning. We choose the SimSiam method [26] as our primary
framework, whose differerence with BYOL is a EMA component that is proven inessential in [26].
Following the same notations as above, except that z′i = StopGrad[φW (X

(2)
i )] is detached from
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(a) ‖off-diag(E(t))‖F and ‖E(t) − (E(t))>‖F (b) ‖E(t) − (E(t))>‖F /‖off-diag(E(t))‖F

Figure 3: Trajectories of the identity-initialized prediction head. off-diag(E) is obtained by setting the diagonal
of E to be zero. In (a), we discover that the Frobenius norm of our identity-initialized prediction head’s
off-diagonal matrix clearly display a two stage separation, more precisely, a rise and fall pattern; In (b), The
off-diagonal matrix of the prediction head is not symmetric in CIFAR-10 and CIFAR-100.

gradient computation, the loss objective become: (the symmetric network version)

L′SimSiam(φW ) = 1
N

∑
i∈[N ]−sim(zi, z

′
i) (2.2)

which is just the positive term in contrastive loss (2.1) (not divided by τ ). Clearly there exist plenty
trivial global optimal solutions for this objective. For example, the complete collapse refers to when
φW (·) learns some constant vector. Another solution called dimensional collapse [44] is when all
the coordinates [φW (·)]i has correlation ±1. The dimensional collapsed solution can minimize the
objective (2.2) even when φW (·) is BN-normalized to avoid learning a constant vector [44, 88].

However, by adding a trainable prediction head on top of zi, the training miraculously succeeds and
outputs a state-of-the-art feature extractor. Let g(·) be a shallow feed-forward network (often one or
two-layer, or even simply linear), we train g and φW simultaneously on the following objective:

LSimSiam(φW , g) = 1
N

∑
i∈[N ]−sim(g(zi), z

′
i) (2.3)

where z′i is still detached from gradient computation. The g(zi) = g◦φW (X
(1)
i ) and the detached part

z′i = StopGrad[φW (X
(2)
i )] are often called the online network and the target network respectively

following [39], known as two branches of non-contrastive learning. Note that the trainable prediction
head can represent identity function, so the objective (2.3) still has the collapsed optima.

3 Problem Setup
In this section, we present the setting of our theoretical results. We first define the data distribution.

Notations. We use O,Ω,Θ notations to hide universal constants with respect to d and Õ, Ω̃, Θ̃
notations to hide polynomial factors of log d. We denote a = o(1) if a→ 0 when d→∞. We use
the notations poly(d), polylog(d) to represent large constant degree polynomials of d or log d. We
useN (µ,Σ) to denote standard normal distribution in with mean µ and covariance matrix Σ. We use
the bracket 〈·, ·〉 to denote the inner product and ‖ · ‖2 the `2-norm in Euclidean space. And for a
subspace V ⊂ Rd, we denote V ⊥ as its orthogonal complement. We use 1B to denote the indicator
function of event B. We use Im to denote the m×m identity matrix.

Following the standard structure of image datasets, we consider data divided into patches, where each
patch can contain either features or noises.

Definition 3.1 (data distribution and features). Let X ∼ D be X = (X1, . . . , XP ) ∈ Rd×P
where each Xi ∈ Rd is a patch. We assume that there are two feature vectors v1, v2 such that
‖v`‖2 = 1, ` = 1, 2 and are orthogonal to each other. To generate a sample X , we uniformly sampled
` ∈ [2] and generate for each p ∈ [P ]:

Xp = zp(X)v` + ξp1zp=0, EX∼D[zp(X)] = 0, ∀p ∈ [P ]
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Figure 4: Illustration of the data distribution and data augmentations. Each data is equipped with a feature,
either v1 or v2, and contains a lot of noise patches. After the data augmentations, the positive pair (X(1), X(2))
is constructed by randomly masking out half of non-overlapping patches for each positive sample. The reason
for constructing positive pair with non-overlapping patches is because of the strong noise assumption we made
in Assumption 3.2 and the feature decoupling principle in [85].

where zp(X) is the latent vector of X , ξp is the noise vector of patch p ∈ [P ] whose assumption
will be given in Assumption 3.2. We denote S(X) = {p : zp(X) 6= 0} ⊆ [P ] as the set of feature
patches, where zp(X) = zp′(X) ∈ {0,±α`},∀p, p′ ∈ [P ], where α` will be picked afterwards. We
assume P = polylog(d), S(X) ≡ P0 = Θ(log d) for every X . A figurative illustration is given in
Figure 4.

Strong and weak features. We pick α1 = 2polyloglog(d) and α2 = α1/polylog(d). Hence v1 is the
strong feature and v2 is the weak feature, and we want the learner network to learn both v1, v2 (but
by different neurons) as their learning goal. This is a simplification of the real scenario. Intuitively,
we can think of the strong features in a dataset are the ones that show up more frequently or with
larger magnitude, and weak features as those that show up rarely or with smaller magnitude.

Assumption 3.2 (noise). Denoting V = span(v1, v2), we assume ξp ∈ V ⊥ is independent for each
p ∈ [P ] \ S(X), where X = (Xp)p∈[P ] ∼ D, and:

(a) For any unit vector u ∈ V ⊥, E[〈ξp, u〉] = 0, and E[〈ξp, u〉6] = σ6 for some σ = Θ(1);

(b) It holds for some % ∈ [0, 1
dΩ(1) ] it holds |E[〈u1, ξp〉3〈u2, ξp〉3]| ≤ % and |E[〈u1, ξp〉5〈u2, ξp〉]| ≤

% for any two vectors u1, u2 ∈ V ⊥ that are orthogonal to each other.

Remark 3.3. A simple example of our noise ξp is the spherical Gaussian noise in V ⊥. Assumption
3.2b ensures that the prediction head cannot be used to cancel the noise correlation between different
neurons. We point out that the features in our data can be learned via clustering, but we emphasize
that we do not intend to compare our algorithm with any clustering method in this setting since our
goal is to study how the prediction head helps in learning the features.

3.1 Learner Network

Following the SimSiam framework, the online and target network share the same encoder network
in our setting, as explained in Section 2. We consider the base encoder network f as a simple
convolutional neural network: Let W = (w1, . . . , wm) ∈ Rd×m be the weight matrix, where
wi ∈ Rd, the encoder network f is defined by

fj(X) :=
∑
p∈[P ] σ(〈wj , Xp〉), ∀j ∈ [m]

Here we use the cubic activation function σ(z) = z3, as polynomial activations are standard in
literatures of deep learning theory [9, 35, 50, 2, 52, 23] and also has comparable performance in
practice [2]. The (identity initialized) prediction head is defined as a matrix E = [Ei,j ](i,j)∈[m]2 with
Ei,i ≡ 1, i ∈ [m], where only the the off-diagonals Ei,j , i 6= j are trainable parameters. The online
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network F̃ is defined by: given j ∈ [m], we let Fj(X) := fj(X) +
∑
r 6=j Ej,rfr(X), and

F̃j(X) := BN (Fj(X)) = BN
[∑

p∈[P ]

(
σ(〈wj , Xp〉) +

∑
r 6=j Ej,rσ(〈wr, Xp〉

)]
where the batch normalization BN1 here is defined as follows: Given a batch of inputs {zi}i∈[N ],

BN(zi) :=
zi − 1

N

∑
i∈[N ] zi√

1
N

∑
i∈[N ] z

2
i −

(
1
N

∑
i∈[N ] zi

)2
(3.1)

And the we define the target network G as G̃j(X) := BN (Gj(X)) = BN (fj(X)) ,∀j ∈ [m].

3.2 Training Algorithm

Data augmentation. We use a very simple data augmentation: for each data X = (Xp)p∈[P ], we
randomly and uniformly sample half of the patches P ⊆ [P ] to generate the positive pair:

X(1) = (Xp1p∈P)p∈[P ], X(2) = (Xp1p/∈P)p∈[P ] (3.2)

Our data augmentation is similar to the common random cropping used in contrastive learning
[22, 76]. It is also analogous to the data augmentations studied in theoretical literatures [85, 47, 58].

Non-contrastive loss function. Now we define the loss function as follows: we sample N
data points {Xi}i∈[N ], Xi

i.i.d.∼ D and apply our data augmentation (3.2) to obtain S =

{X(i,1), X(i,2)}i∈[N ]. Now we define

LS(W,E) :=
1

N

∑
i∈[N ]

∥∥∥F̃ (X(i,1))− StopGrad[G̃(X(i,2)])
∥∥∥2

2
(3.3)

where the StopGrad operator detach gradient computation of the target network G̃(·). This form of
objective (3.3) is first defined in [37] and is equivalent to (2.3) in Chen and He [26] when F̃ and G̃
share the same encoder network f(·) and their outputs are normalized.

Intuitions of the data augmentation and collapse. In Definition 3.1, the features v1, v2 appear
in multiple patches, but the noises are independent across different patches (see Figure 4). As our
data augmentation produces positive pairs with non-overlapping patches, learning to emphasize
noises cannot align the representations of the positive pair, but learning either one of the features
φ(X) =

∑
p σ(〈v1, Xp〉) or φ(X) =

∑
p σ(〈v2, Xp〉) is sufficient. We consider learning the same

feature vi in all the neurons fj in the encoder network f as the dimensional collapsed solution.

Initialization and hyper-parameters. At t = 0, we initialize W and E as W (0)
i,j ∼ N (0, 1

d ) and
E(0) = Im and we only train the off-diagonal entries of E(t). For the simplicity of analysis, we let
m = 2, which suffices to illustrate our main message. For the learning rates, we let η ∈ (0, 1

poly(d) ]

be sufficiently small and ηE ∈ [η/α
O(1)
1 , η/polylog(d)], which is smaller than η2.

Optimization algorithm Given the data augmentation and the loss function, we perform (stochastic)
gradient descent on the training objective (3.3) as follows: at each iteration t = 0, . . . , T − 1, we
sample a new batch of augmented data St = {X(t,i,1), X(t,i,2)}i∈[N ] and update

W (t+1) = W (t) − η∇WLSt(W (t), E(t)), E
(t+1)
i,j = E

(t)
i,j − ηE∇Ei,jLSt(W

(t), E(t)), ∀i 6= j.

If we do not train the prediction head, we just simply keep E(t) ≡ Im.

1We use batch normalization as a output-normalization method, rather than for the supposed implicit negative
term effects as disproved in Richemond et al. [68].

2We conjecture that by modifying certain assumptions for the noise (especially by allowing the noise to span
the feature subspace V ), one can prove a similar result for the case ηE = η.
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4 Statements of Main Results

In this section, we shall present our main theoretical results on the mechanism of learning the
prediction head in non-contrastive learning. To measure the correlation between neurons, we introduce
the following notion: letting Var(ψ(X)) := EX∼D[(ψ(X) − E[ψ(X)])2] be the variance of any
function ψ of X ∼ D, we denote the correlation Corr(ψ(X), ψ′(X)) of any two function ψ,ψ′
over D as

Corr(ψ(X), ψ′(X)) :=
E[(ψ(X)− E[ψ(X)])(ψ′(X)− E[ψ′(X)])]√

Var(ψ(X))
√

Var(ψ′(X))

Now we present the main theorem of training with a prediction head, and set m = 2.

Theorem 4.1 (learning with prediction head and BN, see Theorem F.2). For every d > 2, let
N ≥ poly(d), η ∈ (0, 1

poly(d) ] be sufficiently small, and ηE ∈ [ η

α
O(1)
1

, η
polylog(d) ]. Then with probability

1− o(1), after training for T = poly(d)/η many iterations, we shall have for some ` ∈ [2]:

w
(T )
1 = β1v` + ε1, w

(T )
2 = β2v3−` + ε2 with |β1|, |β2| = Θ(1), ‖ε1‖2, ‖ε2‖2 ≤ Õ(

1√
d

)

Furthermore, the objective converges: ES∼DN [LS(W (T ), E(T ))] ≤ OPT + 1
poly(d) ≤ O( 1

log d ).
Where OPT stands for the global optimum3.

Theorem 4.1 clearly shows the network learn all the desired features, even under huge imbalance
between v1 and v2. This leads to the following corollary.

Corollary 4.2. Under the same hyper-parameter in Theorem 4.1, with probability 1− o(1), after
training for T = poly(d)/η many iterations, then the encoder f avoids dimensional collapse:

|Corr(f1(X), f2(X))| ≤ O(
1√
d

).

In contrast, learning without the prediction head will create strong correlations between any two
neurons. To emphasize that this problem cannot be alleviated by having more neurons, we let the
number of neurons m be any positive integer in the following theorem.

Theorem 4.3 (learning without prediction head but with BN, see Theorem G.1). Let N ≥ poly(d),
η = o(1) and the number of neurons m ≤ o(α1/α2). Suppose we freeze E(t) ≡ Im, then with
probability 1− o(1), after training for T = poly(d)/η many iterations, we shall have:

w
(T )
j = βjv1 + εj with |βj | = Θ(1), ‖εj‖2 ≤ Õ(

1√
d

) for all j ∈ [m]

Furthermore, the objective converges: ES∼DN [LS(W (T ), E(T ))] ≤ OPT+ 1
poly(d) ≤ O( 1

log d ). This
means the collapsed solution also reaches the global minimum of the objective. Again OPT stands
for the global optimum.

Note that since we have used BN as our output normalization, the learner is immune to complete
collapse and must have a certain variance in the outputs. Immediately, we have a corollary.

Corollary 4.4. Under the same hyper-parameter in Theorem 4.3, with probability 1− o(1), after
training with E(t) ≡ Im for T = poly(d)/η many iterations, we shall have dimensional collapse:

|Corr(fi(X), fj(X))| ≥ 1−O(
1√
d

), for all i, j ∈ [m].

In the following section, we shall give some intuitions by digging through the training process and
separately discuss the four phases of the training process.

3Under our setting described in Section 2, the global minimum of our objective (3.3) in population is

OPT = 2− 2
E[|S(X) ∩ P| · |S(X) \ P|]

E[|S(X) ∩ P|2]
= Θ(

1

log d
)
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5 The Four Phases of the Learning Process

We divide the complete training process into four phases: phase I for learning the stronger feature,
phase II for the substitution effect, phase III for the acceleration effect, and the end phase for
convergence. The first three phases explain how the prediction head can help learn the base encoder,
and the last phase explains why the off-diagonal entries often shrink later in training.

5.1 Phase I: Learning the Stronger Feature

At the beginning of training, the stronger feature v1 enjoys a much larger gradient as opposed to the
weaker feature v2, so naturally, v1 will be learned first. Without loss of generality, let us assume at
initialization, the neuron f1 has larger v1 between fj , j ∈ [2], then we can show:

Lemma 5.1 (learning the stronger feature, see Lemma C.13). After some t ≥ T1 = d2+o(1)/η, the
feature v1 in neuron f1 will be learn to 〈w(t)

1 , v1〉 = Ω(1), while all other features 〈w(t)
j , v`〉 = o(1)

for (j, `) 6= (1, 1). And the prediction head ‖E(t) − I2‖2 ≤ d−Ω(1) is still close to the initialization.

In this phase, the prediction head has not come into play. The substitution effect can only happen after
the feature v1 in neuron f1 is learned to a certain degree, and neuron f2 remains largely unlearned.

5.2 Phase II: The Substitution Effect

To illustrate the substitution effect, let us keep assuming that neuron f1 has already learned some
significant amount of the strong feature v1, say w1 = β1v1 + residual with |β1| = Ω(‖residual‖),
then we have: (recall fj(·), j ∈ [2] are the neurons of the encoder network)

Lemma 5.2 (substitution effect, formal statement see Lemma D.8). After |〈w(t)
1 , v1〉| = Ω(1), we

shall have |E(t)
2,1| increasing until |E(t)

2,1f1(X(1))| � |f2(X(1))| when X is equipped with the strong
feature v1, for T2 − T1 = o(T1) iterations.

Intuition of the substitution effect. After the stronger feature is learned in neuron f1, the optimal
way to align two positive representations F2(X(1)) and G2(X(2)) is not learning features in weight
w2, but use the prediction head to “substitute” the features in f1 into F2. This is how the substitution
effect happens when trained with a prediction head.

5.3 Phase III: The Acceleration Effect

After the substitution of v1 in F2, our concern is, w(t)
2 will learn v2 and only v2 eventually, according

to the acceleration effect in the following lemma.

Lemma 5.3 (acceleration effect, formal statement see Lemma E.8). After E(t)
2,1 is learned in Lemma

5.2, learning v2 in w(t)
2 will be much faster than v1, until ‖w(t)

2 − β2v2‖ = o(1) for some β2 = Θ(1).
The acceleration effect is caused by the interactions between the prediction head, the stop gradient
operation, and the normalization method (which in this case is the batch normalization).

What is the role of the stop-gradient? Thanks to the stop-gradient operation, when we compute
the gradient −∇w2

F2(X(1)) · StopGrad[G2(X(2))] to learn f2, this negative gradient will only try
to maximize f2(X(1)) · f2(X(2)), rather than to maximize F2(X(1)) · f2(X(2)). This is because the
stop-gradient is on G not on F : while F2 has a large component of v1 borrowed from f1 using E,
G2 does not have this component. So the gradient of F2 is to align with the features in G2 that does
not contain many v1, while the gradient of G2 is to aligned with F2 that contains a lot of v1.

What is the role of the output normalization? Again due to the StopGrad operation, the gradient
of F̃2 is taken with respect to the ratio f2(X(1))/

√
Var[F2(X(1))]. As gradient descent tries to

maximize this ratio, a direct computation gives

∇w2

f2(X(1))√
Var(F2(X(1)))

∝
∑
`∈[2]

(
[E

(t)
2,1〈w

(t)
1 , v3−`〉3]2 + Var[f2(X(1))]

)
〈∇w2

f2(X(1)), v`〉v`

which borrow the substituted feature v1 from f1(·) to adjust the gradient of v2 in f2(·), via the
prediction head E(t)

2,1. Without the output normalization, the learning of v1 will dominate that of v2

even when we train the prediction head.
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5.4 The End Phase: Convergence

As the weak features are learned, we have already obtained a good encoder network f(·) as shown in
Theorem 4.1. The rest of Theorem F.2 also contains the following result:
Proposition 5.4 (convergence of the prediction head, see Theorem F.2c). After some t ≥ T =
poly(d)/η iterations, we shall have ‖E(t) − I2‖F ≤ 1

poly(d) .

While we admit that only some of our real-world experiments in Figure 3 show the convergence to
zero for the off-diagonal entries of the prediction head, most of the experiments do display a rise and
fall trajectory pattern of off-diagonal entries consistently, which supports our theory to some degree.

6 Additional Related Work
Self-supervised learning Self-supervised learning has created huge success in natural language
processing [30, 86, 18] and established the pretrain-finetune paradigm for deep learning. In vision,
contrastive learning [75, 41, 24, 20, 27, 28, 34, 64, 33] became dominant in many downstream tasks
recently. Another approach is the generative learning [65, 16, 42], which also gives promising results.
Applications such as [64, 66] also illustrate the power of contrastive learning in multiple domains.

Theory of self-supervised learning The theoretical side of self-supervised learning developed
quickly due to the success of contrastive learning. Since [12], plenty of papers have studied the
contrastive learning. [25, 69] discussed many interesting phenomena associated with the negative
term. Saunshi et al. [71] provided evidence that function class agnostic analyses is vacuous. [85]
took a feature learning view, and inspired our analysis in the non-contrastive setting. For generative
learning, [51, 74] provides downstream performance guarantees. [70, 84] studied the natural language
tasks. [58] gave a recovery guarantee for tensors under hidden Markov models. [4] provided an
optimization guarantee for GANs trained by stochastic gradient descent ascent.

Feature learning theory of deep learning Our theoretical results are also inspired by the recent
progress of the feature learning theory of neural networks [55, 56, 5, 3, 49, 90, 46]. [55] initiate
the study of the speed difference in learning different types of features. [1] developed theory for
learning two-layer neural networks beyond the neural tangent kernel (NTK) [7, 8, 6, 32, 11]. [5, 3, 2]
further studied how features are learned in different deep learning tasks. Before this recent progress,
[77, 89, 19, 72, 31, 53, 54] also studied how shallow neural networks can learn on certain simple
data distributions, but all of them focus on the supervised learning. There are also plenty of studies
[73, 38, 10, 60, 48, 67, 29] on the implicit bias of optimization in deep learning, but none of their
techniques are designed for analyzing self-supervised learning.

7 Conclusion
In this paper, we showed how the prediction head can ensure the neural network learns all the features
in non-contrastive learning through theoretical investigation. Our key contribution is that we proved
the prediction head can leverage two effects called substitution effect and acceleration effect during
the training process. We also gave an explanation for the dimensional collapse phenomenon. We
believe our theory, although based on a very simple setup, can provide some insights into the inner
workings of non-contrastive self-supervised learning.
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(a) Identity-initialized (trainable) prediction head (b) Learning without prediction head

Figure 6: The feature learning process over synthetic data. When trained with the prediction head, after the
strong feature is learned in the faster learning neuron, the weak feature can be learned in the slower learning
neuron. When trained without the prediction head, both neurons will learn the strong feature and ignore the
weak feature.

A Experiment Details

Figure 5: Framework.
The framework we use in our experiments is shown in Figure 5. We use a
modified version of the codebase shared by the authors of [33], and we use
the same data augmentation in their implementation. All our experiments
(except for Figure 7) use the following architecture and hyper-parameters:
we choose standard ResNet-18 as base encoder architecture, 0.003 as the
learning rate for Adam optimizer, a two-layer MLP with ReLU activation
and 512 hidden neurons as the projection head, an identity-initialized
but diagonally froze linear matrix (with shape (64x64)) as the prediction
head and a non-tracking-stats, non-affine, non-momentum BN layer as
the output normalization. Our experiments in Figure 3 use the same
architecture and hyper-parameters, but some runs are trained with EMA
with momentum 0.99, with output BN replaced by `2-norm or using
different prediction heads (such as a two-layer MLP or a linear head, with
Pytorch default initialization). Evaluation in Figure 1 is by training a
linear classifier on top of frozen encoder with no data augmentation.

B Notations and Gradients

In this section, we will give some useful notations and warm-up computations for the technical proofs
in subsequent sections. We summarize here the notations that will also be defined in later sections:

Notations. We denote Ej = E[〈wj , ξp〉6], Ej,3−j = E
[
(〈wj , ξp〉3 + Ej,3−j〈w3−j , ξp〉3)2

]
, and

C0 =
E[|S(X) ∩ P| · |S(X) \ P|]

2
, C1 =

E
[
|S(X) ∩ P|2

]
2

, C2 = P − |S(X)|,

B̄3
j,` = StopGrad[〈wj , v`〉3], Bj,` = 〈wj , v`〉, Qj = (E[StopGrad[G2

j (X
(2))]])−1/2.

and
Uj := E[F 2

j (X(1))] =
∑
`∈[2] C1α

6
` (B

3
j,` + Ej,3−jB

3
3−j,`)

2 + C2Ej,3−j
Hj,` := C1α

6
` (B

3
j,` + Ej,3−jB

3
3−j,`)

2 + C2Ej,3−j ,
Kj,` := C1α

6
` (B

3
j,` + Ej,3−jB

3
3−j,`)(B

3
j,3−` + Ej,3−jB

3
3−j,3−`)

Moreover, we denote Φj := Qj/U
3/2
j , and (recall V := span(v1, v2))

Rj := 〈ΠV ⊥wj , wj〉 R1,2 := 〈ΠV ⊥w1, w2〉 R1,2 :=
〈ΠV ⊥w1, w2〉

‖ΠV ⊥w1‖2‖ΠV ⊥w2‖2
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(a) Features learned with prediction head (b) Features learned without prediction head

Figure 7: Feature visualization of deep neural network. We visualized the features of an Wide-ResNet-16x5
following the BYORL method by Gowal et al. [36], a adversarial robust version of BYOL. Features learned with
prediction head obviously have more variety than features learned without the prediction head. Our feature
visualization technique follows from [5].

For any j ∈ [2], the gradient −∇wjL(W,E) can be decomposed as

−∇wjL(W,E) =
∑
`∈[2]

(Λj,` + Γj,` −Υj,`)v` −
∑

(j′,`)∈[2]×[2]

Σj′,`∇wjEj′,3−j′

Λj,` := C0Φjα
6
`B

5
j,`Hj,3−`

Γj,` := C0Φ3−jE3−j,jα
6
`B

3
3−j,`B

2
j,`H3−j,3−`

Υj,` := C0α
6
3−`
(
ΦjB

3
j,3−`B

2
j,`Kj,` + Φ3−jE3−j,jB

3
3−j,3−`B

2
j,`K3−j,`

)
Σj,` := C0C2Φjα

6
`B

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)

Sometimes we need to decompose Υj,` = Υj,`,1 +Υj,`,2 which is straightforward from its expression.
In Section E, we further define

Ξ
(t)
j = C0C1α

6
1α

6
2Φ

(t)
j

(
(B

(t)
1,1)6(B

(t)
2,2)6 + (B

(t)
2,1)6(B

(t)
1,2)6

)
∆

(t)
j,` = C0Φ

(t)
j α6

` (B
(t)
j,` )

3(B
(t)
3−j,`)

3C2E(t)
j,3−j

for the gradients of the prediction head.

B.1 Gradient Computation

Let us L(W,E) to be the population version of the objective. Because E[Fj(X
(1))] and E[Gj(X

(2))]
are both zero (which can be verified easily from the zero-mean assumptions of zp(X) and ξp), a
direct computation gives:

L(W,E) = 2−
∑
j∈[2]

E[Fj(X
(1)) · StopGrad[Gj(X

(2))]]√
E[F 2

j (X(1))]
√
E[StopGrad[G2

j (X
(2))]]

18



We first calculate the normalizing quantity E[F 2
j (X(1))]:

E[F 2
j (X(1))] = E


∑
p∈[P ]

σ(〈wj , X(1)
p 〉) + Ej,3−jσ(〈w3−j , X

(1)
p 〉)

2


=
1

2

∑
`∈[2]

E
[
|S(X) ∩ P|2α6

` (〈wj , v`〉3 + Ej,3−j〈w3−j , v`〉3)2
]

(Because all signal patches has the same sign within the same data)

+ E
[
|P \ |S(X)|(〈wj , ξp〉3 + Ej,3−j〈w3−j , ξp〉3)2

]
(Because noise patches are independent and have mean zero)

=
∑
`∈[2]

α6
` (〈wj , v`〉3 + Ej,3−j〈w3−j , v`〉3)2E

[
|S(X) ∩ P|2

]
2

+ (P − |S(X)|)Ej,3−j

where we let

Ej,3−j
def
= E

[
(〈wj , ξp〉3 + Ej,3−j〈w3−j , ξp〉3)2

]
= E

[
〈wj , ξp〉6 + 2Ej,3−j〈wj , ξp〉3〈w3−j , ξp〉3 + E2

j,3−j〈w3−j , ξp〉6
]

On the other hand, we have

E[Fj(X
(1)) · StopGrad[Gj(X

(2))]]

= E

∑
p∈[P ]

σ(〈wj , X(1)
p 〉) + Ej,3−jσ(〈w3−j , X

(1)
p 〉)

×
∑
p∈[P ]

σ(〈wj , X(2)
p 〉)


=

1

2

∑
`∈[2]

E

 ∑
p∈|S(X)∩P

α3
` (〈wj , v`〉3 + Ej,3−j〈w3−j , v`〉3)×

∑
p∈|S(X)\P

α3
`StopGrad[〈wj , v`〉3]


=
∑
`∈[2]

α6
` (〈wj , v`〉3 + Ej,3−j〈w3−j , v`〉3) · StopGrad[〈wj , v`〉3] · E[|S(X) ∩ P| · |S(X) \ P|]

2

Now, by denoting

C0 =
E[|S(X) ∩ P| · |S(X) \ P|]

2
, C1 =

E
[
|S(X) ∩ P|2

]
2

, C2 = P − |S(X)|,

B̄3
j,` = StopGrad[〈wj , v`〉3], Bj,` = 〈wj , v`〉, Qj = (E[StopGrad[G2

j (X
(2))]])−1/2.

we denote Uj := E[F 2
j (X(1))], where the expanded expression is

Uj = E[F 2
j (X(1))] =

∑
`∈[2]

C1α
6
` (B

3
j,` + Ej,3−jB

3
3−j,`)

2 + C2Ej,3−j

and we can rewrite the objective as follows

L(W,E) = 2−
∑
j∈[2]

∑
`∈[2]

QjC0α
6
` B̄

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)

U
1/2
j

(B.1)

Now denote

Hj,` = C1α
6
` (B

3
j,` + Ej,3−jB

3
3−j,`)

2 + C2Ej,3−j ,
Kj,` = C1α

6
` (B

3
j,` + Ej,3−jB

3
3−j,`)(B

3
j,3−` + Ej,3−jB

3
3−j,3−`)
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It is easy to calculate

Q−2
j = E[StopGrad[G2

j (X
(2))]]

= E

( ∑
p∈[P ]

σ(〈wj , X(2)
p 〉)

)2


=
1

2

∑
`∈[2]

α6
` 〈wj , v`〉6E

[
|S(X) ∩ P|2

]
+ E

[
|P \ |S(X)|〈wj , ξp〉6

]
=
∑
`∈[2]

C1α
6
`B

6
j,` + C2Ej

where Ej = E[〈wj , ξp〉6]. And thus the gradient can be computed as (notice B̄3
j,` = B3

j,`)

−∇wjL(W,E) =
∑
`∈[2]

(
C0Qjα

6
`Hj,3−`B

5
j,`

U
3/2
j

)
v` +

∑
`∈[2]

(
C0Q3−jE3−j,jα

6
`B

3
3−j,`B

2
j,`H3−j,3−`

U
3/2
3−j

)
v`

−
∑
`∈[2]

(
C0Qjα

6
3−`B

3
j,3−`B

2
j,`Kj,`

U
3/2
j

+
C0Q3−jE3−j,jα

6
3−`B

3
3−j,3−`B

2
j,`K3−j,`

U
3/2
3−j

)
v`

−
∑
j′∈[2]

∑
`∈[2]

C0C2Qj′α
6
`B

3
j′,`(B

3
j′,` + Ej′,3−j′B

3
3−j′,`)

U
3/2
j′

∇wjEj′,3−j′

=
∑
`∈[2]

(Λj,` + Γj,` −Υj,`)v` −
∑

(j′,`)∈[2]×[2]

Σj′,`∇wjEj′,3−j′ (B.2)

where

∇wjEj,3−j = 6E[〈wj , ξp〉5ξp + Ej,3−j〈wj , ξp〉2〈w3−j , ξp〉3ξp]
∇wjE3−j,j = 6E[E2

3−j,j〈wj , ξp〉5ξp + E3−j,j〈w3−j , ξp〉3〈wj , ξp〉2ξp]

As for the gradient of the prediction head, we can calculate

−∇Ej,3−jL(W,E) =
∑
`∈[2]

C0Qjα
6
`B

3
j,`B

3
3−j,`Uj

U
3/2
j

−
∑
`∈[2]

C0Qjα
6
`B

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)

∑
`′∈[2] C1α

6
`′(B

3
j,`′ + Ej,3−jB

3
3−j,`′)B

3
3−j,`′

U
3/2
j

−
∑
`∈[2]

C0C2Qjα
6
`B

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)

U
3/2
j

∇Ej,3−jEj,3−j

=
∑
`∈[2]

C0Qjα
6
`B

3
j,`(B

3
3−j,`Hj,3−` −B3

3−j,3−`Kj,3−`)

U
3/2
j

−
∑
`∈[2]

Σj,`E
[
2〈wj , ξp〉3〈w3−j , ξp〉3 + 2Ej,3−j〈w3−j , ξp〉6

]
where Σj,` is defined in (B.2). In fact, all the above gradient expressions can be simplified by letting
Φj := Qj/U

3/2
j for j ∈ [2], which is what we shall do in later sections.

