
FVEL: Interactive Formal Verification Environment
with Large Language Models via Theorem Proving

Xiaohan Lin1∗ Qingxing Cao1∗ Yinya Huang2∗ Haiming Wang3∗ Jianqiao Lu4

Zhengying Liu5 Linqi Song2 Xiaodan Liang1,6,7†
1Shenzhen Campus of Sun Yat-sen University 2City Univeristy of Hong Kong

3Sun Yat-sen University 4The University of Hong Kong
5Huawei Noah’s Ark Lab 6MBZUAI 7DarkMatter AI Research

Appendix1

A Limitations 22

B Societal Impacts 23

C FVELER Benchmark 24

C.1 Dataset Format . 25

C.1.1 sel4_extraction/ . 26

C.1.2 dataset_lemma_split.json . 37

C.1.3 sel4_thy_info.json . 38

C.1.4 sel4_session_info.json . 49

C.2 Datasheet . 510

C.3 Data Hosting, Licensing, and Maintenance . 711

D Experiments on FVELER Test Set 712

D.1 Implementation Details . 713

D.2 Results . 914

D.3 Case Study . 1015

E Implementations Details on Code2Inv and SV-COMP 1016

E.1 Evaluation Datasets . 1017

E.2 Pre-processing . 1118

E.3 Fine-tuning and Inference . 1119

E.4 A Case of Python to C Dataset. 1120

∗ Equal contribution.
† Corresponding author.

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

A Limitations21

In this work, we follow previous works [4, 2, 8] to test FVEL on C code verification. We remain the22

extension of FVEL and the corresponding FVELER to support more program languages as a near23

future work. Additionally, semantic alignment between lemma statements and program specifications24

is an unexplored area of research.25

B Societal Impacts26

The research presented in this paper has the potential to advance the field of formal verification,27

automated theorem proving, AI for Math, and software engineering. The advancement can enhance28

the capabilities of large language models in formal verification, contributing to more reliable software29

development. By directly releasing the code and data, we aim to ensure the responsible use of our30

work, fostering further innovation and maintaining high standards of data privacy and intellectual31

property compliance. The proposed FVEL and FVELER benchmark the interactive formal verifica-32

tion performance in the machine learning field. Therefore we claim that there are no negative social33

impacts in this paper.34

C FVELER Benchmark35

C.1 Dataset Format36

We first list the folder and files under the FVELER directory. We then demonstrate the detailed37

formats of the folder/files.38

• sel4_extraction/ is a folder that has the same structure as the sel4 verification project39

(l4v). Each file is the extracted step-wise proof state of the corresponding l4v theory files.40

For example, “sel4_extraction/proof/invariant-abstract/AInvs.json” is the41

proof state of the file l4v/proof/invariant-abstract/AInvs.thy.42

• dataset_lemma_split.json contains all lemmas proof steps and states, and splits them43

into the train, val, test, and test-hard set.44

• sel4_thy_info.json contains information of all theory files, including their names,45

dependency relations, and lemmas.46

• sel4_session_info.json contains all session information, including dependent sessions,47

theories, and directories.48

C.1.1 sel4_extraction/49

The sel4_extraction/ folder contains parsed l4v theory files. Each theory file in this folder is a50

JSON file, storing a list of whole proof steps, and each step is stored as a dictionary. The file structure51

and a sample proof step are demonstrated as follows:52

53
sel4_extraction/proof/invariant -abstract/AInvs.json:54

[55

...,56

{57

"index": 2,58

"step": "lemma st_tcb_at_nostate_upd: ...",59

"raw_output": "proof (prove)\ngoal (1 subgoal)...",60

"step_time": 0.1142029762268066461

},62

...63

]6465

Each proof step dictionary has the following fields:66

• “index”: The index of this step.67

2

• “step”: The proof step in Isabelle.68

• “raw_output”: The returned proof state in Isabelle.69

• “step_time”: The processing time of this step.70

C.1.2 dataset_lemma_split.json71

The dataset_lemma_split.json file stores the train/val/test/test-hard splits. Each split is a list of72