Summarizing the notations. We shall define some useful notations to simplify the proof. We
define V = span(v1, v2). Let ΠA be the projection operator to subspace A ⊂ Rd, then

Rj := 〈ΠV ⊥wj , wj〉 R1,2 := 〈ΠV ⊥w1, w2〉 R1,2 :=
〈ΠV ⊥w1, w2〉

‖ΠV ⊥w1‖2‖ΠV ⊥w2‖2
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B.2 Some Useful Bounds for Gradients

In this section we use the superscript (t) to denote the iteration t during training. Below we present
a claim which comes from direct calculations of Σ

(t)
j,` and ∇wjE

(t)
j′,3−j′ , which is very useful in the

following sections.

Claim B.1 (on Σ
(t)
j,` and∇wjE

(t)
j′,3−j′ ). Let Rj , R

(t)
1,2 be defined as above, then we have

(a) Σ
(t)
j,` = O(Σ

(t)
1,1)

(B
(t)
j,`)

6+E
(t)
j,3−j(B

(t)
3−j,`)

3(B
(t)
j,`)

3

(B
(t)
1,1)6

Φ
(t)
j

Φ
(t)
1

;

(b) 〈∇wjE
(t)
j,3−j ,ΠV >w

(t)
j 〉 = Θ([R

(t)
j ]3)±Θ(E

(t)
j,3−j)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2;

(c) 〈∇wjE
(t)
3−j,j , w

(t)
j 〉 = Θ((E

(t)
3−j,j)

2)[R
(t)
j ]3 ±O(E

(t)
3−j,j)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

(d) 〈∇wjE
(t)
j,3−j , w

(t)
3−j〉 = (Θ(R

(t)

1,2)± %)[R
(t)
j ]5/2[R

(t)
3−j ]

1/2 +O(E
(t)
j,3−j)R

(t)
j [R

(t)
3−j ]

2;

(e) 〈∇wjE
(t)
3−j,j , w

(t)
3−j〉 = ((E

(t)
3−j,j)

2(Θ(R
(t)

1,2)± %)[R
(t)
j ]5/2[R

(t)
3−j ]

1/2 +O(E
(t)
3−j,j)R

(t)
j [R

(t)
3−j ]

2)

Proof. The part on Σ
(t)
j,` is trivial from its expression, we shall focus on proving (b) – (d).

On 〈∇wjE
(t)
j′,3−j′ , w

(t)
j 〉: If j = j′, then

〈∇wjE
(t)
j,3−j , w

(t)
j 〉 = Θ(1)E[〈w(t)

j , ξp〉6 + E
(t)
j,3−j〈w

(t)
j , ξp〉3〈w(t)

3−j , ξp〉
3]

= Θ(1)E[〈w(t)
j , ξp〉6] +O(E

(t)
j,3−j)E[〈w(t)

j , ξp〉3(〈w(t)
3−j , ξp〉

3

− 〈(I − w̄j,tw̄>j,t)w
(t)
3−j , ξp〉

3)]

+O(E
(t)
j,3−j)E[〈w(t)

j , ξp〉3〈(I − w̄j,tw̄>j,t)w
(t)
3−j , ξp〉

3]

Write w̄j,t =
Π
V⊥w

(t)
j

‖Π
V⊥w

(t)
j ‖2

, we can derive

E[〈w(t)
j , ξp〉3(〈w(t)

3−j , ξp〉
3 − 〈(I − w̄j,tw̄>j,t)w

(t)
3−j , ξp〉

3)]

= E[〈w(t)
j , ξp〉3〈w̄j,tw̄>j,tw

(t)
3−j , ξp〉O(〈w(t)

3−j , ξp〉
2)]

= O(
R

(t)
1,2

‖ΠV ⊥w
(t)
j ‖22

)E[〈w(t)
j , ξp〉4〈w(t)

3−j , ξp〉
2]

≤ O(
R

(t)
1,2

‖ΠV ⊥w
(t)
j ‖22

)E[〈w(t)
j , ξp〉6]

2
3E[〈w(t)

3−j , ξp〉
6]

1
3 (by Hölder’s inequality)

≤ O(R
(t)

1,2)‖ΠV ⊥w
(t)
j ‖

3
2‖ΠV ⊥w

(t)
3−j‖

3
2

and by our assumption on noise ξp, we also have

E[〈w(t)
j , ξp〉3〈(I − w̄j,tw̄>j,t)w

(t)
3−j , ξp〉

3] ≤ O(%)‖ΠV ⊥w
(t)
j ‖

3
2‖ΠV ⊥w

(t)
3−j‖

3
2

Combined with the fact that E[〈w(t)
j , ξp〉6] = O(‖ΠV ⊥w

(t)
j ‖32), we can get

〈∇wjE
(t)
j,3−j , w

(t)
j 〉 = O(‖ΠV ⊥w

(t)
j ‖

6
2)±O(E

(t)
j,3−j)(R

(t)
1,2 + %)‖ΠV ⊥w

(t)
j ‖

3
2‖ΠV ⊥w

(t)
3−j‖

3
2

when j′ = 3− j, we also have

〈∇wjE
(t)
3−j,j , w

(t)
j 〉 = Θ(1)E[(E

(t)
3−j,j)

2〈w(t)
j , ξp〉6 + E

(t)
3−j,j〈w

(t)
j , ξp〉3〈w(t)

3−j , ξp〉
3]

= O((E
(t)
3−j,j)

2)‖ΠV ⊥w
(t)
j ‖

6
2 ±O(E

(t)
3−j,j)(R

(t)
1,2 + %)‖ΠV ⊥w

(t)
j ‖

3
2‖ΠV ⊥w

(t)
3−j‖

3
2
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On 〈∇wjE
(t)
j′,3−j′ , w

(t)
3−j〉: when j′ = j, we have

〈∇wjE
(t)
j,3−j , w

(t)
3−j〉 = O(1)E[〈w(t)

j , ξp〉5〈w(t)
3−j , ξp〉+ E

(t)
j,3−j〈w

(t)
j , ξp〉2〈w(t)

3−j , ξp〉
4]

= O(1)E[〈w(t)
j , ξp〉5〈(I − w̄j,tw̄>j,t + w̄j,tw̄

>
j,t)w

(t)
3−j , ξp〉]

+O(1)E[E
(t)
j,3−j〈w

(t)
j , ξp〉2〈w(t)

3−j , ξp〉
4]

(B.3)

Using Hölder’s inequality and our assumpsion on ξp, we have

E[〈w(t)
j , ξp〉5〈(I − w̄j,tw̄>j,t)w

(t)
3−j , ξp〉] . %‖ΠV ⊥w

(t)
j ‖

5
2‖ΠV ⊥w

(t)
3−j‖2

In the meantime, we also have

E[〈w(t)
j , ξp〉5〈w̄j,tw̄>j,tw

(t)
3−j , ξp〉] = Θ(R

(t)

1,2)E[〈w(t)
j , ξp〉6][R

(t)
j ]−1/2[R

(t)
3−j ]

1/2 = Θ(R
(t)

1,2)[R
(t)
j ]5/2[R

(t)
3−j ]

1/2

for the last term in (B.3), we can also use Hölder’s inequality to get

E
(t)
j,3−jE[〈w(t)

j , ξp〉2〈w(t)
3−j , ξp〉

4] . E
(t)
j,3−jE[〈w(t)

j , ξp〉6]1/3E[〈w(t)
3−j , ξp〉

6]2/3 . E
(t)
j,3−jR

(t)
j [R

(t)
3−j ]

2

Therefore, we can combine above analysis to get

〈∇wjE
(t)
j,3−j , w

(t)
3−j〉 = (Θ(R

(t)

1,2)± %)[R
(t)
j ]5/2[R

(t)
3−j ]

1/2 +O(E
(t)
j,3−j)R

(t)
j [R

(t)
3−j ]

2

When j′ = 3− j, we also have

〈∇wjE
(t)
3−j,j , w

(t)
3−j〉 = 6E[(E

(t)
3−j,j)

2〈w(t)
j , ξp〉5〈w(t)

3−j , ξp〉+ E
(t)
3−j,j〈w

(t)
j , ξp〉2〈w(t)

3−j , ξp〉
4]

= 6(E
(t)
3−j,j)

2(Θ(R
(t)

1,2)± %)[R
(t)
j ]5/2[R

(t)
3−j ]

1/2 + E
(t)
3−j,jR

(t)
j [R

(t)
3−j ]

2

which proves the claim.

C Phase I: Learning the Stronger Feature

In this section, we shall discuss the initial phase of learning the stronger feature. Firstly, we establish
some properties at the initialization for our induction afterwards.

Initialization properties. We prove the following properties for our network at initialization. Recall
our initialization is w(0)

j ∼ N (0, Id/d),∀j ∈ [2] and E(0) = I2.

Lemma C.1 (properties at initialization). Recall that without loss of generality we let |B(0)
1,1 | =

maxj∈[2] |B
(0)
j,1 |. With probability 1− o(1), the following holds:

(a) ‖w(0)
j ‖22 = 1± Õ( 1√

d
) for all j ∈ [2], and |〈w(0)

1 , w
(0)
2 〉| ≤ Õ( 1√

d
);

(b) maxj,` |B(0)
j,` | ≤ O(

√
log d/d) and minj,` |B(0)

j,` | ≥ Ω( 1
log d ) maxj,` |B(0)

j,` |;

(c) |B(0)
1,1 | ≥ |B

(0)
2,1 |(1 + 1

log d );

(d) E(0)
j = (1−O( 1

d3 ))σ6‖w(0)
j ‖62 = Θ(1) for all j ∈ [2];

(e) H(0)
j,` = C2E(0)

j (1 + Õ( 1√
d
)) for all (j, `) ∈ [2]× [2];

(f) U (0)
j = C2E(0)

j (1 + Õ(
α6

1√
d
)) for all j ∈ [2];

(g) (Q
(0)
j )−2 = C2E(0)

j (1 + Õ(
α6

1√
d
)) for all j ∈ [2];

(h) K(0)
j,` ≤ Õ(α6

`/d
3) for all (j, `) ∈ [2]× [2].
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Let us first introduce a fact about Gaussian ratio distribution without proof.

Fact C.2 (Gaussian ratio distribution). If X and Y are two independent standard Gaussian variables,
then the probability density of Z = X/Y is p(z) = 1

π(1+z2) , z ∈ (−∞,∞).

Proof of Lemma C.1. a. Norm bound comes from simple χ2 concentration inequality and our ini-
tialization w(0)

j ∼ N (0, Idd ). The inner product bound comes from Gaussian concentration.

b. It is from a direct calculation under our initialization, and some application of Gaussian c.d.f. and
a union bound.

c. It is from a probability distribution of Gaussian ratio distribution from Fact C.2 to bound the
probability of |B(0)

1,1 |/|B
(0)
2,1 | ≤ (1 + 1

log d ) (WLOG we let |B(0)
1,1 | = maxj∈[2] |B

(0)
j,1 |).

d. It can be directly proven from our assumption on noise ξp in the subspace V ⊥ and (a).

e. Since at the initialization we have B(0)
j,` = Õ( 1√

d
), j, ` ∈ [2] and E(0)

j,3−j = 0, it is easy to directly
upper bound the errors.

f. Again from B
(0)
j,` = Õ( 1√

d
),∀j, ` ∈ [2] at initialization and a direct upper bound.

g. Proof is similar to (e).

h. Directly from a naive upper bound using (b).

C.1 Induction in Phase I

We define phase I as all iterations t ≤ T1, where T1 := min{t : B
(t)
1,1 ≥ 0.01}, we will prove the

existence of T1 at the end of this section. We state the following induction hypotheses, which will
hold throughout the phase I:

Inductions C.3. For each t ≤ T1, all of the followings hold:

(a). ‖w(t)
j ‖2 = ‖w(0)

j ‖2 ± Õ(%+ 1√
d
) for each j ∈ [2];

(b). |B(t)
1,2|, |B

(t)
2,1|, |B

(t)
2,2| = Θ̃( 1√

d
);

(c). |B(t)
1,1| ≥ Ω( 1

log d ) max(|B(t)
1,2|, |B

(t)
2,2|, |B

(t)
2,1|);

(d). |E(t)
1,2| ≤ Õ(%+ 1√

d
)ηEη |B

(t)
1,1| and |E(t)

2,1| ≤ Õ( 1
d );

(e). R(t)
1 , R

(t)
2 = Θ(1), |R(t)

1,2| ≤ Õ(%+ 1√
d
)

Remark C.4. Since we have chosen ηE ≤ η and % ≤ 1
dΩ(1) , Induction C.3d implies |E(t)

j,3−j | = o(1)
throughout t ≤ T1.

We shall prove the above induction holds in later sections, but first we need some useful claims
assuming our induction holds in this phase.

C.2 Computing Variables at Phase I

Firstly we establish a claim controlling the noise terms Ej , Ej,3−j during this phase.

Claim C.5. At each iteration t ≤ T1, if Induction C.3 holds, then

(a) E(t)
1 = E(t)

2 ±O(
∑
`∈[2] |B

(t)
j,` |+ Õ(%+ 1√

d
))

(b) E(t)
j = E(0)

j ±O(
∑
`∈[2] |B

(t)
j,` |+ Õ(%+ 1√

d
))
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(c) E(t)
j,3−j = E(t)

j ± Õ(E
(t)
j,3−j(%+ 1√

d
) + (E

(t)
j,3−j)

2);

Proof. For (a), we can simply write down

E(t)
j = E[〈wj , ξp〉6] = σ6‖ΠV ⊥w

(t)
j ‖

6
2

Note that by Induction C.3a we always have ‖w(t)
j ‖2 = ‖w(0)

j ‖2 ± Õ(%+ 1√
d
), and by Lemma C.1a

we also have ‖w(0)
j ‖2 = (1± Õ( 1√

d
))‖w(0)

j ‖2, which implies

‖ΠV ⊥w
(t)
j ‖2 − ‖ΠV ⊥w

(t)
3−j‖2 = ‖w(t)

j ‖2 − ‖w
(t)
3−j‖2 ±O(

∑
j,`∈[2]2

B
(t)
j,` )

= ‖w(0)
j ‖2 − ‖w

(0)
3−j‖2 ±O(

∑
j,`∈[2]2

B
(t)
j,` )± Õ(%+

1√
d

)

= Õ(
1√
d

)±O(
∑

j,`∈[2]2

B
(t)
j,` )± Õ(%+

1√
d

)

By the elementary equality xn − yn = (x− y)
∑

0≤i≤n−1 x
iyn−1−i, we can obtain (a). The proof

of (b) is almost the same as (a), and the proof of (c) is just direct calculation.

Equipped with Claim C.5, we can establish the following lemma, which will be frequently applied to
bound the gradient in our induction argument.
Lemma C.6 (variables control in phase I). Suppose Induction C.3 holds at some iteration t ≤ T1 ,
then we have:

(a) if ∀` ∈ [2], α`|B(t)
j,` | ≤ O(1), then Φ

(t)
j = (C2E(t)

j )−2(1± 1
polylog(d) );

(b) if ∃` ∈ [2], |B(t)
j,` | ≥ Ω( 1

α`
), then Φ

(t)
j = O((C2E(t)

j +
∑
`∈[2] C1α

6
` (B

(t)
j,` )

6)−2);

(c) if α`|B(t)
j,` | ≤ O(1), H(t)

j,` = C2E(t)
j (1 + 1

polylog(d) ) = Θ(C2), otherwise H(t)
j,` ∈ [Ω(C2), Õ(α6

` )]

(d) |K(t)
j,` | ≤ Õ(α6

`/d
3/2)

Proof. (a) From our assumptions that |B(t)
1,2|, |B

(t)
2,1|, |B

(t)
2,2| ≤ Õ( 1√

d
) and α1B

(t)
1,1 ≤ O(1), and also

the fact that E(t)
j = Ω(σ6) = Ω(1), C2 = Θ(polylog(d))� C1, we can calculate

U
(t)
j =

∑
`∈[2]

C1α
6
` ((B

(t)
j,` )

3 + E
(t)
j,3−j(B

(t)
3−j,`)

3)2 + C2E(t)
j,3−j

= O(C1) + C2E(t)
j + Õ(%+

1√
d

)

= C2E(t)
j (1± 1

polylog(d)
)

Meanwhile, we can also compute similarly

Q
(t)
j =

∑
`∈[2]

C1α
6
` (B

(t)
j,` )

6 + C2Ej = C2E(t)
j (1± 1

polylog(d)
)

Therefore Φ
(t)
j = Q

(t)
j /(U

(t)
j )3/2 = (C2E(t)

j (1± 1
polylog(d) ))−2 as desired.

(b) The proof is similar to that of (a).

(c) when α1B
(t)
1,1 ≤ O(1), the proof is similar to (a). When α1B

(t)
1,1 ≥ O(1), we have from Induction

C.3a and H(t)
j,` ’s expression that

H
(t)
j,` = C1α

6
` ((B

(t)
j,` )

3 + E
(t)
j,3−j(B

(t)
3−j,`)

3)2 + C2E(t)
j,3−j ≤ Õ(α6

` )
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And since T1 := min{t : B
(t)
1,1 ≥ 0.01}, so for t ≤ T1, we have

H
(t)
j,` ≥ C2E(t)

j,3−j
¬
≥ C2E(t)

j − |E
(t)
j,3−j |

­
≥ Ω(C2)

where ¬ is from Claim C.5b and ­ is from Induction C.3d.

(d) Since we have assumed |B(t)
1,2|, |B

(t)
2,1|, |B

(t)
2,2| ≤ Õ( 1√

d
), it is direct to bound |K(t)

j,` | ≤
Õ(α6

`/d
1.5).

Claim C.7 (about Σ
(t)
j,` and∇wjE

(t)
j′,3−j′ ). If Induction C.3 holds at iteration t ≤ T1, then

(a) Σ
(t)
j,` = O(Λ

(t)
1,1B

(t)
1,1)

(B
(t)
j,`)

6+E
(t)
j,3−j(B

(t)
3−j,`)

3(B
(t)
j,`)

3

(B
(t)
1,1)6

Φ
(t)
j

Φ
(t)
1

;

(b) 〈∇wjE
(t)
j,3−j , w

(t)
j 〉 = O(1)±O(E

(t)
j,3−j)(R

(t)
1,2 + %);

(c) 〈∇wjE
(t)
3−j,j , w

(t)
j 〉 = O((E

(t)
3−j,j)

2)±O(E
(t)
3−j,j)(R

(t)
1,2 + %)

(d) |〈∇wjE
(t)
j,3−j , w

(t)
3−j〉| = O(R

(t)
1,2 + %) +O(E

(t)
j,3−j);

(e) |〈∇wjE
(t)
3−j,j , w

(t)
3−j〉| = O(R

(t)
1,2 + %)(E

(t)
3−j,j)

2 +O(E
(t)
3−j,j)

Proof. Notice that ‖ΠV ⊥w
(t)
j ‖2 = Θ(1),∀j ∈ [2] for t ≤ T1, which is because of ‖w(t)

j ‖2 =
√

2± o(1) from Induction C.3a and maxj,` |B(t)
j,` | < 0.024. Now we can apply Claim B.1 to obtain

the bounds.

C.3 Gradient Lemmas for Phase I

We first present an interesting lemma regarding the effects of Batch-Normalization on the gradients of
weights. The following lemma allow us maintain the norm of weights to above a constant throughout
phase I.
Lemma C.8 (effects of BN on gradients). For any W = (w1, w2) and E, it holds

(a)
∑
j∈[2]〈∇wjL(W,E), wj〉 = 0;

Further, if Induction C.3 holds for each t ≤ T1, we have

(b) |〈∇wjL(W (t), E(t)), w
(t)
j 〉| ≤ Õ(%+ 1√

d
)|Λ1,1|

∑
j∈[2] |E

(t)
j,3−j | for each j ∈ [2].

Proof. Proof of (a): We first calculate the gradient term as follows:

∇WL(W,E) = ∇W
∑
j∈[2]

E[Fj(X
(1)) · StopGrad[Gj(X

(2))]]√
E[F 2

j (X(1))]
√
E[StopGrad[G2

j (X
(2))]]

=
∑
j∈[2]

E[(∇WFj(X(1))) · [G(X(2))]j ] · E[F 2
j (X(1))]

(E[F 2
j (X(1))])3/2

√
E[G2

j (X
(2))]

−
∑
j∈[2]

E[(∇WFj(X(1))) · Fj(X(1))] · E[[Fj(X
(1)) · [G(X(2))]j ]

(E[F 2
j (X(1))])3/2

√
E[G2

j (X
(2))]

Since by our definition 〈∇WFj(X(1)),W 〉 =
∑
i∈[2]〈∇wi [Fj(X(1)), wi〉 = 3[Fj(X

(1)), we
immediately have

∑
j∈[2]〈∇wjL(W,E), wj〉 = 0.

4due to our choice of η = 1
poly(d)

is small, we can make sure when T1 = min{t : B
(t)
1,1 ≥ 0.01},

B
(T1)
1,1 < 0.02.
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Proof of (b): Firstly we define a new notion

∇i,j = ∇wi
E[Fj(X

(1)) · StopGrad[Gj(X
(2))]]√

E[F 2
j (X(1))]

√
E[StopGrad[G2

j (X
(2))]]

Then it is straghtforward to verify that
∑
i∈[2]〈∇i,j , wi〉 = 0 for any j ∈ [2], which implies that

|〈∇j′,j , wj′〉| = |〈∇3−j′,j , w3−j′〉|. So in order to obtain an upper bound for |〈∇wjL(W,E), wj〉| =
|
∑
j′∈[2]〈∇j,j′ , wj〉|, we only need to upper bound |〈∇j,j′ , w3−j′〉|, each of which can be calculated

as (ignoring all time superscript (t))

|〈∇3−j,j , w3−j〉| =
E
[∑

p∈[P ]∩P Ej,3−jσ(〈w3−j , Xp〉) · [G(X(2))]j

]
· E[F 2

j (X(1))]

(E[F 2
j (X(1))])3/2

√
E[G2

j (X
(2))]

−
E
[∑

p∈[P ]∩P Ej,3−jσ(〈w3−j , Xp〉) · Fj(X(1))
]
· E[[Fj(X

(1)) · [G(X(2))]j ]

(E[F 2
j (X(1))])3/2

√
E[G2

j (X
(2))]

Now we compute

E

 ∑
p∈[P ]∩P

Ej,3−jσ(〈w3−j , Xp〉)[G(X(2))]j

 = E

 ∑
p∈[P ]∩P

Ej,3−jσ(〈w3−j , Xp〉)
∑

p∈[P ]\P

σ(〈wj , Xp〉)


=
∑
`∈[2]

Ej,3−jC0α
6
`B

3
3−j,`B

3
j,`

and

E

 ∑
p∈[P ]∩P

Ej,3−jσ(〈w3−j , Xp〉) · Fj(X(1))


= E

 ∑
p∈[P ]∩P

Ej,3−jσ(〈w3−j , Xp〉) ·
∑

p∈[P ]∩P

(σ(〈wj , Xp〉) + Ej,3−jσ(〈w3−j , Xp〉))


=
∑
`∈[2]

Ej,3−jC1α
6
`B

3
3−j,`(B

3
j,` + Ej,3−jB

3
3−j,`) + C2Ej,3−jE[〈wj , ξp〉3〈w3−j , ξp〉3 + Ej,3−j〈w3−j , ξp〉6]
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So we can further obtain the nominator in the expression of |〈∇3−j,j , w3−j〉| as

E

 ∑
p∈[P ]∩P

Ej,3−jσ(〈w3−j , Xp〉) · [G(X(2))]j

 · E[F 2
j (X(1))]

− E

 ∑
p∈[P ]∩P

Ej,3−jσ(〈w3−j , Xp〉) · Fj(X(1))

 · E[[Fj(X
(1)) · [G(X(2))]j ]

=

∑
`∈[2]

Ej,3−jC0α
6
`B

3
3−j,`B

3
j,`

 ·
∑
`∈[2]

C1α
6
` (B

3
j,` + Ej,3−jB

3
3−j,`)

2 + C2Ej,3−j


−

∑
`∈[2]

Ej,3−jC1α
6
`B

3
3−j,`(B

3
j,` + Ej,3−jB

3
3−j,`)

 ·
∑
`∈[2]

C0α
6
`B

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)


− C2Ej,3−jE[〈wj , ξp〉3〈w3−j , ξp〉3 + Ej,3−j〈w3−j , ξp〉6] ·

∑
`∈[2]

C0α
6
`B

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)


= Ej,3−j

∑
`∈[2]

C0α
6
`B

3
3−j,`(B

3
j,`Hj,3−` −B3

j,3−`Kj,3−`)

− C2Ej,3−jE[〈wj , ξp〉3〈w3−j , ξp〉3 + Ej,3−j〈w3−j , ξp〉6] ·

∑
`∈[2]

C0α
6
`B

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)


Now can sum over j′ ∈ [2] to get
|〈∇wjL(W,E), wj〉|

≤
∑
j∈[2]

∑
`∈[2]

C0Ej,3−j
∣∣Φjα6

`B
3
3−j,`B

3
j,`Hj,3−`

∣∣+
∑
j∈[2]

∑
`∈[2]

∣∣C0Ej,3−jΦjα
3
`B

3
3−j,`B

3
j,3−`Kj,3−`

∣∣
+
∑
j∈[2]

∑
`∈[2]

∣∣C2Ej,3−jΦjE[〈wj , ξp〉3〈w3−j , ξp〉3 + Ej,3−j〈w3−j , ξp〉6]C0α
6
`B

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)

∣∣
Next we are going to bound each term, for the first term of LHS we have∑

j∈[2]

∑
`∈[2]

∣∣C0Ej,3−jΦjα
6
`B

3
3−j,`B

3
j,`Hj,3−`

∣∣ ≤ ∑
j∈[2]

∑
`∈[2]

|Ej,3−j ||Λj,`|

∣∣∣∣∣B3
3−j,`

B2
j,`

∣∣∣∣∣
≤ |Λ1,1|

∑
j∈[2]

|Ej,3−j ||

∣∣∣∣∣B3
3−j,`B

3
j,`Φj

B5
1,1Φ1

∣∣∣∣∣
≤ Õ(

do(1)

√
d

)|Λ1,1|
∑
j∈[2]

|Ej,3−j |

where the last inequality is because

• By Lemma C.6a,b, we have Φ
(t)
j /Φ

(t)
1 ≤ O(αO1 (1)) ≤ do(1) during t ≤ T1.

• (B
(t)
3−j,`)

3(B
(t)
j,` )

3 ≤ Õ( 1√
d
)(B

(t)
1,1)5 from Induction C.3b,c.

Similarly, we can also compute∑
j∈[2]

∑
`∈[2]

∣∣C0Ej,3−jΦjα
3
`B

3
3−j,`B

3
j,3−`Kj,3−`

∣∣ ≤ ∑
j∈[2]

∑
`∈[2]

Ej,3−j |Λ1,1|

∣∣∣∣∣B3
3−j,`B

3
j,3−`Kj,3−`

B5
1,1Hj,3−`

∣∣∣∣∣
≤ Õ(

do(1)

d2
)|Λ1,1|

∑
j∈[2]

|Ej,3−j |
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and∑
j∈[2]

∑
`∈[2]

∣∣C2Ej,3−jΦjE[〈wj , ξp〉3〈w3−j , ξp〉3 + Ej,3−j〈w3−j , ξp〉6]C0α
6
`B

3
j,`(B

3
j,` + Ej,3−jB

3
3−j,`)

∣∣
¬
≤
∑
j∈[2]

∑
`∈[2]

|Ej,3−jΛj,`|

∣∣∣∣∣B3
j,` + Ej,3−jB

3
3−j,`

B2
j,`

∣∣∣∣∣ ∣∣E[〈wj , ξp〉3〈w3−j , ξp〉3 + Ej,3−j〈w3−j , ξp〉6]
∣∣

­
≤
∑
j∈[2]

∑
`∈[2]

|Ej,3−jΛj,`|

∣∣∣∣∣B3
j,` + Ej,3−jB

3
3−j,`

B2
j,`

∣∣∣∣∣ (O(R1,2 + %) +O(Ej,3−j))

≤ Õ(R1,2 + %)|Λ1,1|
∑
j∈[2]

|Ej,3−j |

where ¬ is due to Lemma C.6c, ­ is from the same calculation in Claim C.7 for
E[〈wj , ξp〉3〈w3−j , ξp〉3] and Induction C.3a. Now combining the above and Induction C.3e together
we have

|〈∇wjL(W,E), wj〉| ≤ Õ(%+
1√
d

)|Λ1,1|
∑
j∈[2]

|Ej,3−j |

which gives the desired bound.

Next we give a lemma characterizing the gradient of feature v1 in this phase.
Lemma C.9 (learning feature v1 in phase I). For each t ≤ T1, if Induction C.3 holds at iteration t,
then using notations of (B.2), we have:

(a) 〈−∇w1
L(W (t), E(t)), v1〉 = (1± Õ( 1

d ))Λ
(t)
1,1

(b) 〈−∇w2
L(W (t), E(t)), v1〉 = (1±O( 1√

d
))Λ

(t)
2,1 + Γ

(t)
2,1 ≤ (1±O( 1√

d
))Λ

(t)
2,1 ±

(B
(t)
2,1)2

(B
(t)
1,1)2

E
(t)
1,2Λ

(t)
1,1

Proof. From (B.2), we write down the gradient formula for B(t)
j,1 as follows:

〈−∇wjLD(W (t), E(t)), v1〉 = Λ
(t)
j,1 + Γ

(t)
j,1 −Υ

(t)
j,1

where (ignoring the superscript (t) for the RHS)

Λ
(t)
j,1 = C0Φjα

6
1B

5
j,1Hj,2

Γ
(t)
j,1 = C0Φ3−jE3−j,jα

6
1B

3
3−j,1B

2
j,1H3−j,2

Υ
(t)
j,1 = C0α

6
2

(
ΦjB

3
j,2B

2
j,1Kj,1 + Φ3−jE3−j,jB

3
3−j,2B

2
j,1K3−j,1

)
We first prove (a), and we deal with each term individually:
Comparing Λ

(t)
1,1 and Γ

(t)
1,1: When t ≤ T1,1, we have from Lemma C.6a that

Φ
(t)
1 H

(t)
1,2 =

1

C2E(t)
1

(1± 1

polylog(d)
) =

1

C2E(t)
2

(1± 1

polylog(d)
) = Φ

(t)
2 H

(t)
2,2(1± 1

polylog(d)
)

Further, by Induction C.3b,c,d and our definition of stage 1, we know E
(t)
1,2 ≤ Õ( 1

d ). Now from

Induction C.3b that B(t)
2,1 ≤ Õ( 1√

d
), together we have

Γ
(t)
1,1 = C0α

6
1E

(t)
2,1Φ

(t)
2 H

(t)
2,2(B

(t)
2,1)3(B

(t)
1,1)2 ≤ Õ(

1

d
)C0α

6
1Φ

(t)
1 H

(t)
1,2(B

(t)
1,1)5 = Õ(

Λ
(t)
1,1

d
)

When t ∈ [T1,1, T1], by Lemma C.6b we have

Φ
(t)
1 H

(t)
1,2 ≥ Ω(

C2

(C1α6
1(B

(t)
1,1)6 +O(C2))2

) ≥ ω(
1

d0.1
), and E

(t)
2,1Φ

(t)
2 H

(t)
2,2 ≤ Õ(

1

d
)
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Now from our definition of stage 2, it holds that B(t)
1,1 ≥ Ω( 1

α1
) while B(t)

2,1 ≤ Õ( 1√
d
) by Induction

C.3b, which gives

Γ
(t)
1,1 = C0α

6
1E

(t)
2,1Φ

(t)
2 H

(t)
2,2(B

(t)
2,1)3(B

(t)
1,1)2 ≤ Õ(

1

d
)C0α

6
1Φ

(t)
1 H

(t)
1,2(B

(t)
1,1)5 = Õ(

Λ
(t)
1,1

d
)

Comparing Λ
(t)
1,1 and Υ

(t)
1,1: Now consider Υ

(t)
1,1, by Lemma C.6, we can follow the same analysis as

above to get

Φ
(t)
j K

(t)
j,` ≤ Õ(

α
O(1)
1

d3/2
)Φ

(t)
1 H

(t)
1,2 for any (j, `) ∈ [2]× [2]

Combined with E(t)
2,1 ≤ o(1), we can derive

Υ
(t)
1,1 = C0α

6
2

(
Φ

(t)
1 K

(t)
1,1(B

(t)
1,2)3(B

(t)
1,1)2 + E

(t)
1,2Φ

(t)
2 K

(t)
2,1(B

(t)
2,2)3(B

(t)
1,1)2

)
≤ Õ(

α
O(1)
1 α6

2

d3/2
)C0α

6
1Φ

(t)
1 H

(t)
1,2(B

(t)
1,1)5

= Õ(
Λ

(t)
1,1

d3/2−o(1)
) (since C1 = Õ(1) and α1, α2 = do(1))

Comparing Λ
(t)
2,1 and Υ

(t)
2,1: Till now (a) is proved, we can deal with (b) by only comparing Λ

(t)
2,1 with

Υ
(t)
2,1. Similar to the above arguments, we have by Induction C.3b we knowK

(t)
j,1 = Õ(

C1α
6
1

d3/2 ),∀j ∈ [2],
and thus

Φ
(t)
j K

(t)
j,` ≤ Õ(

α6
1

d3/2
)Φ

(t)
2 H

(t)
2,2 for any (j, `) ∈ [2]× [2]

By Induction C.3e we know E
(t)
1,2 ≤ Õ(% + 1√

d
). Also, note that from Induction C.3b we have

Õ((B
(t)
1,2)3/d) ≤ Õ((B

(t)
2,1)5), and thus

E
(t)
1,2Φ

(t)
1 K

(t)
1,1(B

(t)
1,2)3(B

(t)
2,1)2 ≤ Õ(%+

1√
d

)Õ(
α6

1

d5/2
)Φ

(t)
2 H

(t)
2,2Õ(B

(t)
1,2)3 ≤ O(

1

d3/2
)Φ

(t)
2 H

(t)
2,2(B

(t)
2,1)5

So together we have

|Υ(t)
2,1| = |C0α

6
2

(
Φ

(t)
2 K

(t)
2,1(B

(t)
2,2)3(B

(t)
2,1)2 + E

(t)
2,1Φ

(t)
1 K

(t)
1,1(B

(t)
1,2)3(B

(t)
2,1)2

)
|

≤ O(
1

d3/2
)C0α

6
1Φ

(t)
2 H

(t)
2,2|(B

(t)
2,1)5|

= O(
1

d3/2
)|Λ(t)

2,1|

Comparing Γ
(t)
2,1 with Λ

(t)
1,1: It suffices to notice that

|Γ(t)
2,1| ≤ |E

(t)
1,2|C0α

6
1Φ

(t)
1 H

(t)
1,2|B

(t)
1,1|3(B

(t)
2,1)2 =

(B
(t)
2,1)2

(B
(t)
1,1)2

|E(t)
1,2||Λ

(t)
1,1|

Combining the bounds for Λ
(t)
2,1 and Γ

(t)
2,1, we obtain the proof of (b).

Then we can also calculate the gradients of feature v2 in this phase.

Lemma C.10 (learning feature v2 in phase I). For each t ≤ T1, if Induction C.3 holds at iteration t,
then using notations of (B.2), we have for each j ∈ [2]:

〈−∇wjL(W (t), E(t)), v2〉 =
(

1± Õ(α6
1)(E

(t)
3−j,j + (B

(t)
j,1)3)

)
Λ

(t)
j,2 (C.1)
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Proof. Again as in the proof of Lemma C.9, we expand the notations: (ignoring the superscript (t)

for the RHS)

Λ
(t)
j,2 = C0α

6
2ΦjHj,1B

5
j,2

Γ
(t)
j,2 = C0α

6
2ΦjE3−j,jB

3
3−j,2B

2
j,2H3−j,1

Υ
(t)
j,2 = C0α

6
1

(
ΦjB

3
j,1B

2
j,2Kj,2 + Φ3−jE3−j,jB

3
3−j,1B

2
j,2K3−j,2

)
We first compare Λ

(t)
j,2 and Γ

(t)
j,2 as follows: Lemma C.6 we have

• B(t)
3−j,2 ≤ Õ(B

(t)
j,2) by Induction C.3b;

• From Lemma C.6a,b we can have Φ
(t)
3−j ≤ Õ(α

O(1)
1 )Φ

(t)
j ,∀j ∈ [2].

Together they imply:

C0α
6
2E

(t)
3−j,j(B

(t)
3−j,2)3(B

(t)
j,2)2Φ

(t)
3−jH

(t)
3−j,1 ≤ Õ(α

O(1)
1 E

(t)
3−j,j)C0α

6
2Φ

(t)
j H

(t)
j,2(B

(t)
j,2)5

= Õ(α
O(1)
1 E

(t)
j,3−j)Λ

(t)
j,2 (C.2)

Now we turn to compare Λ
(t)
j,2 with Υ

(t)
j,2. We split Υ

(t)
j,2 into two terms Υ

(t)
j,2,1,Υ

(t)
j,2,2

Υ
(t)
j,2,1 = C0α

6
1Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2K

(t)
j,2 , Υ

(t)
j,2,2 = C0α

6
1Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
j,2)2K

(t)
3−j,2

For Υ
(t)
j,2,1, we can calculate

Υ
(t)
j,2,1 = C0α

6
1Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2K

(t)
j,2

≤ Õ(
C1α

6
2

d3/2
)(B

(t)
j,1)3 · C0α

6
1Φ

(t)
j H

(t)
j,1(B

(t)
j,2)2 (K(t)

j,` ≤ Õ(
C1α

6
`

d3/2 ) from Lemma C.6d)

≤ Õ(α6
1(B

(t)
j,1)3)C0α

6
2Φ

(t)
j H

(t)
j,1(B

(t)
j,2)5 (Õ( C1

d3/2 ) ≤ Õ((B
(t)
j,2)3) from Induction C.3b)

= Õ(α6
1(B

(t)
j,1)3)Λ

(t)
j,2 (C.3)

And for Υ
(t)
j,2,1, we use Induction C.3b and Lemma C.6d again to get

(B
(t)
3−j,1)3(B

(t)
3−j,2)2K

(t)
3−j,2 ≤ Õ(C1α

6
2(B

(t)
j,2)5)

and thus combined with Φ
(t)
3−j ≤ Õ(α6

1)Φ
(t)
j ,∀j ∈ [2] from Lemma C.6a,b, we can derive

Υ
(t)
j,2,2 = C0α

6
1Φ

(t)
3−jE

(t)
j,3−j(B

(t)
3−j,1)3(B

(t)
j,2)2K

(t)
3−j,2

≤ Õ(α6
1E

(t)
3−j,j)C0α

6
2Φ

(t)
j H

(t)
j,1(B

(t)
j,2)5

= Õ(α6
1E

(t)
3−j,j)Λ

(t)
j,2 (C.4)

Now combine the results of (C.2), (C.3) and (C.4) finishes the proof of (C.1).

Lemma C.11 (learning prediction head E1,2, E2,1 in phase I). If Induction C.3 holds at iteration
t ≤ T1, then we have

(a) −∇E1,2
L(W (t), E(t)) = O(Λ

(t)
1,1B

(t)
1,1)

(
−O(E

(t)
1,2) + Õ(

(B
(t)
1,2)3

(B
(t)
1,1)3

) +O(R
(t)
1,2)

)
;

(b) −∇E2,1L(W (t), E(t)) = Õ(
(B

(t)
1,2)3

(B
(t)
1,1)2

)Λ
(t)
1,1 +

∑
`∈[2] C2Λ

(t)
2,`B

(t)
2,`

(
−O(E

(t)
2,1) +O(R

(t)
1,2)
)

Proof. We first write down the gradient for E(t)
j,3−j : (ignoring the time superscript (t))

−∇Ej,3−jL(W,E) =
∑
`∈[2]

C0Φjα
6
`B

3
j,`(B

3
3−j,`Hj,3−` −B3

3−j,3−`Kj,3−`)−
∑
`∈[2]

Σj,`∇Ej,3−jEj,3−j
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where ∇Ej,3−jEj,3−j = E
[
2〈wj , ξp〉3〈w3−j , ξp〉3 + 2Ej,3−j〈w3−j , ξp〉6

]
. Thus we have

∇Ej,3−jE
(t)
j,3−j = O(1)E

(t)
j,3−j +O(R

(t)
1,2)

and by Claim C.5 and Lemma C.6a,b

Σ
(t)
j,` = O(Λ

(t)
1,1B

(t)
1,1)

(B
(t)
j,` )

6 + E
(t)
j,3−j(B

(t)
3−j,`)

3(B
(t)
j,` )

3

(B
(t)
1,1)6

Φ
(t)
j

Φ
(t)
1

≤ O(Λ
(t)
1,1B

(t)
1,1)

Now let us look at∇E1,2L(W (t), E(t)), first we consider the term∑
`∈[2]

C0Φ
(t)
1 α6

` (B
(t)
1,`)

3((B
(t)
2,`)

3H
(t)
1,3−` − (B

(t)
2,3−`)

3K
(t)
1,3−`)

Using Lemma C.6 and Induction C.3b,c, we know

• H(t)
1,1 ≤ Õ(H

(t)
1,2) at t ≤ T1,1 and H(t)

1,1 ≤ Õ(α6
1H

(t)
1,2) for t ∈ [T1,1, T1];

• B(t)
2,1, B

(t)
1,2, B

(t)
2,2 ≤ Õ(B

(t)
2,1) ≤ Õ(B

(t)
1,1);

• K(t)
1,3−` ≤ Õ(α6

1/d
3/2).

It can be computed that

C0Φ
(t)
1 α6

2(B
(t)
1,2)3(B

(t)
2,2)3H

(t)
1,1 ≤ Õ(1)

(
B

(t)
2,1

B
(t)
1,1

)3

C0Φ
(t)
1 α3

1(B
(t)
1,1)6H

(t)
1,2

∑
`∈[2]

∣∣∣C0Φ
(t)
1 α6

` (B
(t)
1,`)

3(B
(t)
2,`)

3K
(t)
1,3−`

∣∣∣ ≤ Õ(
α6

1

d3/2
)
(B

(t)
2,1)3

(B
(t)
1,1)3

C0Φ
(t)
1 α6

1(B
(t)
1,1)6H

(t)
1,2

Now we turn to ∇E2,1
L(W (t), E(t)), similarly we have

C0Φ
(t)
2 α6

1(B
(t)
2,1)3(B

(t)
1,1)3H

(t)
2,2 ≤ Õ(1)

(
B

(t)
2,1

B
(t)
1,1

)3

C0Φ
(t)
1 α6

1(B
(t)
1,1)6H

(t)
1,2

and since H(t)
2,1 ≤ O(C2) = O(H

(t)
1,2) by Lemma C.6c, we can go through the same arguments again

to obtain ∣∣∣C0Φ
(t)
2 α6

2(B
(t)
1,2)3(B

(t)
2,2)3H

(t)
2,1

∣∣∣ ≤ Õ(1)

(
B

(t)
1,2

B
(t)
1,1

)3

C0Φ
(t)
1 α6

1(B
(t)
1,1)6H

(t)
1,2

∣∣∣C0Φ
(t)
2 α6

2(B
(t)
1,2)3(B

(t)
2,1)3K

(t)
2,1

∣∣∣ ≤ Õ(
α6

1

d3/2
)

(
B

(t)
1,2

B
(t)
1,1

)3

C0Φ
(t)
1 α6

1(B
(t)
1,1)6H

(t)
1,2

Now the proof is complete.

Also, we will need the following lemma controlling gradient bounds for the noise term.

Lemma C.12 (update of R(t)
1,2 in phase I). Suppose Induction C.3 holds at iteration t ≤ T1, then we

have

(a) |〈−∇w1L(W (t), E(t)),ΠV ⊥w
(t)
2 〉| ≤ Õ( 1√

d
+ %)Λ

(t)
1,1B

(t)
1,1

(b) |〈−∇w2L(W (t), E(t)),ΠV ⊥w
(t)
1 〉| ≤ Õ( 1√

d
+ %)Λ

(t)
1,1B

(t)
1,1
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Proof. Proof of (a): Firstly, by Claim C.7a, we can directly write

〈∇w1
L(W (t), E(t)),ΠV ⊥w

(t)
2 〉 = −

∑
j,`

Σ
(t)
j,`〈∇w1

E(t)
j,3−j , w

(t)
2 〉

= −Λ
(t)
1,1B

(t)
1,1

∑
(j,`)∈[2]2

(B
(t)
j,` )

6 + E
(t)
j,3−j(B

(t)
3−j,`)

3(B
(t)
j,` )

3

(B
(t)
1,1)6

Φ
(t)
j

Φ
(t)
1

〈∇w1E
(t)
j,3−j , w

(t)
1 〉 (C.5)

Now we discuss each summand respectively: for (j, `) = (1, 1), we have

(B
(t)
j,` )

6 + E
(t)
j,3−j(B

(t)
3−j,`)

3(B
(t)
j,` )

3

(B
(t)
1,1)6

= 1 + E
(t)
1,2

(B
(t)
2,1)3

(B
(t)
1,1)3

= 1 + o(
1

d3/2(B
(t)
1,1)3

) (C.6)

where the last one is due to Induction C.3d. And for ` = 2, we can see from Induction C.3b and d,
that max(j,`)6=(1,1) |B

(t)
j,` | = Õ( 1√

d
) and E(t)

j,3−j ≤ o(1) to give

(B
(t)
j,2)6 + E

(t)
j,3−j(B

(t)
3−j,2)3(B

(t)
j,2)3

(B
(t)
1,1)6

Φ
(t)
j

Φ
(t)
1

≤ Õ(
1

d3
)

1

(B
(t)
1,1)6

Φ
(t)
j

Φ
(t)
1

On one hand, when t ≤ T1,1, we have α`B
(t)
j,` ≤ O(1) for all (j, `) ∈ [2]2, so Lemma C.6a

applies for both Φ
(t)
j and results in Φ

(t)
2 /Φ

(t)
1 ≤ O(1). We can also apply Induction C.3c to have

B
(t)
j,2/B

(t)
1,1 ≤ Õ(1). On the other hand, when t ∈ [T1,1, T1], we have by Induction C.3b and Lemma

C.6a,b that Φ
(t)
2 /Φ

(t)
1 ≤ Õ(α

O(1)
1 ) = do(1), but now B

(t)
1,1 = d−o(1) � Õ(d−1/2), therefore

Õ(
1

d3
)

1

(B
(t)
1,1)6

Φ
(t)
2

Φ
(t)
1

≤ Õ(
1

d3/2
)

1

(B
(t)
1,1)3

So together, they imply

(B
(t)
j,2)6 + E

(t)
j,3−j(B

(t)
3−j,2)3(B

(t)
j,2)3
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(t)
1,1)6

Φ
(t)
j

Φ
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1

≤ Õ(
1

d3/2(B
(t)
1,1)3

) (C.7)

and similarly, we have

(B
(t)
2,1)6 + E

(t)
2,1(B

(t)
1,1)3(B

(t)
2,1)3

(B
(t)
1,1)6

Φ
(t)
2

Φ
(t)
1

≤ Õ(
1

d3/2(B
(t)
1,1)3

) (C.8)

Next we turn to 〈∇w1
E(t)
j,3−j , w

(t)
2 〉. When j = 1, we can apply Claim C.7d to get

〈∇w1
E(t)

1,2, w
(t)
2 〉 = O(R

(t)
1,2 + %) +O(E

(t)
1,2) = O(%+

1√
d

) +O(E
(t)
1,2) ≤ O(%+

1√
d

) (C.9)

and when j = 2, we can apply Claim C.7e to get

〈∇w1
E(t)

2,1, w
(t)
2 〉 = −(E

(t)
2,1)2O(R

(t)
1,2 + %) +O(E2,1) = Õ(

1

d2
)(%+

1√
d

) +O(
1

d
) (C.10)

Combining (C.5), (C.6), (C.7), (C.8), (C.9), and (C.10) completes the proof of (a).

Proof of (b): The Σ
(t)
j,` part is the same as in the proof of (a), so we only deal with 〈∇w2

E(t)
1,2, w

(t)
1 〉

and 〈∇w2
E(t)

2,1, w
(t)
1 〉 here. For 〈∇w2

E(t)
2,1, w

(t)
1 〉, we apply Claim C.7d to get

〈∇w2
E(t)

2,1, w
(t)
1 〉 = O(R

(t)
1,2 + %) +O(1)E

(t)
1,2 (C.11)

and for 〈∇w2
E(t)

1,2, w
(t)
1 〉, we have

〈∇w2E
(t)
1,2, w

(t)
1 〉 = O(R

(t)
1,2 + %)(E

(t)
2,1)2 +O(1)E

(t)
2,1 (C.12)

Inserting (C.6), (C.7), (C.8) and (C.11), (C.12) into the expression of
〈−∇w2

L(W (t), E(t)),ΠV ⊥w
(t)
1 〉 finishes the proof of (b).
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C.4 At the End of Phase I

Lemma C.13 (Phase I). Suppose η ≤ 1
poly(d) is sufficiently small, then Induction C.3 holds for at

least all t ≤ T1 = O(d
2

η ), and at iteration t = T1, we have

(a) B(T1)
1,1 = Ω(1);

(b) ‖w(T1)
j ‖2 = 1± Õ(%+ 1√

d
);

(c) B(T1)
2,1 = Θ̃( 1√

d
) and B(T1)

j,2 = B
(0)
j,2 (1± o(1)) for j ∈ [2];

(d) E(T1)
2,1 = Õ(ηE/ηd ) and E(T1)

1,2 ≤ Õ(%+ 1√
d
);

(e) R(T1)
1,1 , R

(T1)
2 = Θ(1) and R(T1)

1,2 = Õ(%+ 1√
d
).

Proof. We begin by first prove the existence of T1 := min{t : B
(t)
1,1 ≥ 0.01} = O(d

2

η ) if Induction

C.3 holds whenever B(t)
1,1 ≤ 0.01, then we will turn back to prove Induction C.3 holds throughout

t ≤ T1. We split the analysis into two stages:
Proof of T1 ≤ O(d

2

η ): By Lemma C.9a we can write down the update of B(t)
1,1 as

B
(t+1)
1,1 = B

(t)
1,1 + η(1± Õ(

1

d
))Λ

(t)
1,1 = B

(t)
1,1 + η(1± Õ(

1

d
))Φ

(t)
1 C0α

6
1H

(t)
1,2(B

(t)
1,1)5 (C.13)

When α1B
(t)
1,1 ≤ O(1), by Lemma C.6a,c we have Φ

(t)
1 = Θ( 1

C2
2

) and H(t)
1,2 = Ω(C2), this means we

can lower bound the update as

B
(t+1)
1,1 ≥ B(t)

1,1 + Ω(
ηC0α

6
1

C2
)(B

(t)
1,1)5

since C0α
6
1

C2
is a constant, we know there exist some t′ ≥ 0 such that B(t′)

1,1 ≥ Ω( 1
α1

). Also recall

that T1,1 := min{t : B
(t)
1,1 ≥ Ω( 1

α1
)}. So by Lemma H.1, where η = 1

poly(d) , Ct = Ω(
C0α

6
1

C2
)

δ = 1
polylog(d) and A = Ω( 1

α1
), log(A/B

(0)
1,1) = Õ(1), we have

T1,1 = O(
C2

ηC0α6
1

)
∑

xt≤O( 1
α1

)

ηCt ≤ O(
C2

ηC0α6
1

)

(
O(1) +

Õ(η)

B
(0)
1,1

)
1

(B
(0)
1,1)4

≤ Õ(
1

ηα6
1(B

(0)
1,1)4

)

Since (B
(0)
1,1)4 ≥ Ω̃( 1

d2 ) from our initialization, we have T1,1 ≤ O(d
2

η ) and thus T1,1 exists. Now we

consider when B(t)
1,1 ≥ Ω( 1

α1
). Now by Lemma C.6b,c, we have Φ

(t)
1 ≥ Ω((C2 + α6

1)−2), which
gives an update:

B
(t+1)
1,1 ≥ B(t)

1,1 + Ω(
ηC0α

6
1

(C2 + α6
1)2

)(B
(t)
1,1)5

so again by Lemma H.1, choosing Ct = Ω(
C0α

6
1

(C2+α6
1)2 ),

T1 =
O((C2 + α6

1)2)

ηC0α6
1

∑
xt∈[Ω( 1

α1
),0.01]

ηCt ≤

(
O(1) +

Õ(η)

B
(T1,1)
1,1

)
Õ(α12

1 )

(B
(T1,1)
1,1 )4

≤ Õ(
α6

1

η(B
(T1,1)
1,1 )4

) ≤ O(
α6

1

η
)

where O(
α6

1

η )� O(d
2

η ), so we have proved that T1 exist. Now we begin to prove that Induction C.3
holds for all t ≤ T1.

Proof of Induction C.3: We first prove (b)–(d), and then come back to prove (a) and (d).
At t = 0, we know all induction holds from Properties C.1. Now we suppose Induction C.3 holds for
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all iterations ≤ t− 1 and prove it holds at t.

The growth of B(t)
2,1: Applying Lemma C.9, we have for t ≤ T1,1

B
(t+1)
1,1 ≥ B(t)

1,1 + η(1− Õ(
1

d
))Λ

(t)
1,1

B
(t+1)
2,1 ≤ B(t)

2,1 + η(1 +O(
1√
d

))Λ
(t)
2,1 + η

(B
(t)
2,1)2

(B
(t)
1,1)2

E
(t)
1,2Λ

(t)
1,1

For some t′1 := min{t : B
(t)
1,1 ≥

Ω(1)
d0.49 }, we have E(t)

1,2 ≤ Õ(B
(t)
1,1%) . 1

d0.49 during t ≤ t′1, and

(B
(t)
2,1)2

(B
(t)
1,1)2

E
(t)
1,2Λ

(t)
1,1 .