lemmas, and each is stored as a dictionary. The file structure and a sample lemma are demonstrated73

as follows:74

75
{76

"train": [77

{78

"context": "lemma n_less_equal_power_2:\n \"n < 2 ^ n\" by (79

fact less_exp)",80

"proof": [81

"lemma n_less_equal_power_2:\n \"n < 2 ^ n\"",82

"by (fact less_exp)"83

],84

"proof_state": [85

"proof (prove)\ngoal (1 subgoal):\n 1. n < 2 ^ n",86

""87

],88

"statement": "lemma n_less_equal_power_2:\n \"n < 2 ^ n\"",89

"theory_name": "More_Arithmetic",90

"num_steps": 191

},92

...93

],94

"val": [...],95

"test": [...],96

"test -hard": [...]97

}9899

Each lemma dictionary has the following fields:100

• “context”: Full lemma context in plain text.101

• “proof”: A list of all proof steps in Isabelle.102

• “proof_state”: A list of all proof states in Isabelle.103

• “statement”: The lemma statement to be proved.104

• “theory_name”: The name of the theory where this lemma belongs.105

• “num_steps”: The number of steps for proving this lemma.106

C.1.3 sel4_thy_info.json107

sel4_thy_info.json contains information regarding the theory files, stored as a dictionary where108

a key is a theory file and the value contains the related information. A sample is demonstrated as109

follows:110

111
{112

...,113

"/lib/Word_Lib/More_Word.thy": {114

"name": "More_Word",115

"dependency": {116

"HOL -Library.Word": "",117

"More_Arithmetic": "/lib/Word_Lib",118

"More_Divides": "/lib/Word_Lib",119

"More_Bit_Ring": "/lib/Word_Lib"120

},121

"depth": 2,122

"related_c_code": [],123

3

"child": [124

"/lib/Word_Lib/Aligned.thy",125

"/lib/Word_Lib/Bit_Shifts_Infix_Syntax.thy",126

...,127

"/lib/Word_Lib/Machine_Word_64.thy"128

],129

"path": "/lib/Word_Lib/More_Word.thy",130

"session": "Word_Lib",131

"lemmas": [132

{133

"context": "lemma sofl_test: ...",134

"proof": [...],135

"proof_state": [...],136

"statement": "...",137

"theory_name": "More_Word",138

"num_steps": 25139

},140

},141

...142

}143144

The information dictionary of a theory file (e.g., “/lib/Word_Lib/More_Word.thy”) has the145

following fields:146

• “name”: The theory name.147

• “dependency”: A dictionary of dependent theories and their paths. The key is the theory148

name and the value is the path. A theory that belongs to another session has no path. For149

example, “HOL-Library.Word” is imported from session “HOL-Library”, and its path is150

empty.151

• “depth”: The depth of this theory.152

• “related_c_code”: The C code files called by this theory or any of its ancestors.153

• “child”: The theory files depending on this theory.154

• “path”: The theory file path relative to the l4v folder.155

• “session”: The session that contains this theory.156

• “lemmas”: The list of all lemmas in this theory files. Each lemma is stored in a dictionary,157

which is the same as in “dataset_lemma_split.json”.158

C.1.4 sel4_session_info.json159

sel4_session_info.json contains information regarding each l4v session, stored as a dictionary160

where a key is an l4v session and the value contains the related information. A sample is demonstrated161

as follows:162

163
{164

"ASpec": {165

"dependency": [166

"Word_Lib",167

"\"HOL -Library \"",168

"Lib",169

"ExecSpec"170

],171

"name": "ASpec",172

"theories": [173

"/spec/abstract/Structures_A.thy",174

...,175

"/spec/abstract/Exceptions_A.thy"176

],177

"ROOT_dir": "/spec",178

"ROOT_relative_dir": "abstract",179

"additional_dir": [180

".",181

4

"ARM"182

],183

"depth": 6184

},185

...186

}187188

The information dictionary of a session (e.g., “ASpec”) has the following fields:189

• “dependency”: A list of all its dependent sessions’ names.190

• “name”: The session name.191

• “theories”: The list of all theory files included in this session, represented by their keys in192

“sel4_thy_info.json”.193

• “ROOT_dir”: The directory of this session’s ROOT file relative to the l4v folder.194

• “ROOT_relative_dir”: The main working directory of this session relative to195

“ROOT_dir”.196

• “additional_dir”: The list of additional directories containing this session’s theory files197

relative to “ROOT_relative_dir”.198

• “depth”: The depth of this session.199

C.2 Datasheet200

We present a datasheet [3] for documentation and responsible usage of FVELER benchmark.201

Motivation.202

• For what purpose was the dataset created? The FVELER dataset is created to support the203

interactive formal verification with large language models. It provides lemmas for formally204

proofing the correctness of a microkernel system with step-wise Isabelle language and state.205

• Who created the dataset (e.g., which team, research group) and on behalf of which entity206

(e.g., company, institution, organization)? It was created by the authors of this paper by207

extracting and cleansing the data from the sel4 verification project (l4v).208

• Who funded the creation of the dataset? See the acknowledgments once it is available.209

Composition.210

• What do the instances that comprise the dataset represent (e.g., documents, photos, people,211

countries)? The FVELER dataset consists of dependent theory sessions, theory files grouped212

by sessions, lemmas from theories, and proof states of the lemmas, all written in Isabelle.213

• How many instances are there in total (of each type, if appropriate)? The FVELER dataset214

has 758 theories, 29,125 lemmas, and 200,646 proof steps.215

• Does the dataset contain all possible instances or is it a sample (not necessarily random)216

of instances from a larger set? The dataset contains all possible theory files, lemma,217

and their proof that PISA can extract from the sel4 verification project (l4v) in ARM218

architecture(excluding C Parser and autocorres tools) released on March 11, 2024.219

• What data does each instance consist of? Each instance consists of the lemma statement,220

the proof step, and the corresponding state in Isabelle code.221

• Is there a label or target associated with each instance? Yes, each instance has a target, the222

next proof step.223

• Is any information missing from individual instances? No.224

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,225

social network links)? Yes, each instance is associated with a theory file, which contains226

dependent theory files as its premises.227

5

• Are there recommended data splits (e.g., training, development/validation, testing)? Yes.228

We recommend four data splits: a training set with 26,081 lemmas, a validation set with229

1,115 lemmas, a test set with 1,077 lemmas, and a test-hard set with 852 lemmas.230

• Are there any errors, sources of noise, or redundancies in the dataset? The extracted lemma231

is formally verified by Isabelle and thus has no error or noise. There might exist some232

redundant proof that is very similar to the others.233

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,234

websites, tweets, other datasets)? The dataset is self-contained.235

• Does the dataset contain data that might be considered confidential (e.g., data that is236

protected by legal privilege or by doctor-patient confidentiality, data that includes the237

content of individuals’ non-public communications)? No.238

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-239

ing, or might otherwise cause anxiety? No.240

Collection Process.241

• How was the data associated with each instance acquired? The original data contains242

Isabelle theory files structured with ROOT file. We apply FVELto extract their proof steps243

and states. The details are described in Section 4 of our paper.244

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses245

or sensors, manual human curation, software programs, software APIs)? The original data246

is publicly released in https://github.com/seL4/l4v.247

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors)248

and how were they compensated (e.g., how much were crowdworkers paid)? No manual249

effort was involved in the data collection process.250

• Over what timeframe was the data collected? The dataset was collected on March 11, 2024.251

Preprocessing/cleaning/labeling.252

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,253

tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, process-254

ing of missing values)? The original l4v theory file is parsed into step-wise language by255

Isabelle. We then interact with Isabelle using these steps to obtain the step-wise states.256