(B
(t)
2,1)2

d0.49(B
(t)
1,1)2

Λ
(t)
1,1 ≤ Õ(

1

d0.49
)Λ

(t)
2,1

which allow us to give an upper bound to B(t+1)
2,1 as

B
(t+1)
2,1 ≤ (1 +O(

1√
d

))Λ
(t)
2,1 + Õ(

1

d0.49
)Λ

(t)
2,1

≤ (1 + Õ(
1

d0.49
))Φ

(t)
2 C0α

6
1C2E(t)

2 (1 +
1

polylog(d)
)(B

(t)
2,1)5 (when t ≤ t′1)

Since we also have

B
(t+1)
1,1 ≥ (1− Õ(

1

d
))Λ

(t)
1,1 ≥ (1− Õ(

1

d
))Φ

(t)
1 C0α

6
1E

(t)
1 (1− 1

polylog(d)
)(B

(t)
1,1)5

Since B(0)
1,1 ≥ B

(0)
2,1(1 + Ω( 1

log d )), we can now apply Corollary H.2 to the two sequence B(t+1)
1,1 and

B
(t+1)
2,1 , where St =

Φ
(t)
1 E

(t)
1

Φ
(t)
2 E

(t)
2

(1 + 1
polylog(d) ) to get

B
(t′1)
1,1 ≥

1

d0.499
while B

(t′1)
2,1 ≤ Õ(

1√
d

)

Note that here the update of B(t)
2,1 at every step satisfies sign(B

(t+1)
2,1 − B(t)

2,1) = sign(B
(t)
2,1) which

implies B(t′1)
2,1 = Θ̃( 1√

d
). Now for every T ∈ [t′1, T1], we can apply Lemma H.3 to get that

∑
t∈[t′1,T ]

η
(B

(t)
2,1)2

(B
(t)
1,1)2

E
(t)
1,2Λ

(t)
1,1 ≤ Õ(%+

1√
d

)O(
1

B
(t′1)
1,1

) max
t≤T
{(B(t)

2,1)2} ≤ O(
1

d0.5+Ω(1)
)

Suppose we have proved that B(t)
2,1 ≤ Õ( 1√

d
) for each t ≤ T , we define a new sequence

B̃
(t+1)
2,1 = B̃

(t)
2,1 + η(1 + Õ(

1

d0.49
))Φ

(t)
2 C0α

6
1C2E(t)

2 (1 +
1

polylog(d)
)(B̃

(t)
2,1)5,

where B̃(t′1)
2,1 = B

(t′1)
2,1 +

∑
t∈[t′1,T ]

η
(B

(t)
2,1)2

(B
(t)
1,1)2

E
(t)
1,2Λ

(t)
1,1 = (1± o(1))B̃

(t′1)
2,1

It can be directly seen that |B̃(t)
2,1 − B̃

(0)
2,1 | ≥ |B

(t)
2,1 − B

(0)
2,1 | for all t ∈ [t′1, T ]. Notice that now

B̃
(t′1)
2,1 ≤ dΩ(1)B

(t′1)
1,1 , we can now apply Corollary H.2 again to get

|B(T )
2,1 −B

(0)
2,1 | ≤ |B̃

(T )
2,1 − B̃

(0)
2,1 | ≤

1√
dpolylog(d)

(for every T ≤ T1,1)

Now we deal with t ∈ [T1,1, T1]. During this stage, we can directly apply Corollary H.2 to B̃(t)
2,1 and

B
(t)
1,1, where St =

Φ
(t)
1 H

(t)
1,2

Φ
(t)
2 H

(t)
2,2

≤ O(α
O(1)
1 ), to get that

|B(T )
2,1 −B

(0)
2,1 | ≤ |B̃

(T )
2,1 − B̃

(0)
2,1 | ≤

1√
dpolylog(d)

(for every T ≤ T1)
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And thus by Lemma C.1, we have B(T )
2,1 = B

(0)
2,1(1± o(1)).

The growth of B(t)
1,2 and B(t)

2,2: By Lemma C.10, we can write down the update as

B
(t+1)
j,2 = B

(t)
j,2 + η

(
1± Õ(α6

1)(E
(t)
3−j,j + (B

(t)
j,1)3)

)
Λ

(t)
j,2

Since B(t)
2,1 ≤ Õ( 1√

d
) and E(t)

1,2 ≤ Õ(%+ 1√
d
)B

(t)
1,1, E

(t)
2,1 ≤ Õ( 1

d ) because we chose ηE ≤ η, we only

need to care about (B
(t)
1,1)3 in the update expression. Now define t′2 := min{t : B

(t)
1,1 ≥ Ω( 1

α2
1
)}, we

have

• For t ≤ t′2, by Corollary H.2 and setting xt = B
(t)
1,1, Ct = (1 − Õ( 1

d ))Φ
(t)
1 C0α

6
1H

(t)
1,2,

St = O(
α6

2Φ
(t)
j H

(t)
j,1

α6
1Φ

(t)
1 H

(t)
1,2

) ≤ Õ(
α6

2

α6
1
)� 1

polylog(d) (by Lemma C.6a,c), we have |B(t)
j,2 − B

(0)
j,2 | ≤

O(
α6

2

α6
1

1√
d
) . 1√

dpolylog(d)
for all t ≤ t′2, which implies B(t′2)

j,2 = B
(0)
j,2 ± 1√

dpolylog(d)
∈

[Ω( 1√
d log d

), O(
√

log d√
d

)] by Lemma C.1.

• For t ∈ [t′2, T1], we can use Corollary H.2 again and let xt = B
(t)
1,1, we know

B
(t′2)
1,1 ≥ dΩ(1)B

(t′2)
2,1 . Setting Ct = (1 − Õ( 1

d ))Φ
(t)
1 C0α

6
1H

(t)
1,2, St = O((1 +

α6
1)
α6

2Φ
(t)
j H

(t)
j,1

α6
1Φ

(t)
1 H

(t)
1,2

) ≤ O(αO(1)), we can have |B(t)
j,2 − B

(t′2)
j,2 | . 1√

dpolylog(d)
, which implies

B
(t)
j,2 ∈ [Ω( 1√

d log d
), O(

√
log d√
d

)] for all t ∈ [t′2, T1].

This proves Induction C.3b. Indeed, simple calculations also proves Induction C.3c, since the update
of B(t)

1,1 is always larger than others’ during t ≤ T1.

For Induction C.3d: From Lemma C.11, we can write down the update

−∇E1,2L(W (t), E(t)) = O(Λ
(t)
1,1B

(t)
1,1)

(
−C1E

(t)
1,2 + Õ(

(B
(t)
1,2)3

(B
(t)
1,1)3

) + C2(R
(t)
1,2 + %)

)

for some constants C1, C2 = Θ(1). Applying Lemma H.3 to O(Λ
(t)
1,1B

(t)
1,1)

(B
(t)
1,2)3

(B
(t)
1,1)3

, we can obtain

∑
t≤T

O(ηEΛ
(t)
1,1B

(t)
1,1)

(B
(t)
1,2)3

(B
(t)
1,1)3

=
ηE
η

∑
t≤T

O(ηΛ
(t)
1,1)

(B
(t)
1,2)3

(B
(t)
1,1)2

≤ Õ(
ηE/η

d3/2
)

1

B
(0)
1,1

≤ Õ(
ηE/η

d
)

So here it suffices to notice that whenever |E(t)
1,2| < 2C2

C1
(R

(t)
1,2 + %) (which is obviously satisified at

t = 0), we would have

O(Λ
(t)
1,1B

(t)
1,1)

(
−O(E

(t)
1,2) + C2(R

(t)
1,2 + %)

)
= −O(Λ

(t)
1,1B

(t)
1,1)Õ(R

(t)
1,2 + %) ≤ O(Λ

(t)
1,1B

(t)
1,1)Õ(%+

1√
d

)

In that case, we will always have (since E(0)
1,2 = 0)

E
(t+1)
1,2 ≤

∣∣∣∣∣∣
∑
t≤T

Õ(ηEΛ
(t)
1,1B

(t)
1,1)

(B
(t)
1,2)3

(B
(t)
1,1)3

∣∣∣∣∣∣+
∑
s≤t

O(ηEΛ
(s)
1,1B

(s)
1,1)(R

(s)
1,2 + %) ≤ Õ(%+

1√
d

)
ηE
η
B

(t+1)
1,1

Similarly for∇E2,1
L(W (t), E(t)), we can write down

−∇E2,1
L(W (t), E(t)) = Õ(

(B
(t)
1,2)3

(B
(t)
1,1)2

)Λ
(t)
1,1 +

∑
`∈[2]

C2Λ
(t)
2,`B

(t)
2,`

(
−O(E

(t)
2,1R

(t)
2 ) +O(R

(t)
1,2)
)
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by Lemma H.3, we have

∑
t≤T1

ηEÕ(
(B

(t)
1,2)3

(B
(t)
1,1)2

)Λ
(t)
1,1 ≤ Õ(

ηE/η

d
)

and since from previous comparison results we know that∑
t≤T1

∑
`∈[2]

ηEC2Λ
(t)
2,`B

(t)
2,` =

ηE
η

∑
t≤T1

∑
`∈[2]

ηC2Λ
(t)
2,`B

(t)
2,` ≤ Õ(

ηE/η

d
)

we can then prove the claim.

For Induction C.3a: We can write down the update of ‖w(t)
j ‖22 as follows:

‖w(t+1)
j ‖22 = ‖w(t)

j − η∇wjL(W (t), E(t))‖22
= ‖w(t)

j ‖
2
2 − η〈∇wjL(W (t), E(t)), w

(t)
j 〉+ η2‖∇wjL(W (t), E(t))‖22

from (B.2) and Induction C.3a,b,c at iteration t and our assumption on ξp, we know

‖∇wjL(W (t), E(t))‖22 ≤ Õ(d)

which allow us to choose η ≤ 1
poly(d) to be small enough so that ηdT1 ≤ 1

ηpoly(d) . Then by Lemma
C.8b, we have

‖w(t+1)
j ‖22 = ‖w(0)

j ‖
2
2 ± η

∑
s≤t

|〈∇wjL(W (s), E(s)), w
(s)
j 〉| ±

1

poly(d)

≤ ‖w(0)
j ‖

2
2 ± η

∑
s≤t

Õ(%+
1√
d

)|Λ(s)
1,1|

∑
j∈[2]

|E(s)
j,3−j | ±

1

poly(d)

Since from the above analysis of the update of B(t)
1,1, we know

∑
t≤T1

Λ
(t)
1,1 ≤ O(1). Moreover, we

also know that |B(t)
1,1| is increasing and sign(Λ

(t)
1,1) = sign(Λ

(s)
1,1) for any s, t ≤ T1. Thus they imply∑

s≤t |Λ
(s)
1,1| = |

∑
s≤t Λ

(s)
1,1| = O(1), which can be combine with Induction C.3d to prove the claim.

Proof of Induction C.3e: We can write down the update of R(t)
1,2 = 〈ΠV ⊥w

(t)
1 , w

(t)
2 〉 as

follows

〈ΠV ⊥w
(t+1)
1 , w

(t+1)
2 〉 = 〈ΠV ⊥w

(t)
1 −ΠV ⊥η∇w1

L(W (t), E(t)),ΠV ⊥w
(t)
2 −ΠV ⊥η∇w2

L(W (t), E(t))〉

= R
(t)
1,2 − η〈∇w1

L(W (t), E(t)),ΠV ⊥w
(t)
2 〉 − η〈∇w2

L(W (t), E(t)),ΠV ⊥w
(t)
1 〉

+ η2〈ΠV ⊥∇w1L(W (t), E(t)),ΠV ⊥∇w2L(W (t), E(t))〉

By Cauchy-Schwarz inequality and the same analysis above we have

|〈ΠV ⊥∇w1L(W (t), E(t)),ΠV ⊥∇w2L(W (t), E(t))〉| ≤ ‖∇w1L(W (t), E(t))‖2‖∇w2L(W (t), E(t))‖2
≤ Õ(d)

so by our choice of η∑
t≤T1

η2|〈ΠV ⊥∇w1L(W (t), E(t)),ΠV ⊥∇w2L(W (t), E(t))〉| ≤ 1

poly(d)

and by Lemma C.12 we have∣∣∣−η〈∇w1L(W (t), E(t)),ΠV ⊥w
(t)
2 〉 − η〈∇w2L(W (t), E(t)),ΠV ⊥w

(t)
1 〉
∣∣∣ ≤ ηÕ(Λ

(t)
1,1B

(t)
1,1)(%+

1√
d

)
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which implies

|〈ΠV ⊥w
(t+1)
1 , w

(t+1)
2 〉| ≤ |〈ΠV ⊥w

(0)
1 , w

(0)
2 〉|+

∑
s≤t

∑
j∈[2]

η|〈∇wjL(W (s), E(s)),ΠV ⊥w
(s)
3−j〉|+

1

poly(d)

≤ Õ(
1√
d

) +
∑
s≤t

ηÕ(Λ
(s)
1,1B

(s)
1,1) +

1

poly(d)

≤ Õ(
1√
d

) + Õ(%+
1√
d

)B
(t+1)
1,1

≤ Õ(%+
1√
d

)

which completes the proof of Induction C.3. As for (a) – (e) of Lemma C.13, they are just direct
corrolary of our induction at t = T1.

D Phase II: The Substitution Effect of Prediction Head

In this phase, As B(t)
1,1 is learned to become very large (B(t)

1,1 & ‖w(t)
1 ‖2). The focus now shift to grow

E
(t)
2,1, because we want C1α

6
1((B

(t)
2,1)3 +E

(t)
2,1(B

(t)
1,1)3)2 in H(t)

2,1 to dominate E(t)
2,1. We can write down

the gradient of E(t)
2,1 as

−∇E2,1
L(W (t), E(t)) =

∑
`∈[2]

C0Φ
(t)
2 α6

` (B
(t)
2,`)

3((B
(t)
1,`)

3H
(t)
2,3−` − (B

(t)
2,3−`)

3K
(t)
2,3−`)−

∑
`∈[2]

Σ
(t)
2,`∇E2,1

E(t)
2,1

Now let us define

T2 := min{t : R
(t)
2 <

1

log d
|E(t)

1,2|} (D.1)

We will prove that E(T2)
2,1 reaches at most O(

√
ηE/η) and the following induction hypothesis holds

throughout t ∈ [T1, T2]. In this phase, the learning of E(t)
2,1 is much faster than the growth of the

first feature v1 such that T2 − T1 = o(T1/
√
d), which is due to the acceleration effects brought by

B
(t)
1,1 = Ω(1) during this phase.

D.1 Induction in Phase II

We will be based on the following induction hypothesis during phase II.

Inductions D.1 (Phase II). When t ∈ [T1, T2], we hypothesize the followings would hold

(a) B(t)
1,1 = Θ(1), B(t)

j,` = B
(T1)
j,` (1 ± o(1)) = Θ̃( 1√

d
) for (j, `) 6= (1, 1) and sign(B

(t)
j,` ) =

sign(B
(T1)
j,` );

(b) |R(t)
1,2| = Õ(%+ 1√

d
)α
O(1)
1 [R

(t)
1 ]1/2[R

(t)
2 ]1/2;

(c) R(t)
1 ∈ [Ω( 1

d3/4α2
1
), O(1)], R(t)

2 ∈ [Ω( 1
log d

√
ηE/η), O(1)];

(d) E(t)
1,2 ≤ Õ(%+ 1√

d
)[R

(t)
1 ]3/2 and E(t)

2,1 ≤ O(
√
ηE/η).

Under Induction D.1, we have some results as direct corollary.

Claim D.2. At each iteration t ∈ [T1, T2], if Induction C.3 holds, then

(a) E(t)
j = Θ(C2[R

(t)
j ]3);

(b) E(t)
j,3−j = E(t)

j ± Õ(E
(t)
j,3−j(%+ 1√

d
)[R

(t)
1 ]3/2[R

(t)
2 ]3/2) +O((E

(t)
j,3−j)

2[R
(t)
3−j ]

3) for each j ∈ [2];
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Proof. It is trivial to derive (a) from the expression of E(t)
j and our assumption of ξp. For (b) it

suffices to directly calculate the expression of E(t)
j,3−j along with Induction D.1b.

Lemma D.3 (variables control in phase II). In Phase II (t ∈ [T1, T2]), if Induction D.1 holds, then

(a) Φ
(t)
1 = Θ̃( 1

α12
1

), Φ
(t)
2 = Θ((C2[R

(t)
2 ]3 + C1α

6
1(E

(t)
2,1)2)−2);

(b) K(t)
1,` = Õ(α6

`/d
3/2), K(t)

2,` = Õ(E
(t)
2,1α

6
`/d

3/2 + α6
`/d

3)

(c) H(t)
1,1 = Θ(C1α

6
1), H(t)

1,2 = Õ([R
(t)
1 ]3), H(t)

2,2 = Θ(C2[R
(t)
2 ]3), H(t)

2,1 = Θ(C2[R
(t)
2 ]3 +

C1α
6
1(E

(t)
2,1)2).

Proof. The proof of (a) directly follows from Induction D.1a,c and Claim D.2. The proof of (b)
follows directly from the expression ofKj,` and Induction D.1a,d. The proof of (c) is also similar.

D.2 Gradient Lemmas for Phase II

Lemma D.4 (learning prediction head E1,2, E2,1 in phase II). If Induction D.1 holds at iteration
t ∈ [T1, T2], then we have

(a) −∇E1,2
L(W (t), E(t)) = (1± Õ(

α
O(1)
1

d3/2
))Σ

(t)
1,1(−2E

(t)
1,2[R

(t)
2 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

± Σ
(t)
1,1Õ(

ηE/η√
d

) max{[R(t)
1 ]3,

α
O(1)
1

d5/2
},

(b) −∇E2,1
L(W (t), E(t)) = (1± Õ(

α
O(1)
1

d3/2
))C0Φ

(t)
2 α6

1(B
(t)
2,1)3(B

(t)
1,1)3H

(t)
2,2

±O(Σ
(t)
2,1)(|E(t)

2,1|[R
(t)
1 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

Proof. We first write down the gradient for E(t)
j,3−j : (ignoring the time superscript (t))

−∇Ej,3−jL(W,E) =
∑
`∈[2]

C0Φjα
6
`B

3
j,`(B

3
3−j,`Hj,3−` −B3

3−j,3−`Kj,3−`)−
∑
`∈[2]

Σj,`∇Ej,3−jEj,3−j

where∇Ej,3−jEj,3−j = E
[
2〈wj , ξp〉3〈w3−j , ξp〉3 + 2Ej,3−j〈w3−j , ξp〉6

]
. Thus we have

∇Ej,3−jE
(t)
j,3−j = 2E

(t)
j,3−j [R

(t)
3−j ]

3 ±O(R
(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

and by Claim B.1 and Induction D.1a, if (j, `) 6= (1, 1)

Σ
(t)
j,` = O(Σ

(t)
1,1)

(B
(t)
j,` )

6 + E
(t)
j,3−j(B

(t)
3−j,`)

3(B
(t)
j,` )

3

(B
(t)
1,1)6

Φ
(t)
j

Φ
(t)
1

≤ o( 1

d3/2
)Σ

(t)
1,1

Φ
(t)
j

Φ
(t)
1

Therefore for j = 1: ∑
`∈[2]

Σ
(t)
1,`∇E1,2E

(t)
1,2 = (1± Õ(

α
O(1)
1

d3/2
))Σ

(t)
1,1∇E1,2E

(t)
1,2

Now by Induction D.1a,c and Lemma D.3b,c we have (B
(t)
1,`)

3H
(t)
1,3−` ≤

max{Θ(C2[R
(t)
1 ]3), Õ(

α6
1

d3/2 )}, which leads to the bounds

|(B(t)
1,`)

3(B
(t)
2,`)

3H
(t)
1,3−`| ≤ Õ(

1

d3/2
) max{[R(t)

1 ]3,
α6

1

d3
}, |(B(t)

1,`)
3(B

(t)
2,3−`)

3K
(t)
1,3−`| ≤ Õ(

1

d3
)

which implies∣∣∣∣∣∣
∑
`∈[2]

C0Φ
(t)
1 α6

` (B
(t)
1,`)

3((B
(t)
2,`)

3H
(t)
1,3−` − (B

(t)
2,3−`)

3K
(t)
1,3−`)

∣∣∣∣∣∣ . Õ(
ηE/η√
d

)Σ
(t)
1,1 max{[R(t)

1 ]3,
α
O(1)
1

d5/2
}
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Combining above together, we have

−∇E1,2
L(W (t), E(t))

= (1 + o(
1

d3/2
))Σ

(t)
1,1(−2E

(t)
1,2[R

(t)
2 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 ± Õ(

ηE/η√
d

) max{[R(t)
1 ]3,

α
O(1)
1

d5/2
})

For −∇E2,1L(W (t), E(t)), the expression is slightly different, we first observe that by Induction
D.1a

∆
(t)
2,2 ≤ Õ(

1

d3/2
)∆

(t)
2,1

Meanwhile, by Induction D.1a and Lemma D.3b,c , we have

Ξ
(t)
2 ≤ Õ(

α
O(1)
1

d3
)C0C2Φ

(t)
2 [R

(t)
2 ]3,

Moreover, we can also calculate Σ
(t)
2,1 = C0C2α

6
1E

(t)
2,1Φ

(t)
2 (B

(t)
2,1)3) = Õ(

α6
1

d3/2 )Φ
(t)
2 , Σ

(t)
2,2 =

Õ(
α6

2

d3 )Φ
(t)
2 , which gives∑
`∈[2]

Σ
(t)
2,`∇E2,1

E(t)
2,1 = Σ

(t)
2,1(−Θ(E

(t)
2,1)[R

(t)
1 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

Now we combine the above results and get

−∇E2,1L(W (t), E(t)) = (1± Õ(
α
O(1)
1

d3/2
))C0Φ

(t)
2 α6

1(B
(t)
2,1)3(B

(t)
1,1)3E(t)

2,1

±O(Σ
(t)
2,1)(|E(t)

2,1|[R
(t)
1 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

Lemma D.5 (reducing noise in phase II). Suppose Induction D.1 holds at t ∈ [T1, T2], then

(a) 〈−∇w1
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉 = Σ

(t)
1,1Θ(−[R

(t)
1 ]3 ± Õ(|E(t)

1,2| +
|E(t)

2,1|
2

d3/2 )(R
(t)

1,2 +

%)[R
(t)
1 ]3/2[R

(t)
2 ]3/2);

(b) 〈−∇w1L(W (t), E(t)),ΠV ⊥w
(t)
2 〉 = Σ

(t)
1,1((−Θ(R

(t)

1,2) + O(%))[R
(t)
1 ]5/2[R

(t)
2 ]1/2 + Õ(|E(t)

1,2| +
|E(t)

2,1|
2

d3/2 )R
(t)
1 [R

(t)
2 ]2)

And furthermore

(c) 〈−∇w2
L(W (t), E(t)),ΠV ⊥w

(t)
2 〉 = −Θ([R

(t)
2 ]3)

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
±O

(∑
j,`

Σ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
;

(d) 〈−∇w2
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉 =

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2

+O
(∑
j,`

Σ
(t)
j,`E

(t)
j,3−jR

(t)
2 [R

(t)
1 ]2

)

Proof. The proof can be obtained directly from some calculation using Claim B.1 as follows:
Proof of (a): From (B.2), we can obtain that

〈−∇w1
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉 = −

∑
j,`

Σ
(t)
j,`〈∇w1

E(t)
j,3−j , w

(t)
1 〉
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Now from Claim B.1a and Induction D.1a, we know (B
(t)
j,` )

3 ≤ Õ( 1
d3/2 ) and the following

Σ
(t)
j,` = O(Σ

(t)
1,1)

(B
(t)
j,` )

6 + E
(t)
j,3−j(B

(t)
3−j,`)

3(B
(t)
j,` )

3

(B
(t)
1,1)6

Φ
(t)
j

Φ
(t)
1

≤ Õ(
E

(t)
j,3−j

d3/2
)Σ

(t)
1,1

Φ
(t)
j

Φ
(t)
1

for any (j, `) 6= (1, 1)

From Induction D.1a,c, we know ((B
(t)
2,`)

3 +E
(t)
2,1(B

(t)
1,`)

3)2 ≤ Õ( 1
d3/2 )E

(t)
2,1 and R(t)

2 = Θ(1), which

by Claim D.2a,b and Lemma D.3a gives Φ
(t)
2 /Φ

(t)
1 ≤ Õ(α

O(1)
1 ). Combine the bounds above, we can

obtain Σ
(t)
j,` = Õ(E

(t)
j,3−j/d

3/2)Σ
(t)
1,1. We can then directly apply Claim B.1 to prove Lemma D.5a as

follows
〈−∇w1

L(W (t), E(t)),ΠV ⊥w
(t)
1 〉

= (1± Õ(E
(t)
1,2))Σ

(t)
1,1

(
−Θ([R

(t)
1 ]3)±O(E

(t)
1,2)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
+ Õ(E

(t)
2,1/d

3/2)Σ
(t)
1,1

(
−Θ((E

(t)
2,1)2)[R

(t)
1 ]3 ±O(E

(t)
2,1)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
= Θ(Σ

(t)
1,1)
(
− [R

(t)
1 ]3 ± Õ(|E(t)

1,2|+
|E(t)

2,1|2

d3/2
)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
(Since |E(t)

1,2| ≤ d−Ω(1) by Induction D.1c,d)

Proof of (b): For Lemma D.5b, we can use the same analysis for Σ
(t)
1,1 above and Claim B.1(d,e) to

get (again we have used Σ
(t)
j,` = Õ(E

(t)
j,3−j)Σ

(t)
1,1 = o(Σ

(t)
1,1))

〈−∇w1L(W (t), E(t)),ΠV ⊥w
(t)
2 〉

= (1± Õ(E
(t)
1,2))Σ

(t)
1,1

(
(−Θ(R

(t)

1,2)±O(%))[R
(t)
1 ]5/2[R

(t)
2 ]1/2 + E

(t)
1,2R

(t)
1 [R

(t)
2 ]2

)
+ Õ(E

(t)
2,1/d

3/2)Σ
(t)
1,1

(
(−Θ(R

(t)

1,2) +O(%))(E
(t)
2,1)2[R

(t)
1 ]5/2[R

(t)
2 ]1/2 + E

(t)
2,1R

(t)
1 [R

(t)
2 ]2

)
= Σ

(t)
1,1((−Θ(R

(t)

1,2) +O(%))[R
(t)
1 ]5/2[R

(t)
2 ]1/2 + Õ(|E(t)

1,2|+
|E(t)

2,1|2

d3/2
)R

(t)
1 [R

(t)
2 ]2)

Proof of (c): Similarly to the proof of (a), we can also expand as follows

〈−∇w2L(W (t), E(t)),ΠV ⊥w
(t)
2 〉

= (1±O(E
(t)
1,2))Σ

(t)
1,1

(
− [R

(t)
2 ]3Θ((E

(t)
1,2)2)±O(E

(t)
1,2)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
−
∑
`∈[2]

Σ
(t)
2,`

(
[R

(t)
2 ]3 ±O(E

(t)
2,1)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
= −[R

(t)
2 ]3

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
±O

(∑
j,`

Σ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
Proof of (d): Similarly, we can calculate (again by Σ

(t)
j,` = Õ(E

(t)
j,3−j)Σ

(t)
1,1 = o(Σ

(t)
1,1))

〈−∇w2
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉

=
∑
`∈[2]

Σ
(t)
1,`

(
(−Θ(R

(t)

1,2)±O(%))(E
(t)
1,2)2[R

(t)
2 ]5/2[R

(t)
1 ]1/2 + E

(t)
1,2R

(t)
2 [R

(t)
1 ]2

)
+
∑
`∈[2]

Σ
(t)
2,`

(
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2 + E

(t)
2,1R

(t)
2 [R

(t)
1 ]2

)
= (1± Õ(E

(t)
1,2))Σ

(t)
1,1

(
(−Θ(R

(t)

1,2)±O(%))(E
(t)
1,2)2[R

(t)
2 ]5/2[R

(t)
1 ]1/2 + E

(t)
1,2R

(t)
2 [R

(t)
1 ]2

)
+
∑
`∈[2]

Σ
(t)
2,`

(
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2 + E

(t)
1,2R

(t)
2 [R

(t)
1 ]2

)
=
(

Σ
(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2 +O

(∑
j,`

Σ
(t)
j,`E

(t)
j,3−jR

(t)
2 [R

(t)
1 ]2

)
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which completes the proof.