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to257

support unanticipated future uses)? Yes. We store the original seL4 formal verification files258

used for extraction and record the links between each lemma and its original files.259

• Is the software that was used to preprocess/clean/label the data available? Yes. We release260

the codes and environments for extracting seL4 formal proofs.261

Uses.262

• Has the dataset been used for any tasks already? We have used the dataset for fine-tuning263

Mistral-7B and llama3-8B for the FVEL environment. We also use the dataset to evaluate264

the fine-tuned models.265

• Is there a repository that links to any or all papers or systems that use the dataset? https:266

//fveler.github.io/.267

• What (other) tasks could the dataset be used for? The dataset can be used for pertaining268

LLMs for various downstream tasks, such as ATP, MWP, and code generation.269

• Is there anything about the composition of the dataset or the way it was collected and270

preprocessed/cleaned/labeled that might impact future uses? The dataset is based on l4v271

and is extracted with Isabelle 2023. The lemma proof and proof states might be different272

from future versions of l4v or incompatible with future versions of Isabelle.273

• Are there tasks for which the dataset should not be used? No.274

6

https://fveler.github.io/
https://fveler.github.io/
https://fveler.github.io/

Distribution.275

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,276

organization) on behalf of which the dataset was created? Yes, the dataset is publicly277

available on the Internet.278

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The dataset279

can be downloaded as a tarball.280

• When will the dataset be distributed? The dataset has been released and can be downloaded281

from https://huggingface.co/FVELer.282

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,283

and/or under applicable terms of use (ToU)? The dataset is distributed under CC BY 2.0.284

The dataset was extracted from the https://github.com/seL4/l4v and is licensed under GPL285

version 2.286

• Have any third parties imposed IP-based or other restrictions on the data associated with287

the instances? No.288

• Do any export controls or other regulatory restrictions apply to the dataset or to individual289

instances? No.290

Maintenance.291

• Who will be supporting/hosting/maintaining the dataset? The authors of this paper.292

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?293

Please contact Qingxing Cao at caoqx8@sysu.edu.cn.294

• Is there an erratum? No.295

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete296

instances)? Please check https://https://fveler.github.io/ for any update.297

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for298

them to do so? Yes. they can use our released data extraction code for extending instances299

from updated seL4 or other related data sources.300

301

C.3 Data Hosting, Licensing, and Maintenance302

FVELER benchmark is distributed under the CC BY 2.0 license. The data and the corresponding303

documentation are hosted on Hugging Face at https://huggingface.co/FVELer. The codes304

for data extraction and experiments with the corresponding documentation are released at https:305

//github.com/FVELER/FVEL. The model checkpoints are hosted on Hugging Face Hub. Our306

website of FVEL and FVELER is https://fveler.github.io/, which is the entry point for307

everything related, including future updates or maintenance.308

D Experiments on FVELER Test Set309

D.1 Implementation Details310

We use Mistral-7B-Instruct-v0.23 [6] and LLama-3-8B-Instruct models4 to conduct the experiments311

on FVELER test sets.312

Fine-tuning. We use the LLaMa-Factory [9] framework to fine-tune two models on a single RTX313

3090 GPU. Specifically, we deploy LORA[5] on the q_proj and v_proj modules of both models. We314

filter out training samples of a length greater than 1024 and feed the remaining samples into the315

model with a global batch size of 8. The training samples are transformed into the alpaca format,316

demonstrated in Table 1.317

3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
4https://github.com/meta-llama/llama3

7

https://huggingface.co/FVELer
https://https://fveler.github.io/
https://huggingface.co/FVELer
https://github.com/FVELER/FVEL
https://github.com/FVELER/FVEL
https://github.com/FVELER/FVEL
https://fveler.github.io/
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://github.com/meta-llama/llama3

Table 1: Demonstrations of input-target pairs in alpaca format for fine-tuning FVEL-LLMs.

Instruction
Prove the following lemma statement in Isabelle.
Ensure that the proof is complete, logically sound and free of redundant content. Use appropriate tactics
and lemmas as necessary. Don’t explain.
Input
lemma pred_restrs_cut: "(∃y. restrs x ⊆ y) ⇒ (∃y. pred_restrs nn restrs x ⊆ y)"
output
apply (clarsimp simp: pred_restrs_def split: next_node.split) apply blast done

Instruction
Prove the following lemma statement in Isabelle.
Ensure that the proof is complete, logically sound and free of redundant content. Use appropriate tactics
and lemmas as necessary. Don’t explain.
Input
lemma if_x_None_eq_Some: "((if P then x else None) = Some y) = (P ∧ x = Some y)"
Output
by simp

Instruction
Prove the following lemma statement in Isabelle.
Ensure that the proof is complete, logically sound and free of redundant content. Use appropriate tactics
and lemmas as necessary. Don’t explain.
Input
lemma visit_merge:
assumes tr: "tr ∈ exec_trace Gamma fn" "Gamma fn = Some f"
and wf: "wf_graph_function f ilen olen"
and ns: "nn ̸= NextNode (entry_point f)"
"∀n ∈ set ns. graph n = Some (Basic nn [])"
"converse (reachable_step graph) “ {nn} ⊆ NextNode ‘ set ns"
and geq: "function_graph f = graph"
and cut: "∀x. NextNode x ∈ set cuts → (∃y. restrs x ⊆ {y})"
"∀n ∈ set ns. (nn, NextNode n) notin rtrancl
(reachable_step graph

⋂
{(x, y). x notin set cuts})"

shows "visit tr nn restrs = fold merge_opt (map (λn. visit tr (NextNode n)
(pred_restrs’ n restrs)) ns) None"
Output
proof - note ns = ns[folded geq] note cut = cut[folded geq] have step_after:
"∧n i. n ∈ set ns ⇒ trace_bottom_addr tr i = Some (NextNode n)
⇒ ∃st. tr i = Some [(NextNode n, st, fn)]
∧ tr (Suc i) = Some [(nn, st, fn)]
∧ trace_addr tr (Suc i) = Some nn
∧ restrs_condition tr restrs (Suc i)
= restrs_condition tr (pred_restrs’ n restrs) i" apply (drule exec_trace_non_Call[OF tr], (simp add:
ns)+) apply (frule ns[rule_format], cut_tac tr(2)) apply (frule trace_addr_SomeD, clarsimp) apply (frule
exec_trace_invariant[OF tr(1)]) apply (cut_tac i=i in exec_trace_step_cases[OF tr(1)]) apply (clarsimp
simp: all_exec_graph_step_cases exec_graph_invariant_Cons
upd_vars_def save_vals_def) apply (simp add: pred_restrs[OF tr(1)] trace_addr_SomeI trace_bottom_addr_def
K_def) done have step_after_single:
"∧n i. n ∈ set ns ⇒ trace_bottom_addr tr i = Some (NextNode n)
⇒ restrs_condition tr restrs (Suc i)
⇒ (∀n’ j. n’ ∈ set ns → trace_addr tr j = Some (NextNode n’)
→ restrs_condition tr (pred_restrs’ n’ restrs) j → j = i)" apply clarsimp apply (frule step_after,
erule trace_addr_trace_bottom_addr_eq) apply (frule(1) step_after) apply clarsimp apply (drule(2)
restrs_single_visit[OF tr wf _ _ _ _ cut(1)], simp_all) apply (rule not_trancl_converse_step, rule ns)
apply (simp add: cut) done have visit_after:
"∧n v. n ∈ set ns ⇒ visit tr (NextNode n) (pred_restrs’ n restrs) = Some v
⇒ visit tr nn restrs ̸= None" apply (clarsimp simp: visit_eqs) apply (drule_tac i=i in step_after,
simp add: trace_addr_trace_bottom_addr_eq) apply (rule_tac x="Suc i" in exI) apply clarsimp done show
?thesis apply (rule sym, cases "visit tr nn restrs", simp_all) apply (rule fold_merge_opt_Nones_eq)
apply (rule ccontr, clarsimp simp: visit_after) apply (clarsimp simp: visit_eqs) apply (frule
visit_immediate_pred[OF tr wf _ ns(1, 3)]) apply clarsimp apply (frule(1) step_after, clarsimp) apply
(frule(2) step_after_single) apply (drule in_set_conv_decomp_last[THEN iffD1]) apply clarsimp apply (rule
trans, rule fold_merge_opt_Nones_eq) apply (rule ccontr, clarsimp simp: visit_eqs pc_def ball_Un) apply
(simp add: trace_addr_SomeI) apply (subst visit_known, assumption, simp_all) apply clarsimp done qed