Lemma D.6 (learning feature v2 in phase II). For each t ∈ [T1, T2], if Induction D.1 holds at iteration
t, then we have for each j ∈ [2]:

|〈−∇wjL(W (t), E(t)), v2〉| ≤ Õ(
α6

2α
6
1

d5/2
)
(

Φ
(t)
j (|E(t)

j,3−j |+ [R
(t)
j ]3) + Φ

(t)
3−j(|E

(t)
3−j,j |[R

(t)
3−j ]

3 +
|E(t)

3−j,j |2

d3/2
)
)

Proof. Again as in the proof of Lemma C.9, we expand the notations: (ignoring the superscript (t)

for the RHS)

〈−∇wjL(W (t), E(t)), v2〉 = Λ
(t)
j,2 + Γ

(t)
j,2 −Υ

(t)
j,2 (D.2)

where

Λ
(t)
j,2 = C0α

6
2Φ

(t)
j H

(t)
j,1(B

(t)
j,2)5

Γ
(t)
j,2 = C0α

6
2Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,2)3(B

(t)
j,2)2H

(t)
3−j,1

Υ
(t)
j,2 = C0α

6
1

(
Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2K

(t)
j,2 + Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
j,2)2K

(t)
3−j,2

)
Now we further write Υ

(t)
j,2 = Υ

(t)
j,2,1 + Υ

(t)
j,2,2, where

Υ
(t)
j,2,1 = C0α

6
1Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2K

(t)
j,2 , Υ

(t)
j,2,2 = Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
3−j,2)2K

(t)
3−j,2

According to (D.2), we can first compute

Λ
(t)
j,2 −Υ

(t)
j,2,1 = C0α

6
2Φ

(t)
j (B

(t)
j,2)5H

(t)
j,1 − C0α

6
1Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2K

(t)
j,2

= C0α
6
2Φ

(t)
j (B

(t)
j,2)5

(
C1α

6
1((B

(t)
j,1)3 + E

(t)
j,3−j(B

(t)
3−j,1)3)2 + C2E(t)

j,3−j

)
− C0α

6
1Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2C1α

6
2((B

(t)
j,2)3 + E

(t)
j,3−j(B

(t)
3−j,2)3)((B

(t)
j,1)3 + E

(t)
j,3−j(B

(t)
3−j,1)3)

= C0α
6
2C1α

6
1Φ

(t)
j (B

(t)
j,2)5

(
E

(t)
j,3−j(B

(t)
3−j,1)3(B

(t)
j,1)3 + (E

(t)
j,3−j)

2(B
(t)
3−j,1)6

)
− C0α

6
2C1α

6
1Φ

(t)
j (B

(t)
j,2)2(B

(t)
3−j,2)3E

(t)
j,3−j

(
(B

(t)
j,1)6 + E

(t)
j,3−j(B

(t)
3−j,1)3(B

(t)
j,1)3

)
+ C0α

6
2Φ

(t)
j (B

(t)
j,2)5C2E(t)

j,3−j

Then we can apply Induction D.1a,c,d, Claim D.2a,b and Lemma D.3a,c to get

|Λ(t)
j,2 − Γ

(t)
j,2,1| ≤ Õ(

α6
2

α6
1d

5/2
)Φ

(t)
j (|E(t)

j,3−j |+ [R
(t)
j ]3)

where the last inequality is due to Lemma D.3a,c. Similarly, we can also compute for Γ
(t)
j,2 −Υ

(t)
j,2,2:

|Γ(t)
j,2 −Υ

(t)
j,2,2| ≤

∣∣∣C0α
6
2Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,2)3(B

(t)
j,2)2H

(t)
3−j,1

∣∣∣
+
∣∣∣C0α

6
1Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
j,2)2K

(t)
3−j,2

∣∣∣
≤ Õ(

α6
1α

6
2

d5/2
)Φ

(t)
3−j |E

(t)
3−j,j |([R

(t)
3−j ]

3 +
|E(t)

3−j,j |
d3/2

)

This completes the proof

Lemma D.7 (learning feature v1 in Phase II). For each t ∈ [T1, T2], if Induction D.1 holds at
iteration t, then we have:

(a) 〈−∇w1L(W (t), E(t)), v1〉 = Θ(Σ
(t)
1,1)[R

(t)
1 ]3 + Γ

(t)
1,1 ± Õ(α

O(1)
1 /d5/2);

(b) 〈−∇w2
L(W (t), E(t)), v1〉 = Õ(α

O(1)
1 /d5/2) + Õ(

α6
1

d )E
(t)
1,2Φ

(t)
1 [R

(t)
1 ]3
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Proof. As in the proof of Lemma D.6, we expand the gradient terms:

〈−∇wjL(W (t), E(t)), v1〉 = Λ
(t)
j,2 + Γ

(t)
j,2 −Υ

(t)
j,2 (D.3)

where

Λ
(t)
j,1 = C0α

6
1Φ

(t)
j H

(t)
j,2(B

(t)
j,1)5

Γ
(t)
j,1 = C0α

6
1Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
j,1)2H

(t)
3−j,2

Υ
(t)
j,1 = C0α

6
1

(
Φ

(t)
j (B

(t)
j,2)3(B

(t)
j,1)2K

(t)
j,1 + Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,2)3(B

(t)
j,1)2K

(t)
3−j,1

)
Indeed, when j = 1, by Induction D.1a and Lemma D.3a,c, we can compute

Λ
(t)
1,1 = C0α

6
1Φ

(t)
1 (B

(t)
1,1)5H

(t)
1,2 = Θ(Σ

(t)
1,1)[R

(t)
1 ]3

and with additionally Lemma D.3b, we also have

|Υ(t)
1,1| =

∣∣∣C0α
6
1

(
Φ

(t)
1 (B

(t)
1,2)3(B

(t)
1,1)2K

(t)
1,1 + Φ

(t)
2 E

(t)
2,j(B

(t)
2,2)3(B

(t)
1,1)2K

(t)
2,1

)∣∣∣ ≤ Õ(
α
O(1)
1

d5/2
)

which gives the proof of (a). For (b), we can also apply Induction D.1a and Lemma D.3a,c to get

Λ
(t)
2,1 = C0α

6
1Φ

(t)
2 H

(t)
2,2(B

(t)
2,1)5 ≤ Õ(α

O(1)
1 /d5/2)

Γ
(t)
2,1 = C0α

6
1Φ

(t)
1 E

(t)
1,2(B

(t)
1,1)3(B

(t)
2,1)2H

(t)
1,2 ≤ Õ(

1

d
)E

(t)
1,2Φ

(t)
1

[R
(t)
1 ]3

α6
1

Υ
(t)
2,1 = C0α

6
1

(
Φ

(t)
2 (B

(t)
2,2)3(B

(t)
2,1)2K

(t)
2,1 + Φ

(t)
1 E

(t)
1,2(B

(t)
1,2)3(B

(t)
2,1)2K

(t)
1,1

)
≤ Õ(

α6
1

d4
)

this finishes the proof.

D.3 At the End of Phase II

Now we shall present the main theorem of this section, which gives the result of prediction head E(t)
2,1

growth after the feature v1 is learned in the first stage.
Lemma D.8 (Phase II). Suppose η = 1

poly(d) is sufficiently small, then Induction D.1 holds for all
iteration t ∈ [T1, T2], and at iteration t = T2, the followings holds:

(a) B(T2)
1,1 = Θ(1), B(T2)

j,` = B
(T1)
j,` (1± o(1)) = Θ̃( 1√

d
) for (j, `) 6= (1, 1)

(b) R(T2)
1 ≤ Õ( 1

d3/4 ), R(T2)
2 = Θ(

√
ηE/η), and R

(T2)

1,2 ≤ Õ(%+ 1√
d
);

(c) |E(T2)
1,2 | = Õ(%+ 1√

d
)[R

(t)
1 ]3/2[R

(t)
2 ]3/2 and |E(T2)

2,1 | = Θ(
√
ηE/η)

Where the part of learning E(t)
2,1 is what we called substitution effect. One can easily verify that

|E(t)
2,1f1(X(1))| � |f2(X(1))| when X is equipped with feature v1, as stated in Lemma 5.2.

Proof. We first will prove Induction D.1 holds for all iteration t ∈ [T1, T2]. We shall first prove
that if Induction D.1 continues to hold when R(t)

2 ≥ |E(t)
2,1|, we shall have [R

(t)
1 ] decreasing at an

exponential rate.
Proof of the decrease of R(t)

1 : Firstly, we write down the update of R(t)
1 using Lemma D.5a:

R
(t+1)
1 = R

(t)
1 + ηΣ

(t)
1,1Θ(−[R

(t)
1 ]3 ±O(|E(t)

1,2|+
|E(t)

2,1|2

d3/2
)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

from the expression of Σ
(t)
1,1 in (B.2), and by Induction D.1a and Lemma D.3a,c, we can compute

Σ
(t)
1,1 = Θ(C0C2Φ

(t)
1 ) = Θ(

C0C2

α12
1

)
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Moreover, from Induction D.1c we know that

(|E(t)
1,2|+

|E(t)
2,1|2

d3/2
)[R

(t)
1 ]3/2[R

(t)
2 ]3/2 ≤ (Θ̃(

1

d3/2
) + Õ(%+

1√
d

)[R
(t)
1 ]3/2)[R

(t)
1 ]3/2[R

(t)
2 ]3/2

≤ (Θ̃(
1

d3/2
) + Õ(%+

1√
d

)[R
(t)
1 ]3/2)[R

(t)
1 ]3/2

Therefore whenever R(t)
1 ≥

α18
1

d3/4 (which t ≤ T2 suffices), we shall have always have

(R
(t)

1,2 + %)(Θ̃(
1

d3/2
) + Õ(%+

1√
d

)[R
(t)
1 ]3/2)[R

(t)
1 ]3/2 ≤ o([R(t)

1 ]3)

which implies, if we set T ′2 := min{t : R
(t)
1 ≥ 1

d3/4α2
1
}, then for all t ∈ [T1, T

′
2], we will have

R
(t+1)
1 = R

(t)
1 + ηΣ

(t)
1,1Θ(−[R

(t)
1 ]3 ±O(|E(t)

1,2|+
|E(t)

2,1|2

d3/2
)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

= R
(t)
1 −Θ(ηΣ

(t)
1,1)[R

(t)
1 ]3 (D.4)

≤ R(t)
1 (1−Θ(

ηC0C2

α12
1

)
1

d3/2α2
1

) (since R(t)
1 ≥ 1

d3/4 )

From the last inequality we know that after T2 = T1 + Θ̃( d1.5

ηα
Ω(1)
1

), we shall have R(t)
1 ≤ O(

α
O(1)
1

d3/4 ).

Moreover, suppose T ′2 < T2, (which just mean R(s)
1 ≤ O( 1

d3/4α2
1
) for some iteration s ∈ [T1, T2])

we also have

R
(t+1)
1 = R

(t)
1 −Θ(ηΣ

(t)
1,1)[R

(t)
1 ]3

≥ R(t)
1 (1−Θ(

ηC0C2

α14
1

)
1

d3/2
)

So when T2 ≤ T1 + Õ(
d1.5α12

1

η ) iterations, we will have R(t)
1 ≥ R

(s)
1 (1 − Θ( ηC0C2

d3/2α14
1

))T2−T1 ≥

Ω(R
(t)
1 ) for all t ∈ [s, T2], which means we have a lower bound R

(t)
1 ≥ 1

d3/4α2
1

throughout

t ∈ [T1, T2]. This proves Lemma D.8a and also our induction on R(t)
1 .

Proof of induction for E(t)
1,2: By Lemma D.4a, we can write

−∇E1,2L(W (t), E(t)) = (1 + Õ(
α
O(1)
1

d3/2
))Σ

(t)
1,1(−2E

(t)
1,2[R

(t)
2 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

± Σ
(t)
1,1Õ(

ηE/η√
d

) max{[R(t)
1 ]3,

α
O(1)
1

d5/2
}

= −Θ(Σ
(t)
1,1[R

(t)
2 ]3)E

(t)
1,2 ±O(Σ

(t)
1,1)
(

(R
(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 + Õ(

ηE/η√
d

)[R
(t)
1 ]3

)
Since again from Induction D.1b,c that R

(t)

1,2 ≤ Õ(% + 1√
d
), R

(t)
1 = O(1), R

(t)
2 ∈ [

√
ηE/η,O(1)],

we can obtain the update of E(t)
1,2 as

E
(t+1)
1,2 = E

(t)
1,2(1−Θ(ηEΣ

(t)
1,1[R

(t)
2 ]3))± Õ(ηEΣ

(t)
1,1)
(

(%+
1√
d

)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 + Õ(

ηE/η√
d

)[R
(t)
1 ]3

)
= E

(t)
1,2(1−Θ(ηEΣ

(t)
1,1[R

(t)
2 ]3))± Õ(%+

1√
d

)ηEΣ
(t)
1,1[R

(t)
1 ]3/2

= E
(t)
1,2(1−Θ(ηEΣ

(t)
1,1[R

(t)
2 ]3))± ηEΣ

(t)
1,1J

(t)
1,2
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where J (t)
1,2 = C̃(%+ 1√

d
)[R

(t)
1 ]3/2 > 0 and C̃ = Θ̃(1) is larger than the hidden constant (including

the polylog(d) factors) of E(T1)
2,1 ≤ Õ(%+ 1√

d
) in Lemma C.13d. And then we can compute

J
(t+1)
1,2 = C̃(%+

1√
d

)[R
(t+1)
1 ]3/2

= C̃(%+
1√
d

)[R
(t)
1 ]3/2(1−Θ(ηΣ

(t)
1,1)[R

(t)
1 ]2)3/2 (due to calculations in (D.4))

= J
(t)
1,2(1−Θ(η3/2(Σ

(t)
1,1)3/2)[R

(t)
1 ]3) (because ηΣ

(t)
1,1 =

α
O(1)
1

poly(d) is very small)

Now by Lemma C.13d, we know |E(T1)
1,2 | ≤ J

(T1)
1,2 ; then we begin our induction that |E(t)

1,2| <
(log log d)J

(t)
1,2 at for all iterations t ∈ [T1, T2]. Now assume we have |E(t)

1,2| = 1
2 (log log d)J

(t)
1,2

5,

from above calculations it holds that |E(t+1)
1,2 | = |E(t)

1,2|(1−Θ(ηΣ
(t)
1,1[R

(t)
1 ]3)). Then we would have

J
(t+1)
1,2

J
(t)
1,2

≥ (1−Θ(η3/2(Σ
(t)
1,1)3/2)[R

(t)
1 ]3) ≥ (1−Θ(ηEΣ

(t)
1,1[R

(t)
2 ]3)) ≥

|E(t+1)
1,2 |

|E(t)
1,2|

(because of the range of R(t)
1 and R(t)

2 )

This proved that |E(t+1)
1,2 | . log log d · J (t+1)

1,2 ≤ Õ(%+ 1√
d
)[R

(t+1)
1 ]3/2 and also the induction can

go on until t = T2.

Proof of the growth of E(t)
2,1 and T2 ≤ T1 + O(d

1.5

ηα4
1
): According to Lemma D.4b, we can

write down the update of E(t)
2,1 as

−∇E2,1L(W (t), E(t)) = (1±O(
α
O(1)
1

d3/2
))∆

(t)
2,1

±O(Σ
(t)
2,1)(|E(t)

2,1|[R
(t)
1 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

Then, from Lemma D.3a,c and Induction D.1, we have

O(Σ
(t)
2,1)(|E(t)

2,1|[R
(t)
1 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2) ≤ O(

polylog(d)

d3/2α2
1

)Φ
(t)
2 ≤ O(

1

d3/2α1
)Φ

(t)
2

and also ∣∣∣∣(1± Õ(
α6

1

d0.3
))C0Φ

(t)
2 α6

1(B
(t)
2,1)3(B

(t)
1,1)3H

(t)
2,2

∣∣∣∣ ≥ Θ̃(
α6

1

d3/2
)Φ

(t)
2

Now by Lemma D.3a and Induction D.1a, it allow us to simplify the update to

E
(t+1)
2,1 = E

(t)
2,1 − ηE∇E2,1

L(W (t), E(t))

= E
(t)
2,1 + (1± 1

α
Ω(1)
1

)ηEC0C2α
6
1Φ

(t)
2 (B

(t)
2,1)3(B

(t)
1,1)3E(t)

2,1

≥ E(t)
2,1 + ηEΘ̃(

1

d3/2α6
1

)sign(B
(t)
1,1)sign(B

(t)
2,1) (by Induction D.1 and Claim D.2)

5If we want |E(t)
1,2| > (log log d)J

(t)
1,2, then as long as η = 1

poly(d)
is small enough, we can always assume

to have found some iteration t′ ∈ (T1, t] such that |E(t′)
1,2 | = 1

2
(log log d)J

(t)
1,2, and we set t = t′ and start our

argument from that iteration.
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Now since sign(B
(t)
j,1) = sign(B

(T1)
j,1 ), we know there is an iteration T ′2,1 ≤ T1 +O(

d1/2α
O(1)
1

η ) such
that for all t ∈ [T ′2,1, T2], it holds

|E(t)
2,1| =

∣∣∣∣∣∣E(T1)
2,1 +

∑
t∈[T1,T ′2,1]

Θ(ηEC0C2α
6
1)Φ

(t)
2 (B

(t)
2,1)3(B

(t)
1,1)3[R

(t)
2 ]3

∣∣∣∣∣∣
=

∣∣∣∣∣∣|E(T1)
2,1 | ±

∑
s∈[T1,T ′2,1]

ηEΘ̃(
1

d3/2α
O(1)
1

)

∣∣∣∣∣∣
∈

[
2|E(T1)

2,1 |, Õ(
α
O(1)
1

d
)

]

and thus sign(E
(t)
2,1) =

∏
j∈[2] sign(B

(t)
j,1) and |E(t)

2,1| will be increasing during t ∈ [T ′2,1, T2]. Thus

as long as R(t)
2 ≥ |E

(t)
2,1| continues to hold, after at most Θ̃(d

1.5

ηα6
1
) iterations starting from T1, we shall

have |E(t)
2,1| ≥ Ω(

√
ηE/η).

However, in order to actually prove |E(T2)
2,1 | = Θ(

√
ηE/η), we will need to ensure that (1) there exist

some constant C = Ω(
√
ηE/η) such that |E(t)

2,1| > C while R(s)
2 ≥ 1

log d |E
(t)
2,1| for all s ∈ [T1, t]; (2)

we shall have a upper bound |E(t)
2,1| < O(

√
ηE/η). They will be done below.

Proof of E(T2)
2,1 = Θ(

√
ηE/η) and T2 = T1 + Õ(

d3/2α
O(1)
1

η ): In fact, Induction D.1c are

already proved since we have already calculated the dynamics of R(t)
1 and its upper bound and lower

bound. In this part we are going to prove T2 = T1 + Θ̃(
d1.5α12

1

η ) (which means that R(t)
2 ≤ |E2,1|

can be achieved in Õ(
d3/2α12

1

η ) many iterations). From Lemma D.5c, we can write down the update

for R(t)
2 as

R
(t+1)
2 = R

(t)
2 − 2η〈∇w2

L(W (t), E(t)),ΠV ⊥w
(t)
2 〉+ η2‖ΠV ⊥∇w2

L(W (t), E(t))‖22
= R

(t)
2 − ηΘ([R

(t)
2 ]3)

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
± ηO

(∑
j,`

Σ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
+

η

poly(d)

where we have used the fact that ‖ΠV ⊥∇w2
L(W (t), E(t))‖22 ≤ Õ(d2) from our assumption on the

noise ξp and a simple bound for Σ
(t)
j,` as we have done before. Next we can resort to Induction D.1d

that |E(t)
1,2| ≤ Õ(%+ 1√

d
)[R

(t)
1 ]3/2 to derive

∑
s∈[T1,t]

ηΣ
(s)
1,1Θ((E

(s)
1,2)2) ≤

∑
s∈[T1,t]

Õ(%2 +
1

d
)ηΣ

(s)
1,1[R

(s)
1 ]3

≤ Õ(%2 +
1

d
)

which is because
∑
t∈[T1,T2] Θ(ηΣ

(t)
1,1)[R

(t)
1 ]3 ≤ O(1) and Σ

(t)
1,1 > 0 as we have calculated in the

proof of Induction D.1a above. Similarly, we can also bound

∑
s∈[T1,t]

Σ
(s)
1,`|E

(s)
1,2|(|R

(s)

1,2|+ %)[R
(s)
1 ]3/2[R

(s)
2 ]3/2 ≤

∑
s∈[T1,t]

Õ(%2 +
1

d
)ηΣ

(s)
1,`[R

(s)
1 ]3 ≤ Õ(%+

1√
d

)
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Moreover, because T2 ≤ T1 + Õ(
d3/2α12

1

η ) and |E(t)
2,1| ≤ O(1), Φ

(t)
2 ≤ α

O(1)
1 from Induction D.1, we

have for each t ≤ T2:∑
s∈[T1,t]

ηΣ
(s)
2,`|E

(s)
2,1|(|R

(s)

1,2|+ %)[R
(s)
1 ]3/2[R

(s)
2 ]3/2 ≤ Õ(

|E(s)
2,1|2

d3/2
)
∑

s∈[T1,t]

ηΦ
(s)
2 Õ(%+

1√
d

)

≤ Õ(
η

d3/2
) · Õ(%+

1√
d

) · Õ(
d3/2α12

1

η
)

≤ Õ(%+
1√
d

)α
O(1)
1 = o(

1

log d
)

Thus combining all the bounds above, we have proved that for each t ∈ [T1, T2], it holds

R
(t)
2 = R

(T1)
2 −

∑
s∈[T1,t]

Θ(ηΣ
(t)
2,1)[R

(t)
2 ]3 ± o(1)

= R
(T1)
2 −

∑
s∈[T1,t]

Θ(ηC0C2)E
(t)
2,1α

6
1Φ

(t)
2 (B

(t)
2,1)3(B

(t)
1,1)3[R

(t)
2 ]3 ± o( 1

log d
) (D.5)

= R
(T1)
2 −

∑
s∈[T1,t]

ηE
(t)
2,1Θ̃(

1

d3/2
)Φ

(t)
2 [R

(t)
2 ]3 · sign(E

(t)
2,1) · sign(B

(T1)
2,1 ) · sign(B

(T1)
1,1 )± o( 1

log d
)

(D.6)

where the last equality is because sign(B
(t)
j,` ) ≡ sign(B

(T1)
j,` ) by Induction D.1a. Now from what we

have proved above on the growth of E(t)
2,1 that sign(E

(t)
2,1) = sign(B

(t)
1,1B

(t)
2,1) ≡ sign(B

(T1)
1,1 B

(T1)
2,1 )

throughout the rest of phase II (which is just t ∈ [T ′2,1, T2]). Recall that

R
(T ′2,1)

2 = R
(T1)
2 ± o(1), and E

(t)
2,1 − E

(T ′2,1)

2,1 =
∑

s∈[T ′2,1,t]

Θ(ηEC0C2)Φ
(s)
2 (B

(s)
2,1)3(B

(s)
1,1)3

The above arguments imply for t ∈ [T ′2,1, T2]:

R
(t+1)
2 = R

(T1)
2 −

∑
s∈[T ′2,1,t]

Θ(ηC0C2)E
(s)
2,1Φ

(s)
2 (B

(s)
2,1)3(B

(s)
1,1)3[R

(t)
2 ]3 ± o( 1

log d
)

= R
(T1)
2 −Θ(

η

ηE
|E(t)

2,1|2)− o( 1

log d
)

Now we can confirm

(1) there exist a constant C = Θ(
√
ηE/η) such that E(t)

2,1 = C if R(t)
2 falls below 1

log d |E
(t)
2,1|;

(2) T2 = T1 + Θ̃(
d3/2α12

1

η ) due to the growth |E(t+1)
2,1 | = |E(t)

2,1| + ηEΘ̃( 1

d3/2α12
1

√
ηE/η

) for t ∈
[T ′2,1, T2].

which are the desired results.

Proof of Induction D.1a: We first obtain from Lemma D.7a that the update of B(t)
1,1 can

be written as

B
(t+1)
1,1 = B

(t)
1,1 + η

(
Θ(Σ

(t)
1,1)sign(B

(t)
1,1)[R

(t)
1 ]3 + Γ

(t)
1,1 ± Õ(α

O(1)
1 /d5/2)

)
Now by what we have calculated above in (D.4), the total decrease of R(t)

1 is (since R(t)
1 is monotone

in this phase) ∑
t∈[T1,T2]

Θ(ηΣ
(t)
1,1)[R

(t)
1 ]3 ≤ O(R

(T1)
1 −R(T2)

1 ) ≤ O(1)
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And also since T2 ≤ T1 + Θ̃(
d3/2α12

1

η ), we can bound

∑
t∈[T1,T2]

Õ(α6
1/d

5/2) ≤ Õ(α
O(1)
1 /d5/2) · Õ(

d3/2

ηα6
1

) ≤ Õ(α
O(1)
1 /d)

Now we consider how the Γ
(t)
1,1 term accumulates

∑
t∈[T1,T2]

ηΓ
(t)
1,1 =

( ∑
t∈[T1,T ′2,1]

+
∑

t∈[T ′2,1,T2]

)
ηC0α

6
1E

(t)
2,1Φ

(t)
2 (B

(t)
2,1)3(B

(t)
1,1)2H

(t)
2,2

¬
= Õ(

α12
1

d
) +

∑
t∈[T ′2,1,T2]

O
(
ηC0α

6
1Φ

(t)
2 |B

(t)
2,1|3|B

(t)
1,1|3H

(t)
2,2

)
sign(B

(t)
1,1)

= ±o(1) +O(1)sign(B
(t)
1,1)

where in ¬ we have used |E(t)
2,1| ≤ O(1) ≤ O(B

(t)
1,1) and sign(E

(t)
2,1) =

∏
j∈[2] sign(B

(t)
j,1) when

t ∈ [T ′2,1, T2]. These calculations tell us B(t)
1,1 = B

(T1)
1,1 +O(1)sign(B

(T1)
1,1 )±O( 1

α1
) = Θ(1) for all

iterations t ∈ [T1, T2]. Similarly from Lemma D.7b, for B(t)
2,1 we can also write

B
(T+1)
2,1 = B

(t)
2,1 + ηÕ(α

O(1)
1 /d5/2) + Õ(

α6
1

d
)E

(t)
2,1Φ

(t)
1 [R

(t)
1 ]3

From similar calculations, it holdsB(t)
2,1 = B

(T1)
2,1 ±Õ(α

O(1)
1 /d), which proves thatB(t)

2,1 = B
(T1)
2,1 (1±

o(1)) when t ∈ [T1, T2]. Now we turn to feature v2. By Lemma D.6 we have for j ∈ [2]:

|〈−∇wjL(W (t), E(t)), v2〉| ≤ Õ(
α6

2α
6
1

d5/2
)
(

Φ
(t)
j (|E(t)

j,3−j |+ [R
(t)
j ]3) + Φ

(t)
3−j(|E

(t)
3−j,j |[R

(t)
3−j ]

3 +
|E(t)

3−j,j |2

d3/2
)
)

≤ Õ(
α6

2α
6
1

d5/2
)

where the last inequality is from Lemma D.3a and Induction D.1c,d. Thus when t ≤ T2 = T1 +

Õ(
d3/2α12

1

η ) we would have

B
(t)
j,2 = B

(T1)
j,2 ± Õ(

α
O(1)
1

d
) = B

(T1)
j,2 (1± o(1)) since B(T1)

j,2 = Θ̃( 1√
d
) by Lemma C.13c

Together they proved Induction D.1a and Lemma D.8a. Moreover, we have also

Proof of Induction D.1b: Firstly, we write down the update of R(t)
1,2 using Lemma D.5b,d

as follows:

R
(t+1)
1,2 = R

(t)
1,2 − η〈∇w1L(W (t), E(t)),ΠV ⊥w

(t)
2 〉 − η〈∇w2L(W (t), E(t)),ΠV ⊥w

(t)
1 〉

+ η2〈ΠV ⊥∇w1
L(W (t), E(t)),ΠV ⊥∇w2

L(W (t), E(t))〉

= R
(t)
1,2 + ηΣ

(t)
1,1((−Θ(R

(t)

1,2)±O(%))[R
(t)
1 ]5/2[R

(t)
2 ]1/2 + Õ(|E(t)

1,2|+
|E(t)

2,1|2

d3/2
)R

(t)
1 [R

(t)
2 ]2)

+ η
(

Σ
(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2

+O
(∑
j,`

ηΣ
(t)
j,`E

(t)
j,3−jR

(t)
2 [R

(t)
1 ]2

)
+

η

poly(d)

where in the last inequality we have used

|〈ΠV ⊥∇w1
L(W (t), E(t)),ΠV ⊥∇w2

L(W (t), E(t))〉|
≤ ‖ΠV ⊥∇w1

L(W (t), E(t))‖2‖ΠV ⊥∇w2
L(W (t), E(t))‖2 ≤ Õ(d)
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Now from Induction D.1c,d that R(t)
2 = Θ(1) and |E(t)

1,2| ≤ Õ(% + 1√
d
)[R

(t)
1 ]3/2, |E(t)

2,1| ≤

O(
√
ηE/η), we can further obtain |Σ(t)

2,2| = Õ(
α
O(1)
1

d3/2 )|Σ(t)
2,1|, and the bound

R
(t+1)
1,2 = R

(t)
1,2

(
1−Θ(ηΣ

(t)
1,1)[R

(t)
1 ]2 −Θ(η(Σ

(t)
1,1(E

(t)
1,2)2 + Σ

(t)
2,1))[R

(t)
2 ]2

)
± ηO(%)[R

(t)
2 ]1/2[R

(t)
1 ]1/2

(
O(Σ

(t)
1,1)[R

(t)
1 ]2 +

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) + Σ

(t)
2,1

)
[R

(t)
2 ]2

)
Notice here that there exist a constant C = Θ(1), whenever |R(t)

1,2| ≥ C(%+ 1√
d
)[R

(t)
2 ]1/2[R

(t)
1 ]1/2,

it will holds

R
(t+1)
1,2 = R

(t)
1,2

(
1−Θ(ηΣ

(t)
1,1[R

(t)
1 ]2)−Θ(η(Σ

(t)
1,1(E

(t)
1,2)2 + Σ

(t)
2,1))[R

(t)
2 ]2

)
= R

(t)
1,2

(
1−Θ(ηΣ

(t)
1,1[R

(t)
1 ]2)−Θ(η(Σ

(t)
1,1(E

(t)
1,2)2 +

α6
1

d3/2
Σ

(t)
2,1))[R

(t)
2 ]2

)
Thus we can go through the same analysis as in the proof of induction for E(t)

1,2 to derive that

|R(t)
1,2| ≤ Õ(%+

1√
d

)[R
(t)
2 ]1/2[R

(t)
1 ]1/2

which is the desired result. Note that at the end of phase II

Induction D.1a =⇒ Lemma D.8a
Induction D.1b,c =⇒ Lemma D.8b

Induction D.1d =⇒ Lemma D.8c

We now complete the proof of Lemma D.8.