We use a cosine learning rate scheduler with the maximum lr = 1e − 4, minimal lr = 1e − 5,318

warmup_ratio = 0.1. Fine-tuning lasts up to 10 epochs with an early-stop mechanism at minimal319

evaluation loss. For Mistral-7B and Llama-3-8B, the fine-tuning lasts about 30 GPU hours.320

8

Table 2: Inference template for prompting FVEL-LLMs.

Prove the following lemma statement in Isabelle. Ensure that the proof
is complete, logically sound and free of redundant content. Use
appropriate tactics and lemmas as necessary. Don’t explain.
{statement}

Table 3: Automated theorem proving result on FVELER.
FVELER test (#=1077) FVELER test-hard (#=852)

Mistral-7B 26 19
FVEL-Mistral-7B 74 49
Llama-3-8B 39 27
FVEL-Llama-3-8B 88 64

Table 4: Compared generated proofs by Mistral-7B and FVEL-Mistral-7B.

Input Mistral-7B FVEL-Mistral-7B

lemma not_minus:
"NOT (x - y) = y - x - 1"

assume "NOT (x - y) = y - x - 1"
hence "x - y = y - x - 1" by simp
hence "x = y - 1" by simp
thus "x = y" by contradiction
qed

by (simp add: not_eq_complement)

lemma and_and_not [simp]:
"(a AND b) AND NOT b =
0" for a b :: "’a::len word"

lemma and_and_not[simp]:
assumes "a: ’a::len word" and "b: ’a::len word"
shows "(a AND b) AND NOT b = 0"
proof -
from assms have "a AND b = (a AND b) AND (a
OR b)" by simp
then have "a AND (b AND NOT b) = (a AND b)
AND (a OR b)" by simp
finally show ?thesis by simp
qed

proof -
have "(a AND b) AND NOT b = a AND (b AND
NOT b)"
by (simp add: word_bw_assoc)
also have "... = a AND 0"
by (simp add: word_and_not)
also have "... = 0"
by simp
finally show ? thesis
by simp
qed

Inference. During inference, the model generates the complete proof in a single pass using a321

zero-shot approach, and PISA verifies the resulting proof. We manually add the imports and include322

theorems needed for the proof to the environment so that they are correctly referenced. We set the323

temperature to 0.0 during inference to assess the model’s greedy performance. The inference template324

to prompt the model is demonstrated in Table 2.325

D.2 Results326

Table 3 illustrates the result of fine-tuning Mistral and Llama3 on our FVELER training set and testing327

on the FVELER test set and test-hard set. The fine-tuned Llama-3-8B and mistral-7B effectively328

improve the correctness of the proofs, with FVEL-Mistral-7B and FVEL-Llama-3-8B each achieving329

a 4.5% improvement (2.4% -> 6.9% and 3.6% -> 8.1%, respectively) on the FVELER test split.330

On the more complex FVELER test-hard split, 3.5% (2.3% -> 5.8%) and 4.3% (3.2% -> 7.5%)331

improvement are achieved respectively. Currently, the pass rate for both Mistral and Llama remains332

relatively low, indicating that the proposed benchmark poses significant challenges for LLMs. The333

poor results are primarily caused by these two factors: 1) Data scarcity. The amount of data available334

on formal verification is relatively small compared to the data required to train a general LLM. This335

is a long-standing challenge in the domain of formal mathematics and formal verification. FVELER336

remedies the issue by incorporating data from formal verification, but we still require much more data337

for the LLM to perform better on the subject. 2) Tactic application style. The majority of proofs338

are written in a tactic application style. Compared to the declarative style, these codes cannot be339

understood even by humans without interacting with Isabelle and checking the proof state information340

given by the formal system. The current whole proof paradigm requires generating the proof in one341

go without the help of the proof state information, which poses a significant challenge.342

9

Table 5: Comparison of Original and Processed C Code
Original Code Processed Code

e x t er n void a b o r t (void) ;
e x t er n void _ _ a s s e r t _ f a i l (c o n s t char * ,

c o n s t char * , unsigned i n t , c o n s t
char *) _ _ a t t r i b u t e _ _ ((__nothrow__ ,

_ _ l e a f _ _)) _ _ a t t r i b u t e _ _ ((
_ _ n o r e t u r n _ _)) ;

void r e a c h _ e r r o r () { _ _ a s s e r t _ f a i l (" 0 " , "
n e s t e d 3 −2 . c " , 3 , " r e a c h _ e r r o r ") ; }

void __VERIFIER_asser t (i n t cond) {
i f (! (cond)) {

ERROR: { r e a c h _ e r r o r () ; a b o r t () ; }
}
re turn ;

}

i n t main ()
{

unsigned i n t x = 0 ;
unsigned i n t y = 0 ;
unsigned i n t z = 0 ;
unsigned i n t w = 0 ;

whi le (x < 0 x 0 f f f f f f f) {
y = 0 ;

whi le (y < 0 x 0 f f f f f f f) {
z =0;

whi le (z <0 x 0 f f f f f f f) {
z ++;

}
__VERIFIER_asser t (! (z % 4)) ;

y ++;
}
__VERIFIER_asser t (! (y % 2)) ;

x ++;
}
__VERIFIER_asser t (! (x % 2)) ;

re turn 0 ;

}

e x t er n void a b o r t (void) ;

void VERIFIER_asser t (i n t cond) {
i f (! (cond)) {

{ a b o r t () ; }
}
re turn ;

}

i n t main ()
{

unsigned i n t x = 0 ;
unsigned i n t y = 0 ;
unsigned i n t z = 0 ;
unsigned i n t w = 0 ;

whi le (x < 0 x 0 f f f f f f f) {
y = 0 ;

whi le (y < 0 x 0 f f f f f f f) {
z =0;

whi le (z <0 x 0 f f f f f f f) {
z ++;

}
VERIFIER_asser t (! (z % 4)) ;

y ++;
}
VERIFIER_asser t (! (y % 2)) ;

x ++;
}
VERIFIER_asser t (! (x % 2)) ;

re turn 0 ;

}

D.3 Case Study343

Table 4 demonstrates compared generated proofs by Mistral-7B and FVEL-Mistral-7B after being344

fine-tuned with FVELER. The upper row shows a case in which FVEL-Mistral-7B correctly applies345

the lemma learned from fine-tuning, thus correcting and simplifying the proof. Contrastively,346

Mistral-7B generates common not_eq_complement without considering a reasonable proof strategy,347

resulting in a failed proof. In the second case, Mistral-7B rewrites the lemma statement into “assumes”348

and “shows” statements, according to which gives an incorrect proof. FVEL-Mistral-7B, on the other349

hand, expands the brackets in the equation and then is able to derive contradiction according to “(b350

AND NOT b)”, and completes the proof via the contradiction of the right-hand side of the equation.351

E Implementations Details on Code2Inv and SV-COMP352

This section provides supplementary details regarding the benchmark study in Section 5.353