E Phase III: The Acceleration Effect of Prediction Head

We shall prove in this section that the growth of E(t)
2,1 in the previous phase creates an acceleration

effect to the growth of B(t)
2,2, which will finally outrun the growth of B(t)

2,1 to win the lottery. We define

T3 := min
{
t : |B(t)

2,2| ≥
1

2
min{|B(t)

1,1|,
√

η

ηE
|E(t)

2,1|}
}

(E.1)

and we call iterations t ∈ [T2, T3] as the phase III of training and t ≥ T3 as the end phase of training.

E.1 Induction in Phase III

Inductions E.1 (Phase III). During t ∈ [T2, T3], we hypothesize the following conditions holds.

(a) |B(t)
1,1| = Θ(1), B(t)

2,1 = B
(T2)
2,1 (1± o(1)), B(t)

1,2 = B
(T2)
1,2 (1± o(1)), |B(t)

2,2| ∈ [|B(T2)
2,2 |, O(1)];

(b) |E(t)
2,1| = Θ(

√
ηE/η), sign(E

(t)
2,1) = sign(E

(T2)
2,1 ) and |E(t)

1,2| ≤ Õ(%+ 1√
d
)[R

(t)
1 ]3/2[R

(t)
2 ]3/2;

(c) R(t)
1 ∈ [Ω( 1

d ), O(d
o(1)

d3/4 )], [R
(t)
2 ] ∈ [ 1√

d
, O( 1

log d

√
ηE/η)].

As usual, before we prove the induction, we need to derive some useful claims. But firstly we shall
give a much cleaner form of ∇Ej,3−jL(W (t), E(t)) to help us understand the learning process of
phase III and the end phase.
Fact E.2. Let us write

Ξ
(t)
j = C0C1α

6
1α

6
2Φ

(t)
j

(
(B

(t)
1,1)6(B

(t)
2,2)6 + (B

(t)
2,1)6(B

(t)
1,2)6

)
∆

(t)
j,` = C0Φ

(t)
j α6

` (B
(t)
j,` )

3(B
(t)
3−j,`)

3C2E(t)
j,3−j

Then the gradient of E(t)
j,3−j can be written as

−∇Ej,3−jL(W (t), E(t)) = −Ξ
(t)
j E

(t)
j,3−j +

∑
`∈[2]

∆
(t)
j,` −

∑
`∈[2]

Σ
(t)
j,`∇Ej,3−jE

(t)
j,3−j
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Proof. By expanding the gradients of E(t)
j,3−j , we can verify by checking each monomial of polyno-

mials of Bj,` to obtain the first term, and leave the E(t)
j,3−j part for the second term.

Lemma E.3 (variables control at phase III). For t ∈ [T2, T3], if Induction E.1 holds at iteration t,
then we have

(a) Φ
(t)
1 = Θ̃( 1

α12
1

), [Q
(t)
2 ]−2 = Θ(C2[R

(t)
2 ]3 + C1α

6
2(B

(t)
2,2)6), U (t)

2 = Θ(C1(α6
1(E

(t)
2,1)2 +

α6
2(B

(t)
2,2)6));

(b) H(t)
1,1 = Θ(C1α

6
1), H(t)

1,2 ≤ O(C2[R
(t)
1 ]3) + Õ(

α6
2

d3 );

(c) H(t)
2,1 = Θ(C1α

6
1(E

(t)
2,1)2), H(t)

2,2 = Θ(C2[R
(t)
2 ]3);

(d) Σ
(t)
1,2 ≤ Õ(

|E(t)
1,2|

d3/2 )Σ
(t)
1,1;

(e) E(t)
j,3−j = (1± o(1))E(t)

j = O(C2[R
(t)
j ]3)

Proof. Assuming Induction E.1 holds at t ∈ [T2, T3], we can recall the expression of these variables
and prove their bounds directly. The bounds for Φ1 and H1,1 comes from |B(t)

1,1| = Θ(1) and

|B(t)
1,2|, |E

(t)
1,2| = o(1). The bounds for Q2, U2 comes from our definition of T3 in (E.1). The rest of

the claims can be derived by similar arguments using Induction E.1.

E.2 Gradient Lemmas for Phase III

In this subsection, we would give some gradient lemmas concerning the dynamics of our network in
Phase III.
Lemma E.4 (learning feature v2 in phase III). For each t ∈ [T2, T3], if Induction E.1 holds at
iteration t, then we have:

(a) 〈−∇w1L(W (t), E(t)), v2〉 = Θ(
(B

(t)
1,2)2

(B
(t)
2,2)2

)E
(t)
2,1Λ

(t)
2,2 ± Õ(

α
O(1)
1

d4 )|E(t)
2,1|2Φ

(t)
2 ± Õ(

α
O(1)
1

d5/2 );

(b) 〈−∇w2L(W (t), E(t)), v2〉 = (1± Õ( 1
d ))Λ

(t)
2,2

Proof. Since 〈−∇wjL(W (t), E(t)), v2〉 = Λ
(t)
j,2 + Γ

(t)
j,2 − Υ

(t)
j,2, let us write down the definition of

Λ
(t)
j,2,Γ

(t)
j,2,Υ

(t)
j,2 respectively:

Λ
(t)
j,2 = C0α

6
2Φ

(t)
j H

(t)
j,1(B

(t)
j,2)5

Γ
(t)
j,2 = C0α

6
2Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,2)3(B

(t)
j,2)2H

(t)
3−j,1

Υ
(t)
j,2 = C0α

6
1

(
Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2K

(t)
j,2 + Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
j,2)2K

(t)
3−j,2

)
Again we decompose Υ

(t)
j,2 = Υ

(t)
j,2,1 + Υ

(t)
j,2,2 as in the proof of Lemma D.6, where

Υ
(t)
j,2,1 = C0α

6
1Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2K

(t)
j,2 , Υ

(t)
j,2,2 = Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
3−j,2)2K

(t)
3−j,2

This gives

Λ
(t)
j,2 −Υ

(t)
j,2,1 = C0α

6
2Φ

(t)
j (B

(t)
j,2)5H

(t)
j,1 − C0α

6
1Φ

(t)
j (B

(t)
j,1)3(B

(t)
j,2)2K

(t)
j,2

= C0α
6
2C1α

6
1Φ

(t)
j (B

(t)
j,2)5

(
E

(t)
j,3−j(B

(t)
3−j,1)3(B

(t)
j,1)3 + (E

(t)
j,3−j)

2(B
(t)
3−j,1)6

)
− C0α

6
2C1α

6
1Φ

(t)
j (B

(t)
j,2)2(B

(t)
3−j,2)3E

(t)
j,3−j

(
(B

(t)
j,1)6 + E

(t)
j,3−j(B

(t)
3−j,1)3(B

(t)
j,1)3

)
+ C0α

6
2Φ

(t)
j (B

(t)
j,2)5C2E(t)

j,3−j

49



When j = 1, from Induction E.1 and Lemma E.3a (which gives Φ
(t)
1 ≤ α

O(1)
1 Φ

(t)
2 ), we can crudely

obtain∣∣∣C0α
6
2C1α

6
1Φ

(t)
1 (B

(t)
1,2)5

(
E

(t)
1,2(B

(t)
2,1)3(B

(t)
1,1)3 + (E

(t)
1,2)2(B

(t)
2,1)6

)∣∣∣ ≤ Õ(
α
O(1)
1

d4
)Φ

(t)
1 |E

(t)
1,2|∣∣∣C0α

6
2C1α

6
1Φ

(t)
1 (B

(t)
1,2)2(B

(t)
2,2)3E

(t)
1,2

(
(B

(t)
1,1)6 + E

(t)
1,2(B

(t)
2,1)3(B

(t)
1,1)3

)∣∣∣ ≤ Õ(
α
O(1)
1

d
)Λ

(t)
2,2|E

(t)
1,2|∣∣∣C0α

6
2Φ

(t)
1 (B

(t)
1,2)5C2E(t)

1,2

∣∣∣ = Õ(
α6

1

d5/2
)Σ

(t)
1,1[R

(t)
1 ]3

So we have

Λ
(t)
1,2 −Υ

(t)
1,2,1 = Õ(

α6
1

d5/2
)Σ

(t)
1,1[R

(t)
1 ]3 ± Õ(

α
O(1)
1

d
)Λ

(t)
2,2|E

(t)
1,2|

When j = 2, we can also derive using Lemma E.3 about H(t)
2,1 and Induction E.1 about B(t)

2,1 and
some rearrangement to obtain

C0α
6
2Φ

(t)
2 (B

(t)
2,2)5

[
C1α

6
1

(
E

(t)
2,1(B

(t)
1,1)3(B

(t)
2,1)3 + (E

(t)
2,1)2(B

(t)
1,1)6

)
+ C2E(t)

2,1

]
= (1± Õ(

1

d
))Λ

(t)
2,2∣∣∣C0α

6
2C1α

6
1Φ

(t)
2 (B

(t)
2,2)2(B

(t)
1,2)3E

(t)
2,1

(
(B

(t)
2,1)6 + E

(t)
2,1(B

(t)
1,1)3(B

(t)
2,1)3

)∣∣∣ ≤ Õ(
α
O(1)
1

d3
)|E(t)

2,1|Φ
(t)
2

which leads to the approximation

Λ
(t)
2,2 −Υ

(t)
1,2,2 = (1± Õ(

1

d
))Λ

(t)
2,2 ± Õ(

α
O(1)
1

d3
)|E(t)

2,1|Φ
(t)
2

Similarly, we can also calculate

Γ
(t)
j,2 −Υ

(t)
j,2,2 = C0α

6
2Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,2)3(B

(t)
j,2)2H

(t)
3−j,1 − C0α

6
1Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
j,2)2K

(t)
3−j,2

= C0α
6
2C1α

6
1Φ

(t)
3−j(B

(t)
3−j,2)3(B

(t)
j,2)2E

(t)
3−j,j

(
E

(t)
3−j,j(B

(t)
j,1)3(B

(t)
3−j,1)3 + (E

(t)
3−j,j)

2(B
(t)
j,1)6

)
− C0α

6
2C1α

6
1Φ

(t)
3−j(B

(t)
j,2)5(E

(t)
3−j,j)

2
(

(B
(t)
3−j,1)6 + E

(t)
3−j,j(B

(t)
j,1)3(B

(t)
3−j,1)3

)
+ C0α

6
2Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,2)3(B

(t)
j,2)2C2E(t)

3−j,j

When j = 1, following similar procedure as above, we can apply Induction E.1 and Lemma E.3 to
give

Γ
(t)
1,2 −Υ

(t)
1,2,2 = Θ(

(B
(t)
1,2)2

(B
(t)
2,2)2

)E
(t)
2,1Λ

(t)
2,2 ± Õ(

α
O(1)
1

d4
)|E(t)

2,1|2Φ
(t)
2

Note that the first term on the RHS dominates the term ±Õ(
α
O(1)
1

d )Λ
(t)
2,2|E

(t)
1,2| in the approximation

for Λ
(t)
1,2 −Υ

(t)
1,2,1 due to Induction E.1a,b. When j = 2, since Φ

(t)
1 ≤ Θ̃( 1

α12
1

) ≤ α
O(1)
1 Φ

(t)
2 H

(t)
2,1 in

this phase and |B(t)
1,1| = O(1), we can derive

|Γ(t)
2,2 −Υ

(t)
2,2,2| ≤ Θ̃(

α
O(1)
1

d3
)(E

(t)
1,2)2Φ

(t)
1 + α

O(1)
1 (E

(t)
1,2)2Λ

(t)
2,2

It can be seen that (E
(t)
1,2)2Φ

(t)
1 ≤ (E

(t)
2,1)2Φ

(t)
2 by Induction E.1 and Lemma E.3. And by similar

arguments we can have (1±Õ( 1
d ))Λ

(t)
2,2 ≥ 1

dΩ(1) Õ(
α
O(1)
1

d3 )|E(t)
2,1|Φ

(t)
2 . Combining all the results above,

we can finish the proof.

Lemma E.5 (learning feature v1 in Phase III). For each t ∈ [T2, T3], if Induction E.1 holds at
iteration t, then we have: (recall that ∆-notation is from Fact E.2 )

(a) 〈−∇w1L(W (t), E(t)), v1〉 = Θ(Σ
(t)
1,1[R

(t)
1 ]3) ± O(

(B
(t)
1,2)3

(B
(t)
2,2)3

+ 1√
d
)α
O(1)
1 Λ

(t)
2,2 +

E
(t)
2,1

B
(t)
1,1

∆
(t)
2,1 −

B
(t)
2,2

B
(t)
1,1

Λ
(t)
2,2;
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(b) 〈−∇w2L(W (t), E(t)), v1〉 = Õ(
α
O(1)
1

d5/2 )Φ
(t)
2 [R

(t)
2 ]3 ± Õ(

α
O(1)
1

d )Λ
(t)
2,2 ± Õ(

α
O(1)
1

d3 )

Proof. Recall that 〈−∇wjL(W (t), E(t)), v1〉 = Λ
(t)
j,1 + Γ

(t)
j,1 −Υ

(t)
j,1. Similar to the proof of Lemma

E.4, we can decompose Υ
(t)
j,1 = Υ

(t)
j,1,1 + Υ

(t)
j,1,2 and do similar calculations:

Λ
(t)
j,1 −Υ

(t)
j,1,1 = C0C1α

6
1α

6
2Φ

(t)
j (B

(t)
j,1)5

(
E

(t)
j,3−j(B

(t)
3−j,2)3(B

(t)
j,2)3 + (E

(t)
j,3−j)

2(B
(t)
3−j,2)6

)
− C0C1α

6
1α

6
2Φ

(t)
j (B

(t)
j,1)2(B

(t)
3−j,1)3E

(t)
j,3−j

(
(B

(t)
j,2)6 + E

(t)
j,3−j(B

(t)
3−j,2)3(B

(t)
j,2)3

)
+ C0α

6
1Φ

(t)
j (B

(t)
j,1)5C2E(t)

j,3−j

When j = 1, from Induction E.1 and Lemma E.3a we know Φ
(t)
1 ≤ α

(O(1))
1 during t ∈ [T2, T3],

which allow us to derive

C0C1α
6
1α

6
2Φ

(t)
1 (B

(t)
1,1)5

(
E

(t)
1,2(B

(t)
2,2)3(B

(t)
1,2)3 + (E

(t)
1,2)2(B

(t)
2,2)6

)
≤ Õ(Σ

(t)
1,1(E

(t)
1,2)2) + C0C1α

6
1α

6
2(B

(t)
1,1)5E

(t)
1,2(B

(t)
2,2)3(B

(t)
1,2)3

≤ O(
(B

(t)
1,2)3

(B
(t)
2,2)3

)α
O(1)
1 Λ

(t)
2,2|E

(t)
1,2|+ Θ(Σ

(t)
1,1[R

(t)
1 ]3)

And∣∣∣C0C1α
6
1α

6
2Φ

(t)
1 (B

(t)
1,1)2(B

(t)
2,1)3E

(t)
1,2

(
(B

(t)
1,2)6 + E

(t)
1,2(B

(t)
2,2)3(B

(t)
1,2)3

)∣∣∣ ≤ Õ(
1

d3/2
)|E(t)

1,2|Λ
(t)
2,2

which can be summarized as

Λ
(t)
1,1 −Υ

(t)
1,1,1 = Θ(Σ

(t)
1,1[R

(t)
1 ]3)±O(

(B
(t)
1,2)3

(B
(t)
2,2)3

+ (B
(t)
2,1)3 +

1√
d

)|E(t)
1,2|α

O(1)
1 Λ

(t)
2,2

A similar calculation also gives

Λ
(t)
2,1 −Υ

(t)
2,1,1 = Õ(

α
O(1)
1

d5/2
)Φ

(t)
2 [R

(t)
2 ]3 ± Õ(

α
O(1)
1

d4
)Φ

(t)
2 |E

(t)
2,1| ± Õ(

α
O(1)
1

d
)Λ

(t)
2,2B

(t)
2,2

Now we turn to the other terms in the gradient, from similar calculations in the proof of Lemma D.6,
we have

Γ
(t)
j,1 −Υ

(t)
j,1,2 = C0α

6
2C1α

6
1Φ

(t)
3−j(B

(t)
3−j,1)3(B

(t)
j,1)2E

(t)
3−j,j

(
E

(t)
3−j,j(B

(t)
j,2)3(B

(t)
3−j,2)3 + (E

(t)
3−j,j)

2(B
(t)
j,2)6

)
− C0α

6
2C1α

6
1Φ

(t)
3−j(B

(t)
j,1)5(E

(t)
3−j,j)

2
(

(B
(t)
3−j,2)6 + E

(t)
3−j,j(B

(t)
j,2)3(B

(t)
3−j,2)3

)
+ C0α

6
2Φ

(t)
3−jE

(t)
3−j,j(B

(t)
3−j,1)3(B

(t)
j,1)2C2E(t)

3−j,j

which also similarly gives

Γ
(t)
1,1 −Υ

(t)
1,1,2 =

E
(t)
2,1

B
(t)
1,1

∆
(t)
2,1 −

B
(t)
2,2

B
(t)
1,1

Λ
(t)
2,2 ± Õ(

α
O(1)
1

d3/2
)Λ

(t)
2,2

and

|Γ(t)
2,1 −Υ

(t)
2,1,2| ≤ Õ(

α
O(1)
1

d
)Φ

(t)
1 ((E

(t)
1,2)2 + |E(t)

1,2|[R
(t)
1 ]3) ≤ Õ(

α
O(1)
1

d3
)

which finishes the proof.
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Lemma E.6 (reducing noise in phase III). Suppose Induction E.1 holds at t ∈ [T2, T3], then we have

(a) 〈−∇w1
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉 = −Θ([R

(t)
1 ]3)

(
Σ

(t)
1,1 +

∑
`∈[2]

Σ
(t)
2,`(E

(t)
2,1)2

)
±O

(∑
j,`

Σ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
;

(b) 〈−∇w1
L(W (t), E(t)),ΠV ⊥w

(t)
2 〉 =

(
Σ

(t)
1,1 +

∑
`∈[2]

Σ
(t)
2,`(E

(t)
2,1)2

)
(−Θ(R

(t)

1,2)±O(%))[R
(t)
1 ]5/2[R

(t)
2 ]1/2

+O
( ∑

(j,`) 6=(1,2)

Σ
(t)
j,`E

(t)
j,3−jR

(t)
1 [R

(t)
2 ]2

)
(c) 〈−∇w2

L(W (t), E(t)),ΠV ⊥w
(t)
2 〉 = −Θ([R

(t)
2 ]3)

( ∑
`∈[2]

Σ
(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
±O

(∑
j,`

Σ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
;

(d) 〈−∇w2
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉 =

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2

+O
( ∑

(j,`)6=(1,2)

Σ
(t)
j,`E

(t)
j,3−jR

(t)
2 [R

(t)
1 ]2

)

Proof. The proof of Lemma E.6 is very similar to Lemma D.5, but we write it down to stress some
minor differences. As in (B.2), we first write down

〈−∇w1
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉 = −

∑
j,`

Σ
(t)
j,`〈∇w1

E(t)
j,3−j , w

(t)
1 〉

Proof of (a): Combine the bounds above, we can obtain for each j ∈ [2]: Σ
(t)
1,2 = Õ(E

(t)
1,2/d

3/2)Σ
(t)
1,1.

We can then directly apply Claim B.1 to prove Lemma E.6a as follows

〈−∇w1
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉

= (1± Õ(E
(t)
1,2/d

3/2))Σ
(t)
1,1

(
−Θ([R

(t)
1 ]3)±O(E

(t)
1,2)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
+ (Σ

(t)
2,1 + Σ

(t)
2,2)
(
−Θ((E

(t)
2,1)2)[R

(t)
1 ]3 ±O(E

(t)
2,1)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
= −Θ(Σ

(t)
1,1 + Σ

(t)
2,1 + Σ

(t)
2,2)[R

(t)
1 ]3 ±O(

∑
j,`

Σ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
(Since |E(t)

1,2| ≤ d−Ω(1) by Induction E.1)

Proof of (b): For Lemma D.5b, we can use the same analysis for Σ
(t)
1,1 above and Claim B.1d,e to get

(again we have used Σ
(t)
1,2 = Õ(E

(t)
1,2/d

3/2)Σ
(t)
1,1)

〈−∇w1
L(W (t), E(t)),ΠV ⊥w

(t)
2 〉

= (1± Õ(E
(t)
1,2/d

3/2))Σ
(t)
1,1

(
(−Θ(R

(t)

1,2)±O(%))[R
(t)
1 ]5/2[R

(t)
2 ]1/2 + E

(t)
1,2R

(t)
1 [R

(t)
2 ]2

)
+ Θ(Σ

(t)
2,1 + Σ

(t)
2,2)
(

(−Θ(R
(t)

1,2) +O(%))(E
(t)
2,1)2[R

(t)
1 ]5/2[R

(t)
2 ]1/2 + E

(t)
2,1R

(t)
1 [R

(t)
2 ]2

)
=
(

Σ
(t)
1,1 +

∑
`∈[2]

Σ
(t)
2,`(E

(t)
2,1)2

)
((−Θ(R

(t)

1,2) +O(%))[R
(t)
1 ]5/2[R

(t)
2 ]1/2)

+O
( ∑

(j,`)6=(2,1)

Σ
(t)
j,`E

(t)
j,3−jR

(t)
1 [R

(t)
2 ]2

)
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Proof of (c): Similarly to the proof of (a), we can also expand as follows

〈−∇w2L(W (t), E(t)),ΠV ⊥w
(t)
2 〉

= (1± Õ(E
(t)
1,2/d

3/2))Σ
(t)
1,1

(
− [R

(t)
2 ]3Θ((E

(t)
1,2)2)±O(E

(t)
1,2)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
−
∑
`∈[2]

Σ
(t)
2,`

(
[R

(t)
2 ]3 ±O(E

(t)
2,1)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
= −Θ([R

(t)
2 ]3)

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
±O

(∑
j,`

Σ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
Proof of (d): Similarly, we can calculate

〈−∇w2
L(W (t), E(t)),ΠV ⊥w

(t)
1 〉

= (1± Õ(E
(t)
1,2/d

3/2))Σ
(t)
1,1

(
(−Θ(R

(t)

1,2)±O(%))(E
(t)
1,2)2[R

(t)
2 ]5/2[R

(t)
1 ]1/2 + E

(t)
1,2R

(t)
2 [R

(t)
1 ]2

)
+
∑
`∈[2]

Σ
(t)
2,`

(
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2 + E

(t)
1,2R

(t)
2 [R

(t)
1 ]2

)
=
(

Σ
(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2

+O
( ∑

(j,`)6=(2,1)

Σ
(t)
j,`E

(t)
j,3−jR

(t)
2 [R

(t)
1 ]2

)
which completes the proof.

Lemma E.7 (learning the prediction head in phase III). If Induction E.1 holds at iteration t ∈ [T2, T3],
then using the notations from Fact E.2, we have

−∇Ej,3−jL(W (t), E(t)) = Θ(
∑
`∈[2]

Σ
(t)
j,`)(−E

(t)
j,3−j [R

(t)
3−j ]

3 ±O(R
(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

− Ξ
(t)
j E

(t)
j,3−j +

∑
`∈[2]

∆
(t)
j,`

Proof. By Fact E.2, we only need to bound the last term
∑
`∈[2] Σ

(t)
j,`∇E1,2

E(t)
j,3−j , which can be

directly obtained from applying Claim B.1.

E.3 At the End of Phase III

In order to argue that B(T2)
2,2 = Ω(1) at the end of phase III, we need to define some auxiliary notions.

Recall that T3 is defined in (E.1), and now we further define

T3,1 := min{t : C1α
6
2(B

(t)
2,2)6 ≥ C2[R

(t)
2 ]3}, T

(t)
3,2 = min

{
t : |B(t)

2,2| ≥
1

3
min{|E(t)

2,1|, |B
(t)
1,1|}

}
(E.2)

It can be observed that if Induction E.1 holds for t ∈ [T2, T3] and our learning rate η is small enough,
we shall have T2 < T3,1 ≤ T3,2 < T3. Now we are ready to present the main lemma we want to
prove in this phase.
Lemma E.8 (Phase III). Let T3 be defined as in (E.1). Suppose η = 1

poly(d) is sufficiently small, then
Induction E.1 holds for all iteration t ∈ [T2, T3], and at iteration t = T3, the followings holds:

(a) |B(T3)
1,1 | = Θ(1), |B(T3)

2,2 | = Θ(1), B(T3)
j,` = B

(T2)
j,` (1± o(1)) for j 6= `;

(b) R(T3)
1 = Õ( 1

d3/4 ), R(T3)
2 ∈ [Õ( 1

d1/2 ), Õ( 1
d1/4 )], and R

(T3)

1,2 ≤ Õ(%+ 1√
d
);

(c) |E(T2)
2,1 | = Θ(

√
ηE/η) and |E(T2)

1,2 | = Õ(%+ 1√
d
)[R

(t)
1 ]3/2[R

(t)
2 ]3/2 = Õ( 1

d ).
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Moreover, |B(t)
2,2| is increasing and R(t)

2 is decreasing. The part of learning |B(t)
2,2| till Ω(1) and

keeping B(t)
2,1 close to its initialization is what’s been accelerated by the prediction head E(t)

2,1.

The proof of Lemma E.8 will be proven after we have proven Induction E.1, which will again be
proven after some intermediate results are proven.

Lemma E.9 (The growth of B(t)
2,2 before T3,1). Let T3,1 be defined as in (E.2). If Induction E.1

holds for t ∈ [T2, T3,1], then we have R(T3,1)
2 ≤ α12

1

d1/4 and B(T3,1)
2,2 ∈ [ 1

d1/4 , O(
α
O(1)
1

d1/4 )] and T3,1 ≤

T2 + Õ(
d1.625α

O(1)
1

η ).

Proof. Firstly by Lemma E.6b , we can write down the update of R(t)
2 : (as in Lemma D.8)

R
(t+1)
2 = R

(t)
2 − ηΘ([R

(t)
2 ]3)

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
±O

(∑
j,`

ηΣ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
± η

poly(d)

Next, by Claim B.1 and Lemma E.3a combined with Induction E.1a,b, we have Õ(
|E(t)

2,1|
d3/2 )Σ

(t)
1,1

Φ
(t)
1

Φ
(t)
2

≤

Õ(Σ
(t)
2,1), which leads to the bound

ηΣ
(t)
1,1Θ((E

(t)
1,2)2) ≤ Õ(%2 +

1

d
)α
O(1)
1 ηΣ

(t)
1,1[R

(t)
1 ]3[R

(t)
2 ]3 ≤ O(

1

d9/4
)ηΣ

(t)
1,1[R

(t)
2 ]3 ≤ O(

α
O(1)
1

d3/4
)ηΣ

(t)
2,1[R

(t)
2 ]3

Similarly, we can bound the following term∑
`∈[2]

ηΣ
(t)
1,`|E

(t)
1,2|(|R

(t)

1,2|+ %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 ≤ Õ(%2 +

1

d
)α
O(1)
1

∑
`∈[2]

ηΣ
(t)
1,`[R

(t)
1 ]3[R

(t)
2 ]3

≤ Õ(%2 +
1

d
)α
O(1)
1

1

d9/4

∑
`∈[2]

ηΣ
(t)
1,`[R

(t)
2 ]3

≤ Õ(
α
O(1)
1

d3/4
)ηΣ

(t)
2,1[R

(t)
2 ]3

Moreover, from Induction E.1c that R(t)
2 ≥ R

(t)
1 , we can also calculate for each t ∈ [T2, T3,1]:

ηΣ
(s)
2,`|E

(t)
2,1|(|R

(t)

1,2|+ %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 ≤ Õ(%+

1√
d

)α
O(1)
1 ηΣ

(t)
2,`[R

(t)
2 ]3

Thus by combining the results above, we have the update of R(t)
2 at t ∈ [T2, T3] as follows:

R
(t+1)
2 = R

(t)
2 − ηΘ([R

(t)
2 ]3)

(
Σ

(t)
1,1Θ((E

(t)
1,2)2) +

∑
`∈[2]

Σ
(t)
2,`

)
= R

(t)
2 − η(Σ

(t)
2,1 + Σ

(t)
2,2)[R

(t)
2 ]3 (E.3)

which implies that R(t)
2 is decreasing throughout phase III. From Lemma E.3a and Induction E.1b,

we know that for t ∈ [T2, T3,1]:

Φ
(t)
2 = Q

(t)
2 /[U

(t)
2 ]3/2 = Θ(

1√
C2[R

(t)
2 ]3(C1α6

1(E
(t)
2,1)2)3/2

)
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which implies (also using a bit of Claim B.1 and Induction E.1a)

Σ
(t)
2,1[R

(t)
2 ]3 = (1± Õ(

1

d3/2
))E

(t)
2,1∆

(t)
2,1

= (1± Õ(
1

d3/2
))(1± Õ(

1

d3/2
))C0C2α

6
1Φ

(t)
2 E

(t)
2,1(B

(t)
1,1)3(B

(t)
2,1)3[R

(t)
2 ]3

= Θ(
C

1/2
2 [R

(t)
2 ]3/2

(U
(t)
2 )3/2

)C0α
6
1E

(t)
2,1(B

(t)
1,1)3(B

(t)
2,1)3

= Θ(
C0C

1/2
2 |B(T2)

2,1 |3

C
3/2
1 α3

1|E
(T2)
2,1 |

)[R
(t)
2 ]3/2

(because B(t)
2,1 = B

(T2)
2,1 (1± o(1)), B(t)

1,1 = Θ(B
(T2)
1,1 ) and E(t)

2,1 = Θ(E
(T2)
2,1 )sign(B

(T2)
1,1 B

(T2)
2,1 ))

And for Σ
(t)
2,2, from some simple calcualtions (using Claim B.1), we have

• when |B(t)
2,2| ≤ α1

α2

√
|B(T2)

2,1 |, we would have Σ
(t)
2,2 ≤ O(Σ

(t)
2,1);

• otherwise, we have Σ
(t)
2,1 + Σ

(t)
2,2 = Θ(Σ

(t)
2,2).

So by (E.3), we know R2 is decreasing for t ∈ [T2, T3,1] by at least

R
(t+1)
2 ≤ R(t)

2 − ηΘ(
C0C

1/2
2 |B(T2)

2,1 |3

C
3/2
1 α3

1|E
(T2)
2,1 |

)[R
(t)
2 ]3/2 ≤ R(t)

2 (1− ηζ[R
(t)
2 ]1/2) (E.4)

where ζ := Θ(
C0C

1/2
2 |B(T2)

2,1 |
3

C
3/2
1 α3

1|E
(T2)
2,1 |

) = Θ̃(

√
η/ηE

d3/2α3
1

). By this update, we can prove T3,1 ≤ T2 +

O(
d3/2+1/8α

O(1)
1

η ). In order to do that, we can first see that for some t′3,1 ∈ [T2+Θ̃(
d3/2α2

1

√
ηE/η

η ), T2+

Θ̃(
d3/2α4

1

√
ηE/η

η )], we shall have R
(t′3,1)

2 ≤ d−1/4. Indeed, suppose otherwise R
(t′3,1−1)

2 ≥ d−1/4,
then (E.4) implies

R
(t′3,1)

2 ≤ R(t′3,1−1)

2 (1− ηζ[R
(t′3,1−1)

2 ]1/2) ≤ R(t′3,1−1)

2 (1− ηζ 1

d1/8
)

≤ R(T2)
2

(
1−Θ(

C0C
1/2
2

√
η/ηE

C
3/2
1 d3/2α3

1

)
η

d1/8

)t′3,1−T2−1

≤ O(
√
ηE/η)

(
1−Θ(

C0C
1/2
2

√
η/ηE

C
3/2
1 d3/2α3

1

)
η

d1/8

)t′3,1−T2−1

which means there must exist an iteration t′3,1 ∈ [T2 +Θ̃(
d3/2α2

1

√
ηE/η

η ), T2 +Θ̃(
d3/2α4

1

√
ηE/η

η )] such

that R
(t′3,1−1)

2 ≥ d−1/4 (so the above update bound is still valid when the RHS is for t ≤ t′3,1 − 1)

and R
(t′3,1)

2 < d−1/4. Next we need to prove that at t = t′3,1, it holds C1α
6
2(B

(t)
2,2)6 ≥ C2[R

(t)
2 ]3. Let

us discuss several possible cases:

1. Suppose |B(t′3,1)

2,2 | ≥ α1

α2
|B(T1)

2,1 |1/2 ≥ Θ( 1
d1/4 ) (by Induction E.1a and Lemma E.8), then we

already have C1α
6
2(B

(t′3,1)

2,2 )6 ≥ C2[R
(t′3,1)

2 ]3 and T3,1 ≤ t′3,1;

2. Suppose otherwise |B(t′3,1)

2,2 | ≤ α1

α2
|B(T1)

2,1 |1/2, then we shall have Σ
(t)
2,2 ≤ O(Σ

(t)
2,1). So the

update of R(t)
2 during t ∈ [T2, T3,1] can be written as

R
(t+1)
2 = R

(t)
2 −Θ(ηΣ

(t)
2,1)[R

(t)
2 ]3 = R

(t)
2 (1−Θ(ηζ)[R

(t)
2 ]1/2)
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Let t′3,2 = min{t : R
(t)
2 ≤ 2d−1/4} be an iteration between T2 and t′3,1, we shall have∑

t∈[t′3,2,t
′
3,1]

ηζ[R
(t)
2 ]3/2 = Θ(R

(t′3,2)

2 −R(t′3,1)

2 ) = Θ(
1

d1/4
) and R

(t)
2 ∈ [0.99

1

d1/4
, 2.01

1

d1/4
]

which also implies t′3,1 − t′3,2 = Θ(d
1/8

ηζ ) = Θ̃(
d3/2+1/8α3

1

√
ηE/η

η ). In this case, let us look

at the update of B(t)
2,2 at t ∈ [T2, T3]. By Lemma E.42, we have

B
(t+1)
2,2 = B

(t)
2,2 + η(1± Õ(

1

d
))Λ

(t)
2,2

It is not hard to see |B(t)
2,2| is monotonically increasing. Also by Induction E.1a and Lemma

E.3a, if we sum together the update between t′3,2 and t′3,1 as follows: (suppose the sign of

B
(t′3,2)

2,2 is positive for now, the negative case can be similarly dealt with)

B
(t′3,2)

2,2 +
∑

t∈[t′3,2,t
′
3,1]

η(1± Õ(
1

d
))Λ

(t)
2,2 =

∑
t∈[t′3,2,t

′
3,1]

Θ(
ηC0C1α

6
1α

6
2(E

(T2)
2,1 )2√

C2[R
(t)
2 ]3(C1α6

1(E
(T2)
2,1 )2)3/2

)(B
(t)
2,2)5

≥ B(t′3,2)

2,2 + (B
(T2)
2,2 )4

∑
t∈[t′3,2,t

′
3,1]

Θ(
ηC0α

3
1α

6
2B

(t)
2,2

C
1/2
1 C

1/2
2 [R

(t)
2 ]3/2|E(T2)

2,1 |
)

≥ B(t′3,2)

2,2

t′3,1∏
t=t′3,2

(
1 + ηΘ̃(

α3
1α

6
2

d3/2+1/8
√
ηE/η

)
)

≥ Θ̃(
1√
d

)
(

1 + ηΘ̃(
α3

1α
6
2

d3/2+1/8
√
ηE/η

)
)Θ̃(d3/2α3

1

√
ηE/η/η)

≥ Ω(eα1)

which is a contradiction to our assumption |B(t′3,1)

2,2 | ≤ α1

α2
|B(T1)

2,1 |1/2. Since |B(t)
2,2| is

monotonically increasing, we know there must exist some iteration t ≤ t′3,1 such that

|B(t)
2,2| ≥ α1

α2
|B(T1)

2,1 |1/2, which means T3,1 ≤ t′3,1.

Thus we proved the bound of T3,1 ≤ T2 + Θ̃(
d3/2α

O(1)
1

η ).

Using similar arguments, we can prove that R(T3,1)
2 ≤ α

O(1)
1

d1/4 . Indeed, we can set T3,3 := min{t :

|B(t′3,1)

2,2 | ≥ α1

α2
|B(T1)

2,1 |1/2}. From our arguments in this proof, we know Σ
(t)
2,2 ≤ O(Σ

(t)
2,2) for t ≤ T3,3.

Now we can further choose t′3,3 = min{t : R
(t)
2 ≤ a} for some a =

α12
1

d1/4 to be some iteration with

R
(t)
2 ≥ a for t ∈ [T2, t

′
3,3] and t′3,3 − T2 = Θ(

√
a log d
ηζ ). Now we can work out the update of B(t)

2,2

during t ∈ [T2, t
′
3,3] again to see that |B(t′3,3)

2,2 | ≤ B(T2)
2,2

(
1 + ηΘ̃(

α3
1α

6
2

d2a3/2
√
ηE/η

)
)√a
ηζ ≤ Õ( 1√

d
). This

would prove that t′3,3 ≤ T3,3 and R(T3,3)
2 ≤ α

O(1)
1

d1/4 . So we also have |B(T3,3)
2,2 | ≤ α

O(1)
1

d1/4 because of the

definition of T3,1. But since T3,3 ≥ T3,1 by our arguments above and the fact that |B(t)
2,2| is increasing,

we shall have |B(T3,1)
2,2 | ∈ [ 1

d1/4 ,
α
O(1)
1

d1/4 ].

Now we proceed to characterize the learning of B(t)
2,2 during t ∈ [T3,1, T3,2].

Lemma E.10 (The growth of B(t)
2,2 until T3). Let T3,1, T3,2 be defined as in (E.2). If Induction E.1

holds true for all t ∈ [T2, T3], then we have T3,2 = T3,1 + Õ(
d1/4α

O(1)
1

η ) and T3 ≤ T3,2 + Õ(
α
O(1)
1

η ).
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Proof. We first calculate the bound for T3,2. After T3,1, since |B(t)
2,2| is increasing while R(t)

2 is
decreasing by Induction E.1. So by Lemma E.3a, we have

[Q
(t)
2 ]−2 = Θ(C1α

6
2(B

(t)
2,2)6), Φ

(t)
2 = Q

(t)
2 /[U

(t)
2 ]3/2 = Θ((C

3/2
1 α3

2α
9
1|B

(t)
2,2)|3|E(t)

2,1|3)−1)

So according to Lemma E.4, we would have for all t ∈ [T3,1, T3,2):

〈−∇w2L(W (t), E(t)), v2〉 = (1± o(1))Λ
(t)
2,2 = Θ(

1

C
3/2
1 α9

1|E
(T2)
2,1 |3

)(B
(t)
2,2)2sign(B

(t)
2,2)

where we have used (E
(t)
2,1)3 = Θ((E

(T2)
2,1 )3) from Induction E.1a. So when t ∈ [T3,1, T3,2], we can

write down the explicit form of Λ
(t)
2,2 and use Lemma E.3d to derive

|B(t+1)
2,2 | = |B(t)

2,2|+ ηΘ(
C1α

6
1|E

(T2)
2,1 |2

C
3/2
1 α9

1|E
(T2)
2,1 |3

)(B
(t)
2,2)2

≥ |B(t)
2,2|

(
1 + Θ(

1

C1α
O(1)
1

)|B(T3,1)
2,2 |

)

≥ |B(t)
2,2|

(
1 + Θ(

1

C1α
O(1)
1

)
1

d1/4

)

Thus after Õ(d
1/4αO(1)

η ) many iterations, we would have |B(t)
2,2| ≥ 1

3 min{|E(t)
2,1|, |B

(t)
1,1|}. Now let us

deal with the growth of |B(t)
2,2| at t ∈ [T3,2, T3,3]. During this stage, since B(t)

2,2 is still increasing and

|E(t)
2,1| = |E

(T2)
2,1 | by Induction E.1, we have from Lemma E.3a that

Φ
(t)
2 = Q

(t)
2 /[U

(t)
2 ]3/2 = Θ(

1

C2
1α

12
2 (B

(t)
2,2)12

) ≥ Θ(
1

C2
1α

O(1)
1

)

And we can redo the calcualtions as above to get T3 ≤ T3,2 + Õ(
α
O(1)
1

η ) since
√
η/ηE |E(t)

2,1| and

|B(t)
1,1| are both Θ(1) according to Induction E.1a,b

Proving The Main Lemma. Now we finally begin to prove Lemma E.8.

Proof of Lemma E.8. We start with proving Induction E.1.

Proof of Induction E.1a: From Lemma E.5, we know the update of B(t)
1,1 can be written

as

B
(t+1)
1,1 = B

(t)
1,1 + Θ(ηΣ

(t)
1,1[R

(t)
1 ]3)± ηO(

(B
(t)
1,2)3

(B
(t)
2,2)3

+
1√
d

)α
O(1)
1 Λ

(t)
2,2 +

E
(t)
2,1

B
(t)
1,1

η∆
(t)
2,1 −

B
(t)
2,2

B
(t)
1,1

ηΛ
(t)
2,2

Since from Lemma E.9 and Lemma E.10, we know T3 ≤ Õ(
d1.625α

O(1)
1

η ) and from Claim B.1 and

Induction E.1a,c we have Σ
(t)
1,1[R

(t)
1 ]3 ≤ Õ(

α
O(1)
1

d2.25 ), we shall have

∑
s∈[T2,t)

Θ(ηΣ
(s)
1,1[R

(s)
1 ]3) ≤ Õ(

d1.625α
O(1)
1

η
)Õ(

ηα
O(1)
1

d2.25
) ≤ 1√

d
= o(1)

Further more, by applying Lemma H.3 to xt = B
(t)
2,2 with q′ = q − 2, and notice that sign(B

(t)
j,2) =

sign(B
(T2)
j,2 ) for all t ∈ [T2, T3], we also have∣∣∣∣∣∣

∑
s∈[T2,t)

O(
(B

(s)
1,2)3

(B
(s)
2,2)3

)α
O(1)
1 ηΛ

(s)
2,2

∣∣∣∣∣∣ ≤ Õ(
α
O(1)
1√
d

)
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Now we turn to the last two terms. We first see that from the expression (E.3) of R(t)
2 ’s update, we

have that (note that sign(E
(t)
2,1∆

(t)
2,1) = 1)∑

s∈[T2,t)

E
(s)
2,1

|B(s)
1,1|

η∆
(s)
2,1 =

∑
s∈[T2,t)

1

|B(s)
1,1|

Θ(ηΣ
(s)
2,1[R

(s)
2 ]3) = Θ(

√
ηE/η

|B(T2)
1,1 |

) = Θ(
√
ηE/η)

where we have used the fact that Σ
(t)
2,1[R

(t)
2 ]3 = (1±O( 1

d ))E
(t)
2,1∆

(t)
2,1 and

∑
s∈[T2,t)

ηΣ
(s)
2,1[R

(s)
2 ]3 .

R
(T2)
2 from (E.3) (which holds for all t ∈ [T2, T3]). And also, the analysis above shows that

|B(t)
1,1| = |B

(T2)
1,1 |+O(

√
ηE/η)−

∑
s∈[T2,t]

B
(s)
2,2

B
(s)
1,1

ηΛ
(s)
2,2

for all t ∈ [T2, T3], which means that either
∑
s∈[T2,t]

B
(s)
2,2

|B(s)
1,1|

ηΛ
(s)
2,2 ≤

∑
s∈[T2,t)

E
(s)
2,1

|B(s)
1,1|

η∆
(s)
2,1 and we

have |B(t)
1,1| ≥ |B

(T2)
1,1 | holds throughout t ∈ [T2, T3], or that

∑
s∈[T2,t]

B
(s)
2,2

|B(s)
1,1|

ηΛ
(s)
2,2 ≥ Ω(

√
ηE/η), in

which case we would have |B(t)
1,1| to be actually decreasing (as B(t)

2,2 is increasing). Now that since

B
(T2)
1,1 = Θ(1), we can easily see by our definition of T3 and the monotonicity of B(t)

1,1 after going

below B
(T2)
1,1 − Ω(

√
ηE/η) that B(t)

1,1 ≥ 0.49B
(T2)
1,1 = Ω(1) for all t ∈ [T2, T3].

Next let us look at the change of B(t)
2,1. From Lemma E.5, we can write down the update of B(t)

2,1:

B
(t+1)
2,1 = B

(t)
2,1 + Õ(

α
O(1)
1

d5/2
)ηΦ

(t)
2 [R

(t)
2 ]3 ± Õ(

α
O(1)
1

d
)ηΛ

(t)
2,2 ± Õ(

ηα
O(1)
1

d3
)

For the first term, according to Lemma E.9 and Lemma E.10 and R(t)
2 ≤ O(

√
ηE/η) = o(1) for all

t ∈ [T2, T3] by Induction E.1c, we have Φ
(t)
2 [R

(t)
2 ]3 ≤ αO(1)

1 for all t ∈ [T2, T3] and∑
s∈[T2,t]

Õ(
α
O(1)
1

d5/2
)ηΦ

(s)
2 [R

(s)
2 ]3 ≤ Õ(

d1.625α
O(1)
1

η
)ηÕ(

α
O(1)
1

d5/2
) ≤ Õ(

α
O(1)
1

d7/8
)

And similarly as in the proof of induction for B(t)
1,1, we have∑

s∈[T2,t]

Õ(
α
O(1)
1

d
)ηΛ

(s)
2,2 ≤ Õ(

α
O(1)
1

d
),

∑
s∈[T2,t]

Õ(
ηα

O(1)
1

d3
) ≤ Õ(

α
O(1)
1

d
)

which proved the induction for B(t)
2,1 since |B(T2)

2,1 | = Θ̃( 1√
d
).

Next we go on for the induction of B(t)
1,2, we write down its update:

B
(t+1)
1,2 = B

(t)
1,2 + Θ(

(B
(t)
1,2)2

(B
(t)
2,2)2

)E
(t)
2,1ηΛ
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2,2 ± ηÕ(

α
O(1)
1
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)|E(t)
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2 ± ηÕ(

α
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1
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)

By Lemma E.9 and Lemma E.10, we have for any t ∈ [T2, T3]∑
s∈[T2,t]

ηÕ(
α
O(1)
1

d5/2
) ≤ 1√

dpolylog(d)

and also∑
s∈[T2,t]

ηÕ(
α
O(1)
1

d4
)|E(t)

2,1|2Φ
(t)
2 ≤

 ∑
s∈[T2,T3,1]

+
∑

s∈[T3,1,T3]

 ηÕ(
α
O(1)
1

d4
)|E(t)

2,1|2Φ
(t)
2

≤ ηÕ(
α
O(1)
1

d4
) · (T3,1 − T2) ·O(α

O(1)
1 d3/8) + ηÕ(

α
O(1)
1

d4
)(T3 − T3,1)

≤ Õ(
α
O(1)
1
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)
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Now we consider the term Θ(
(B

(t)
1,2)2

(B
(t)
2,2)2

)E
(t)
2,1ηΛ

(t)
2,2, we have by Induction E.1a that∣∣∣∣∣∣

∑
s∈[T2,t]

Θ(
(B

(t)
1,2)2

(B
(t)
2,2)2

)E
(t)
2,1ηΛ

(t)
2,2

∣∣∣∣∣∣ ≤ O(
√
ηE/η(B

(T2)
1,2 )2)

∑
s∈[T2,t]

η
|Λ(t)

2,2|

(B
(t)
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where we have used our induction hypothesis that B(t)
1,2 = B

(T2)
1,2 (1± o(1)). Using Lemma H.3 by

setting xt = B
(t)
2,2, q′ = 3, and A = Θ(1) ≥ dΩ(1)B

(T2)
2,2 , it holds that∣∣∣∣∣∣

∑
s∈[T2,t]

Θ(
(B

(t)
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(t)
2,2)2

)E
(t)
2,1ηΛ
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√
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|B(T2)
2,2 |

≤ O(
√
ηE/η)

(B
(0)
1,2)2

|B(0)
2,2 |

≤ 1√
dpolylog(d)

where in the second inequality we have used Lemma C.13c, Lemma D.8a and Lemma C.1, and in the
last our choice of ηE/η ≤ 1

polylog(d) . This ensures the induction can go on until t = T3. And we
finished our proof of Induction E.1a.

Proof of Induction E.1b: Let us write down the update of E(t)
1,2 using Lemma E.7:

E
(t+1)
1,2 = E

(t)
1,2(1− ηEΞ

(t)
1 ) +

∑
`∈[2]

Θ(ηEΣ
(t)
1,`)(−E

(t)
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(t)
2 ]3 ±O(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2) +

∑
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ηE∆
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= E
(t)
1,2(1− ηEΞ

(t)
1 −

∑
`∈[2]

Θ(ηEΣ
(t)
1,`)[R

(t)
2 ]3) + Õ(

ηE
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)Φ
(t)
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(t)
1 ]3

± Õ(%+
1√
d

)
∑
`∈[2]

ηEΣ
(t)
1,`[R

(t)
1 ]3/2[R

(t)
2 ]3/2

= E
(t)
1,2(1− ηEΞ

(t)
1 −Θ(ηEΣ
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(t)
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where in the last inequality we have used R(t)
2 ≥ R

(t)
1 from Induction E.1c and Σ

(t)
1,1 ≥ Ω(Φ

(t)
1 ),

Σ
(t)
2,1 ≤ Õ( 1

d3/2 )Σ
(t)
1,1 from Claim B.1 and Induction E.1a. Now we can use the same analysis in the

proof of Lemma D.8 on E(t)
1,2 to prove the desired claim, which we do not repeat here.

As for E(t)
2,1, we can obtain similar expressions:

E
(t+1)
2,1 = E

(t)
2,1(1− ηEΞ

(t)
2 −

∑
`∈[2]

Θ(ηEΣ
(t)
2,`)[R

(t)
1 ]3)

± Õ(%+
1√
d

)
∑
`∈[2]

Θ(ηEΣ
(t)
2,`)[R

(t)
1 ]3/2[R

(t)
2 ]3/2 +

∑
`∈[2]

ηE∆
(t)
2,`

Now we can obtain bounds for each terms as∑
s∈[T2,t]

∑
`∈[2]

Θ(ηEΣ
(s)
2,`)[R

(s)
1 ]3 ≤ Õ(

ηEα
O(1)
1

d2
) · Õ(

d1.625α
O(1)
1

η
) ≤ 1

d3/4

and by (E.3) in Lemma E.9, we also have for any t ∈ [T2, T3]∑
s∈[T2,t]

Õ(%+
1√
d

)
∑
`∈[2]

Θ(ηEΣ
(s)
2,`)[R

(s)
1 ]3/2[R

(s)
2 ]3/2 ≤ Õ(%+

1√
d

)
∑

s∈[T2,t]

∑
`∈[2]

Θ(ηEΣ
(s)
2,`)[R

(s)
2 ]3

≤ Õ(%+
1√
d

)R
(T2)
2

≤ Õ(%+
1√
d

)

And also by using our induction and by (E.3) in Lemma E.9:∑
s∈[T2,t]

∑
`∈[2]

ηE∆
(s)
2,` ≤

∑
s∈[T2,t]

ηE/η

|E(t)
2,1|

Θ(ηΣ
(s)
2,1 + ηΣ

(s)
2,2)[R

(s)
2 ]3 ≤ ηE/η

|E(T2)
2,1 |

R
(T2)
2 ≤ O(

ηE/η

log d
) = o(

√
ηE/η)
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Finally, we can calculate

∑
s∈[T2,t]

ηEΞ
(t)
2 E

(t)
2,1 =

∑
s∈[T2,t]

ηE
η

B
(t)
2,2

E
(t)
2,1

ηΛ
(t)
2,2

By resorting to the defintion of T3 and go through similar analysis as for the induction of B(t)
1,1, we

can obtain that |E(t)
2,1| is either above |E(T2)

2,1 |(1 + o(1)) or is decreasing and always above 1
2 |E

(T2)
2,1 |.

This proves Induction E.1b.

Proof of Induction E.1c: The proof of induction of R(t)
2 is half done in Lemma E.9, we

only need to complete the part when t ∈ [T3,1, T3], since by (E.3), we always have R(t)
2 to be

decreasing by

R
(t+1)
2 = R

(t)
2 (1−

∑
`∈[2]

Θ(ηΣ
(s)
2,`)[R

(t)
2 ]2)

And when t ∈ [T3,1, T3], we have ∑
`∈[2]

Θ(ηΣ
(s)
2,` ≤ Õ(ηd3/8+o(1))

So if we suppose R(T3)
2 ≤ 1√

d
, we shall have for T3 − T3,1 = O(d1/4+o(1)/η) many iterations that

R
(t+1)
2 ≥ R(T3,1)

2 (1− η

d5/8
)T3−T3,1 ≥ Ω(R

(T3,1)
2 ) ≥ 1

d1/4
(by Lemma E.9)

So it negates our supposition, which completes the proof of the induction for R(t)
2 in t ∈ [T2, T3].

Now we turn to the proof of induction for R(t)
1 , we write down its update: (as in Lemma D.8)

R
(t+1)
1 = R

(t)
1 −Θ(η[R

(t)
1 ]3)

(
Σ

(t)
1,1 +

∑
`∈[2]

Σ
(t)
2,`(E

(t)
2,1)2

)
±O

(∑
j,`

ηΣ
(t)
j,`E

(t)
j,3−j(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

)
± η

poly(d)

It is straightforward to derive∑
`∈[2]

Σ
(t)
1,`|E

(t)
1,2|(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 ≤ Õ(%+

1√
d

)2
∑
`∈[2]

Σ
(t)
1,`[R

(t)
1 ]3[R

(t)
2 ]3

and when t ∈ [T2, T3,1]:

∑
s∈[T2,t]

∑
`∈[2]

ηΣ
(s)
2,`|E

(s)
2,1|(R

(s)

1,2 + %)[R
(s)
1 ]3/2[R

(s)
2 ]3/2 ≤ Õ(%+

1√
d

)
do(1)d3/8

d9/8

∑
s∈[T2,t]

∑
`∈[2]

ηΣ
(s)
2,`[R

(s)
2 ]3

≤ o(d
o(1)

d3/4
)

and when t ∈ [T3,1, T3]:

∑
s∈[T2,t]

∑
`∈[2]

ηΣ
(s)
2,`|E

(s)
2,1|(R

(s)

1,2 + %)[R
(s)
1 ]3/2[R

(s)
2 ]3/2 ≤ Õ(%+

1√
d

)
do(1)d3/8

d9/8
ηÕ(

d1/4+o(1)

η
) ≤ O(

1

d
)

So these combined with Lemma D.8 proved that R(t)
1 ≤ O(d

o(1)

d3/4 ) for all t ∈ [T2, T3]. We can go

through some similar analysis about R(t)
2 to get that R(t)

1 ≥ 1
d for all t ∈ [T2, T3].
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Finally we begin to prove the induction of R
(t)

1,2. Similarly as in the proof of Lemma D.8, we first
write down

R
(t+1)
1,2 = R

(t)
1,2 − η〈∇w1L(W (t), E(t)),ΠV ⊥w

(t)
2 〉 − η〈∇w2L(W (t), E(t)),ΠV ⊥w

(t)
1 〉

+ η2〈ΠV ⊥∇w1
L(W (t), E(t)),ΠV ⊥∇w2

L(W (t), E(t))〉

= R
(t)
1,2 + η

(
Σ

(t)
1,1 +

∑
`∈[2]

Σ
(t)
2,`(E

(t)
2,1)2

)
(−Θ(R

(t)

1,2)±O(%))[R
(t)
1 ]5/2[R

(t)
2 ]1/2

+ η
(

Σ
(t)
1,1Θ(E

(t)
1,2)2 +

∑
`∈[2]

Σ
(t)
2,`

)
(−Θ(R

(t)

1,2)±O(%))[R
(t)
2 ]5/2[R

(t)
1 ]1/2

+O
( ∑

(j,`) 6=(1,2)

ηΣ
(t)
j,`E

(t)
j,3−j(R

(t)
1 [R

(t)
2 ]2 +R

(t)
2 [R

(t)
1 ]2)

)
± η

poly(d)

Note that since |E(t)
1,2| ≤ Õ(%+ 1√

d
)[R

(t)
2 ]3/2[R

(t)
1 ]3/2 and R(t)

1 ≤ O( 1
d3/4 ), it holds∑

(j,`)6=(1,2)

ηΣ
(t)
j,`|E

(t)
j,3−j |R

(t)
2 [R

(t)
1 ]2 ≤

∑
(j,`)6=(1,2)

ηΣ
(t)
j,`|E

(t)
j,3−j |R

(t)
1 [R

(t)
2 ]2

≤ o

Σ
(t)
1,1[R

(t)
1 ]2 +

∑
`∈[2]

Σ
(t)
2,`[R

(t)
2 ]2

 Õ(%+
1√
d

)[R
(t)
2 ]1/2[R

(t)
1 ]1/2

so the update becomes

R
(t+1)
1,2 = R

(t)
1,2

1− ηΘ
(

Σ
(t)
1,1 +

∑
`∈[2]

Σ
(t)
2,`(E

(t)
2,1)2

)
[R

(t)
1 ]2 − ηΘ

(
Σ

(t)
1,1(E

(t)
1,2)2 +

∑
`∈[2]

Σ
(t)
2,`

)
[R

(t)
2 ]2


± ηÕ(%+

1√
d

)[R
(t)
1 ]1/2[R

(t)
2 ]1/2Θ

(
Σ

(t)
1,1 +

∑
`∈[2]

Σ
(t)
2,`(E

(t)
2,1)2

)
[R

(t)
1 ]2

± ηÕ(%+
1√
d

)[R
(t)
1 ]1/2[R

(t)
2 ]1/2Θ

(
Σ

(t)
1,1(E

(t)
1,2)2 +

∑
`∈[2]

Σ
(t)
2,`

)
[R

(t)
2 ]2

Now we can use the same arguments as in the proof of R
(t)

1,2 in Lemma D.8 to conclude.

Proof of Lemma E.8a,b,c: Indeed, at the end of phase III:

Induction E.1a =⇒ Lemma E.8a
Induction E.1b =⇒ Lemma E.8c
Induction E.1c =⇒ Lemma E.8b

Now we have completed the whole proof.

F The End Phase: Convergence

When we arrive at t = T3, we have already obtained the representation we want for the encoder
network f(X), where v1 and v2 are satisfactorily learned by different neurons. In the last phase, we
prove that such features are the solutions that the algorithm are converging to, which gives a stronger
guarantee than just accidentally finding the solution at some intermediate steps.

To prove the convergence, we need to ensure all the good properties that we got through the training
still holds. Fortunately, mosts of Induction E.1 still hold, as we summarized below:
Inductions F.1. At the end phase, i.e. when t ∈ [T3, T ], Induction E.1a continues to hold except
that |B(t)

2,2| = Θ(1), Induction E.1b will hold except that for |E(t)
2,1| only the upper bound still

holds, and the upper bounds in Induction E.1c still hold while the lower bounds for R(t)
1 , R

(t)
2 is

1/poly(d). Moreover, there is a constant C = O(1) such that when t ≥ T3 +
αC1
η , we would have

|E(t)
2,1| ≤ Õ(%+ 1√

d
)[R

(t)
1 ]3/2[R

(t)
2 ]3/2.
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Now we present the main theorem of the paper, which we shall prove in this section.

Theorem F.2 (End phase: convergence). For some T4 = T3 + d2+o(1)

η and T = poly(d)/η, we have
for all t ∈ [T4, T ] that Induction F.1 holds true and:

(a) Successful learning of both v1, v2: |B(t)
1,1|, |B

(t)
2,2| = Θ(1) while |B(t)

2,1|, |B
(t)
1,2| = Õ( 1√

d
).

(b) Successful denoising at the end: R(t)
j ≤ R

(T3)
j (1− Θ̃( 1

α6
j
)[R

(t)
j ]2) for all j ∈ [2].

(c) Prediction head is close to identity: |E(t)
j,3−j | ≤ Õ(%+ 1√

d
)[R

(t)
1 ]3/2[R

(t)
1 ]3/2 for all j ∈ [2];

In fact, (b) and (c) also imply for some sufficiently large t = poly(d)/η, it holds R(t)
j ≤ 1

poly(d) and

|E(t)
j,3−j | ≤ 1

poly(d) for all j ∈ [2].

And we have a simple corollary for the objective convergence.

Corollary F.3 (objective convergence, with prediction head). Let OPT denote the global minimum
of the population objective (B.1). It is easy to derive that OPT = 2− 2C0

C1
= Θ( 1

log d ). We have for
some sufficiently large t ≥ poly(d)/η:

L(W (t), E(t)) ≤ OPT +
1

poly(d)

Now we need to establish some auxiliary lemmas:

Lemma F.4. For some t ∈ [T3, poly(d)/η], if Induction F.1 holds from T3 to t, we have Lemma E.6
holds at t.

Proof. Simple from similar calculations in the proof of Lemma E.6 .

Lemma F.5. For some t ∈ [T3, poly(d)/η], if Induction F.1 holds from T3 to t, we have for each
j ∈ [2] that ∑

s∈[T3,t]

∑
`∈[2]

ηΣ
(s)
j,` [R

(s)
j ]3 ≤ O(R

(T3)
j ), ∀j ∈ [2]

Proof. Notice that when Induction F.1 holds, we always have∑
`∈[2]

(Σ
(t)
j,` + Σ

(t)
3−j,`(E

(t)
3−j,j)

2) = (1± o(1))
∑
`∈[2]

Σ
(t)
j,`

we can use Lemma F.4 to obtain the update of R(t)
2 as in the calculations when we obtained (E.3):

R
(t)
2 = R

(T3)
2 −

∑
s∈[T3,t)

∑
`∈[2]

Θ(ηΣ
(s)
2,`)[R

(s)
2 ]3

which means that R(t)
2 is decreasing from T3 to t. Summing up the update, the part of R(t)

2 is
solved. For the part of R(t)

1 , we separately discuss when |E(t)
2,1| is larger than or smaller than

Õ(%+ 1√
d
)[R

(t)
1 ]3/2[R

(t)
2 ]3/2. When the former happens, which we know from Induction F.1 that it

cannot last until some t′4 = T3 +
α
O(1)
1

η many iterations, we have for t ∈ [T3, t
′
4]

∑
s∈[T3,t)

∑
(j,`)∈[2]2

ηΣ
(s)
j,` |E

(s)
j,3−j |(R

(s)

1,2 + %)[R
(s)
1 ]3/2[R

(s)
2 ]3/2 ≤ Õ(%+

1√
d

)
α
O(1)
1

d
R

(T3)
1 ≤ 1

d
R

(T3)
1
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Now for t ≥ t′4 we can simply go through similar calculations as in the proof of Induction E.1c to
obtain∑
s∈[t′4,t)

∑
(j,`)∈[2]2

ηΣ
(s)
j,` |E

(s)
j,3−j |(R

(s)

1,2 + %)[R
(s)
1 ]3/2[R

(s)
2 ]3/2 ≤

∑
s∈[t′4,t)

Õ(%+
1√
d

)2
∑

(j,`)∈[2]2

ηΣ
(s)
j,` [R

(s)
1 ]3[R

(s)
2 ]3

≤ Õ(%+
1√
d

)2R
(T3)
2 max

s∈[t′4,t)
[R

(s)
1 ]3

≤ 1

d
R

(T3)
1

So by applying Lemma F.4a and Lemma E.6, we have

R
(t)
1 = (1± o(1))R

(T3)
1 −

∑
s∈[T3,t)

∑
`∈[2]

Θ(ηΣ
(s)
j,` )[R

(s)
1 ]3

which proves the claim.

Lemma F.6. For some t ∈ [T3, poly(d)/η], if Induction F.1 holds from T3 to t. Then we have

|E(t)
j,3−j | is decreasing until |E(t)

j,3−j | ≤ O(R
(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 + Õ( 1

d3/2 )[R
(t)
j ]3. Moreover,

we have for each t ∈ [T3, T ] that∣∣∣∣∣∣
∑

s∈[T3,t]

ηEΞ
(t)
j E

(s)
j,3−j

∣∣∣∣∣∣ ≤ |E(T3)
j,3−j |+ Õ(%+

1√
d

) ≤ O(
√
ηE/η)

Proof. We can go through the same calculations in the proof of Induction E.1b (using Fact E.2) to
obtain

E
(t+1)
j,3−j = E

(t)
j,3−j(1− ηEΞ

(t)
j ) +

∑
`∈[2]

ηE∆
(t)
j,`

+
∑
`∈[2]

Θ(ηEΣ
(t)
j,`)(−E

(t)
j,3−j [R

(t)
3−j ]

3 ±O(R
(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2)

= E
(t)
j,3−j(1− ηEΞ

(t)
j − ηEΘ(Σ

(t)
j,j [R

(t)
3−j ]

3)) + Õ(
1

d3/2
)
∑
`∈[2]

ηEΣ
(t)
j,`[R

(t)
j ]3

±O(ηEΣ
(t)
j,j)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2

where we have used in the second equality that
∑
`∈[2] ∆

(t)
j,` ≤ Õ( 1

d3/2 )
∑
`∈[2] Σ

(t)
j,`[R

(t)
j ]3 and also

Σ
(t)
j,3−j ≤ O( 1

d3/2 )Σ
(t)
j,j for both j ∈ [2] when Induction F.1 holds. Note that from above calculations,

there exist a constant C such that if |E(t)
j,3−j | ≥ C(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 +

∑
`∈[2] ηE∆

(t)
j,` , we

have |E(t)
2,1| to be decreasing. Now it suffices to observe that:∑

s∈[T3,t]

O(ηEΣ
(t)
j,j)(R

(t)

1,2 + %)[R
(t)
1 ]3/2[R

(t)
2 ]3/2 ≤

∑
s∈[T3,t]

O(ηEΣ
(t)
1,1 + ηEΣ

(t)
2,2)(R

(t)

1,2 + %)([R
(t)
1 ]3 + [R

(t)
2 ]3)

≤ Õ(%+
1√
d

)

which is from Induction F.1, Induction E.1c and Lemma F.4. Also note that Σ
(t)
j,j [R

(t)
3−j ]

3 ≤
O(d

o(1)

d3/4 )Ξ
(t)
j at this stage, we have

E
(t)
3−j,j = E

(T3)
j,3−j −

∑
s∈[T3,t)

Ξ
(s)
j E

(s)
j,3−j + Õ(%+

1√
d

)

Recalling the expression of Ξ
(t)
j finishes the proof.
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Lemma F.7. Recall T2 defined in (D.1) and T3 defined in (E.1), we have

√
η/ηE max

t≤T3

|E(t)
2,1| ≤

∑
t≤T2

ηΣ
(t)
1,1

|B(t)
1,1|
E(t)

1,2 +
1

α
Ω(1)
1

To prove this lemma, we need a simple claim.

Claim F.8. If {xt}t<T , xt ≥ 0 is an increasing sequence and C = Θ(1) is a constant such that
xt+1 − xt ≤ O(η) and

∑
t<T xt(xt+1 − xt) = C, then for each δ ∈ ( 1

d , 1) it holds |xT −
√
C| ≤

O(δ2 + x2
0 +O( log d

d )).

Proof. Indeed, for every g ∈ 0, 1, . . ., we define Tg := min{t : xt ≥ (1 + δ)gx0}. and define
b := min{g : ((1 + δ)gx0)2 ≥ C − δ2}. Now for any g < b, we have∑
t∈[Tg,Tg+1]

xt(xt+1 − xt) ≥ xTg (xTg+1 − xTg ) ≥ (1 + δ)gδ(1 + δ)g−1x2
0 −

1

d
= δ(1 + δ)2g−1x2

0 −
1

d

By our definition of Tg , we can further get

C =
∑
t<T

xt(xt+1 − xt) =

b∑
g=1

∑
t∈[Tg,Tg+1]

xt(xt+1 − xt) ≥ (1 + δ)2bx2
0 − x2

0 −
b

d
≥ C − δ2 − x2

0 −
b

d

And also we have C ≤ (maxt≤T xt)
∑
t<T (xt+1 − xt) = x2

T , so we have |x2
T −C| ≤ δ2 + x2

0 + b
d ,

where b = O(log(C)/ log(1 + δ)) ≤ O(log d), which proves the claim.

Proof of Lemma F.7. From the proof of Lemma D.8 and Lemma E.8 we know that

max
t≤T3

|E(t)
2,1| ≤

∑
t≤T3

(1± 1

α
Ω(1)
1

)ηE |∆(t)
2,1|+ Õ(%+

1√
d

)

And since from the proof of Lemma D.8 we know that

R
(T3)
2 = R

(0)
2 −

∑
t≤T3

(1± Õ(
1

d3/2
))ηΣ

(t)
2,1E

(t)
2,1 ± Õ(%+

1√
d

)

= (1± Õ(
1

d3/2
))
∑
t≤T3

E
(t)
2,1∆

(t)
2,1 ± Õ(%+

1√
d

)

We can define some alternative variables Ẽ(t)
2,1 updated as Ẽ(t+1)

2,1 = Ẽ
(t)
2,1 + ηE∆

(t)
2,1 and R̃(t+1)

2 =

R̃
(t)
2 −Ẽ

(t)
2,1∆

(t)
2,1. It is easy to see that |E(t)

2,1−Ẽ
(t)
2,1| ≤ 1

α
Ω(1)
1

maxt≤T3
|E(t)

2,1|. From above calculations,

we know η
ηE

∑
t∈[T1,T3] Ẽ

(t)
2,1(Ẽ

(t+1)
2,1 − Ẽ(t)

2,1) = R̃
(T1)
2 ± Õ(% + 1√

d
) + O( 1

d1/4 ), which by Claim
F.8 implies that√

η/ηE |Ẽ(T3)
2,1 | =

√
R̃

(T1)
2 ±O(

1

d1/4
) =
√

2± Õ(%+
1√
d

)±O(
1

d1/4
)

And when we turn back, we shall have
√
η/ηE maxt≤T3

|E(t)
2,1| ≤

√
2 + 1

α
Ω(1)
1

. Now we can use

similar techniques on B(t)
1,1 and R(t)

1 . Indeed, from (D.4) and similar arguments in phase I, we know
for all t ∈ [T1, T2]

R
(t+1)
1 = R

(0)
1 −

∑
s≤t

(1± Õ(
1
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))ηΣ

(s)
1,1E

(s)
1,2 ± Õ(%+

1√
d

) (F.1)

R
(t+1)
1 ≤ R(t)

1 (1− Õ(
η

α6
1

)[R
(t)
1 ]2)
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So one can obtain that at some iteration t′ = T1 +O(
dα

O(1)
1

η ), we shall have R(t)
1 ≤ O( 1√

d
) for all

t ≥ t′. Now let us consider the growth of B(t)
1,1 before t′, which clearly constitutes of

B
(t′)
1,1 = B

(T1)
1,1 +

∑
t∈[T1,t′)

(Λ
(t)
1,1 + Γ

(t)
1,1 −Υ

(t)
1,1)

= B
(T1)
1,1 +

∑
t∈[T1,t′)

(
ηΣ

(t)
1,1

|B(t)
1,1|
E(t)

1,2sign(B
(t)
1,1) + ηΓ

(t)
1,1 − ηΥ

(t)
1,1

)

= B
(0)
1,1 +

∑
t<t′

ηΣ
(t)
1,1

|B(t)
1,1|
E(t)

1,2sign(B
(t)
1,1) +

∑
t∈[T1,t′)

η
(

Γ
(t)
1,1 −Υ

(t)
1,1

)
+ Õ(

1√
d

)

where the last one comes from the proof of Lemma C.13. Moreover by using the same arguments in
the proof of Lemma D.8 we can easily prove that∣∣∣∣∣ ∑

t∈[T1,t′)

(Γ
(t)
1,1 −Υ

(t)
1,1)

∣∣∣∣∣ ≤ Õ(
1√
d

) =⇒
∑
t<t′

ηΣ
(t)
1,1

|B(t)
1,1|
E(t)

1,2 ≥ |B
(t′)
1,1 | − |B

(0)
1,1 | − Õ(

1√
d

)

And for t ∈ [t′, T2], we also have by (F.1) that∑
t∈[t′,T2]

ηΣ
(t)
1,1

|B(t)
1,1|
E(t)

1,2 ≤
∑

t∈[t′,T2)

ηΣ
(t)
1,1E

(t)
1,2 ≤ O(

1√
d

)

RecallR(0)
1 =

∑
t∈[0,t′)(1± Õ( 1

d3/2 ))ηΣ
(t)
1,1E

(t)
1,2± Õ(%+ 1√

d
) by (F.1) andR(t)

1 ≤ O( 1√
d
) for t ≥ t′.

Now we can finally go through the same analysis using Claim F.8 on B(t)
1,1 and R(t)

1 during t ∈ [0, t′]
as above to obtain that∑

t≤T2

ηΣ
(t)
1,1

|B(t)
1,1|
E(t)

1,2 ≥ (1− Õ(
1

d3/2
))

√
R

(0)
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1√
d

) = 1− Õ(%+
1√
d

)

Combining the results, we finishes the proof.

Now we are prepared to prove Theorem F.2.

F.1 Proof of Convergence

Proof of Theorem F.2. First we start with the B(t)
j,` s. Indeed, we can go through similar calculations

to see that all gradients 〈−∇wjL(W (t), E(t)), v`〉 can be decomposed into

〈−∇wjL(W (t), E(t)), v`〉 = (Λ
(t)
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(t)
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where Λ
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(t)
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(t)
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6
2C1α

6
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6
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6
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6
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j (B
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2(B
(t)
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3E
(t)
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(
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3
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6
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Firstly, for all the terms that contain factors of (B
(t)
j,` )

2(B
(t)
3−j,`)

2 (or (B
(t)
j,` )

2(B
(t)
j,3−`)

2), we can apply

Lemma F.6, our Induction F.1 assumption and |E(t)
j,3−j | ≤ O(1),∀t ∈ [T3, T ] to obtain that their
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(multiplicated by η) summation over t ∈ [T3, T ] is absolutely bounded by Õ( 1
d ). So we can move on

to deal with all other terms. When j = `, Using Lemma F.6, we have∑
t∈[T3,T ]

ηC0α
6
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6
1Φ

(t)
j |B
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(t)
j,3−j)

2(B
(t)
3−j,3−`)

6 =
∑
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d
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And the sign of LHS is sign(B
(t)
j,` ). Moreover, for j = ` = 1, from Lemma F.7 and Lemma F.6 we

also have ∑
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(E
(t)
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2

And since by Induction D.1 we have |B(t)
1,1| = Θ(1) during t ∈ [T1, T2] and

∑
t∈[T1,T2] ηΣ

(t)
2,1 ≥

R(T1) − o(1) =
√

2− o(1). For all the other terms in the gradient , we can apply Lemma F.6, our
Induction F.1 assumption and |E(t)

j,3−j | ≤ O(1) so we have for t ∈ [T3, T ]
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which also proved |B(t)
1,1| = O(1) since all the terms on the RHS are absolutely O(1) bounded. Since

one can see from Lemma F.6 that |E(t)
2,1| is decreasing before it reaches 1

d ). Moreover this proves√
η/ηE |E(t)

2,1| ≤ B
(t)
1,1 for all t ∈ [T3, T ], and also the fact that

B
(t)
1,1 ≥ Ω(1), ∀t ∈ [T3, T ]

The case of B(t)
2,2 is much more simple as E(t)

1,2 ≤ Õ( 1
d ) throughout t ∈ [T3, T ] by Lemma F.6 and

Lemma E.8c, Now we can go through the similar calculations again to obtain thatB(t)
2,2 = Θ(1) for all

t ∈ [T3, T ]. When j 6= `, all the terms calculated in the expansion of Λ
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j,` −Υ

(t)
j,`,1 and Γ

(t)
j,` −Υ

(t)
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contain factors of (B
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d ) or (B
(t)
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d ). So we can similarly use Lemma F.6 as before

to derive that B(t)
j,3−j = B
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j,3−j(1± Õ(

α
O(1)
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)) for all t ∈ [T3, T ] and j ∈ [2].

As for the prediction head, the induction of E(t)
1,2 follows from exactly the same proof in Lemma

E.8. The part of E(t)
2,1 is half done in Lemma F.6. It suffices to notice that Ξ

(t)
2 = Θ̃(

α6
1

α6
2
) and if
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|E(t)
2,1| ≥ C(R
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So after α
O(1)
1

η many epochs will we have
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as desired. And the rest of the induction of E(t)
2,1 is the same as in the induction arguments of E(t)

1,2 in
Lemma E.8.

The induction of R(t)
1 , R

(t)
2 and R(t)

1,2 is exactly the same as those in the proof of Lemma E.8 except

here we only need R(t)
1 /R

(t)
2 ∈ [ 1

α
O(1)
1

, α
O(1)
1 ] after T4. Indeed, from the update of R(t)

j (which can

be easily worked out), we have

R
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Now after d2α
O(1)
1

η many epochs, we can obtain from similar arguments in Lemma E.8 that

R
(t)
1 /R

(t)
2 ∈ [ 1

α
O(1)
1

, α
O(1)
1 ] and R(t)

j ≤ 1
d . The induction can go on untill t = poly(d)/η.

For the convergence of B(t)
1,1 and B

(t)
2,2 after t = T4, notice that their change depends on∑

t≥T4

E
(t)
j,3−j

B
(t)
j,j

Ξ
(t)
j , which stays very small after T4, we have that |B(t)

j,j − B
(T4)
j,j | ≤ o(1) for all

j ∈ [2]. This finishes the whole proof.

G Learning Without Prediction Head

When we do not use prediction head in the network architecture, the analysis is much simpler. We
can reuse most of the gradient calculations in previous sections as long as we set E(t) to the identity.
Note that here we allow m ≥ 1 to be any positive integer.
Theorem G.1 (learning without the prediction head). Let m be any positive integer. If we keep
E(t) ≡ Im during the whole training process, then for all t ∈ [Ω̃(d

2

η ), poly(d)/η], we shall have

|B(t)
j,1| = Θ(1), |B(t)

j,2| = Õ( 1√
d
) and R(t)

j = O( 1
d1−o(1) ) for all j ∈ [m] with probability 1 − o(1).

Moreover, for a longer training time t = poly(d)/η, we would have R(t)
j ≤ 1

poly(d) for all j ∈ [m].

Moreover, it is direct to obtain a objective convergence result similar to Corollary F.3.
Corollary G.2 (objective convergence, without prediction head). Let OPT denote the global minimum
of the population objective (B.1). When trained with E(t) ≡ Im, we have for some sufficiently large
t ≥ poly(d)/η:

L(W (t), Im) ≤ OPT +
1

poly(d)

Proof of Theorem G.1. The proof is easy to obtain since it is very similar to some proofs in previous
sections, and we only sketch it here. Indeed, using the calculations in Lemma E.5 and Lemma E.4
and set E(t)

i,j , i 6= j ∈ [m] to zero. We shall have (note that here E(t)
j,r ≡ E

(t)
j for any r 6= j)
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5[R
(t)
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Now we can go through the similar induction arguments as in the proof of Lemma C.13 (with TPM
lemma to distinguish the learning speed) to obtain that for each j ∈ [m]:

|B(t)
j,1| = Θ(1), |B(t)

j,2| = |B
(0)
j,2 |(1± o(1)), ∀j ∈ [m] (when t ≥ d2

η )

When this is proven, we can also reuse the calculations as in the proof of Lemma D.5 to obtain that
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So again after some t = Õ(d
2

η ), we shall have R(t)
j ≤ O(d

o(1)

d ). While the decrease of R(t)
j is

happening, we can make induction that |B(t)
j,2| = |B

(0)
j,2 |(1± o(1)), since if it holds for all previous

iterations before t, then∑
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6
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j |B

(s)
j,2 |
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¬
≤ 1
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|B(0)
j,2 |

where ¬ is due to Corollary H.2, where xt = |B(t)
j,1| and yt = |B(t)

j,2| and St ≤ 1
polylog(d) , y0 ≤

O(log d)x0. which finishes the proof.

H Tensor Power Method Bounds

In this section, we give two lemmas related to the tensor power method that can help us in previous
sections’ proofs.
Lemma H.1 (TPM, adapted from [3]). Consider an increasing sequence xt ≥ 0 defined by xt+1 =
xt + ηCtx

q
t for some integer q ≥ 3 and Ct > 0, and suippose for some A > 0 there exist t′ ≥ 0 such

that xt′ ≥ A. Then for every δ > 0, and every η ∈ (0, 1):∑
t≥0,xt≤A

ηCt ≥

(
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(1 + δ)q−1 − 1

(
1−

(
(1 + δ)x0

A

)q−1
)
− O(ηAq)

x0

log(A/x0)

log(1 + δ)

)
· 1

xq−1
0∑
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(
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)
· 1
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0

This lemma has a corollary:
Corollary H.2 (TPM, from [3]). Let q ≥ 3 be a constant and x0, y0 = o(1) and A = O(1). Let
{xt, yt}t≥0 be two positive sequences updated as

• xt+1 = xt + ηCtx
q
t for some Ct > 0;

• yt+1 = yt + ηStCty
q
t for some St > 0.

Suppose x0 ≥ y0(maxt:xt≤A St)
1
q−1 (1 + 1

polylog(d) ), then yt ≤ Õ(y0) for all t such that xt ≤ A.

Moreover, if x0 ≥ y0(maxt:xt≤A St)
1
q−1 log(d), we would have |yt − y0| . |y0|

polylog(d) .

Moreover, we prove the following lemma for comparing the updates of different variables.
Lemma H.3 (TPM of different degrees). Consider an increasing sequences xt ≥ 0 defined by
xt+1 = xt + ηCtx

q
t , for some integer q > q′ ≥ 3 and q′ ≤ q − 2, and Ct > 0, and further suppose

given A = O(1), there exists t′ ≥ 0, xt′ ≥ A. Then for every δ > 0 and every η ∈ (0, 1):∑
t≥0,xt≤A

ηCtx
q′

t ≤ (1 + δ)q
′
(O(1) + ηbAq)

1

xq−q
′−1

0∑
t≥0,xt≤A

ηCtx
q′

t ≥ (1 + δ)−q
′

(
δ(1 + δ)−1 1− (1 + δ)−b(q−q

′−1)

1− (1 + δ)−(q−q′−1)
− ηbAq

)
1

xq−q
′−1

0

68



where b = Θ(log(A/x0)/ log(1 + δ)). When A = x0d
Θ(1) , η = o( 1

Aqδ ) and q = O(1), then∑
t≥0,xt≤A

ηCtx
q′
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)

Proof. For every g ∈ 0, 1, . . ., we define Tg := min{t : xt ≥ (1 + δ)gx0}. and define b := min{g :
(1 + δ)g ≥ A}, we can write down the following two inequalities according to the update of xt:∑
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Therefore if we sum over g = 0, . . . , b, then∑
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For the lower bound, we also have∑
t≥0,xt≤A
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Inserting b = Θ(log(A/x0)/ log(1 + δ)) proves the lower bound. For the last one we can choose
δ = 1√

log d
to get:

b = Θ(polylog(d)),
δ(1− (1 + δ)−b(q−q

′−1))

1− (1 + δ)−(q−q′−1)
= Ω(1), (1 + δ)−q

′
= Ω(1),

which proves the claim.
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