E.1 Evaluation Datasets354

Code2Inv [7]. The code2inv dataset contains 133 programs in c, each containing a pre-condition,355

a loop body (while or for statement), and a post-condition. The verifier needs to verify that the356

post-condition (an assertion) holds. It is worth pointing out that the condition of a loop or branch in357

the program may be indeterminate.358

10

Table 6: A Python to C data sample.
Python Code C Code

def r e m o v e D u p l i c a t e s (nums : L i s t [i n t]) −>
i n t :

j = 1
f o r i in range (1 , l e n (nums)) :

i f nums [i] != nums [i − 1] :
nums [j] = nums [i]
j += 1

re turn j

i n t r e m o v e D u p l i c a t e s (i n t * nums) {
i n t numsSize = s i z e o f (nums) / s i z e o f (

nums [0]) ;
i n t j = 1 ;
f o r (i n t i = 1 ; i < numsSize ; i ++) {

i f (nums [i] != nums [i − 1]) {
nums [j] = nums [i] ;
j ++;

}
}
re turn j ;

}

SV-COMP [1]. The Software-Verification Competition provides a diverse set of benchmarks for for-359

mal verification. sv-comp benchmark contains over 23k c programs, which tend to be more complex360

than those in code2inv, and each program is accompanied by a .yml file to declare its specifica-361

tions. These specifications cover requirements such as ReachSafety, MemSafety, ConcurrencySafety,362

NoOverflows, Termination, etc. The verifier is required to determine whether a program satisfies the363

given specifications. We sampled the SV-COMP benchmark into two subsets: a 47-sample subset364

sampled by Lemur [8], which contains samples with multiple nested loops, and a 1,000-sample365

subset which is randomly sampled from the full set. In particular, we exclude samples that contain366

floating-point type because the C-parser cannot parse them correctly.367

E.2 Pre-processing368

Table 5 demonstrates a randomly selected sample before pre-processing (original code) and after369

pre-processing (processed code). The pre-processing stages are explained as follows.370

Data Preprocess. Since C-parser supports only part of the C99 standard, some C features (e.g.371

“goto” statements, side effects in expressions, etc.) are not supported, we normalize the C code to372

make C-parser work properly. Specially, for C code which includes:373

String Literal and Illegal Function Name. Functions with string literals are often used to give374

warnings to the verifier, we remove these functions and keep only “extern void abort(void);”375

In addition, we fix illegal function names, for example, by removing the underlines at the beginning376

of the name.377

Assertion and Assumption. We replace all the “assert(statement);” and378

“assume(statement);” with “if (not (statement) {return -1;}”. Note that all as-379

sertions appear in the “main()” function, so the semantics before and after the replacement are380

equivalent.381

Unknown Condition. “unknown()” is often used in the Code2Inv dataset as a condition in382

“while” or “if” expressions, and we add external declarations to this function: “extern int383

unknown(void);”.384

E.3 Fine-tuning and Inference385

See Appendix D.1 for fine-tuning and inference details.386

E.4 A Case of Python to C Dataset.387

See Table 6.388

References389

[1] Dirk Beyer. Competition on software verification and witness validation: SV-COMP 2023.390

In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms for the391

11

Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as392

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris,393

France, April 22-27, 2023, Proceedings, Part II, volume 13994 of Lecture Notes in Computer394

Science, pages 495–522. Springer, 2023.395

[2] Mikhail Y. R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro, Bernd Fischer,396

and Denis A. Nicole. ESBMC 5.0: an industrial-strength C model checker. In Marianne Huchard,397

Christian Kästner, and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE International398

Conference on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,399

2018, pages 888–891. ACM, 2018.400

[3] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna M.401

Wallach, Hal Daumé III, and Kate Crawford. Datasheets for datasets. Commun. ACM, 64(12):86–402

92, 2021.403

[4] Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen Hoenicke, Markus404

Lindenmann, Alexander Nutz, Christian Schilling, and Andreas Podelski. Ultimate automizer405

with smtinterpol - (competition contribution). In Nir Piterman and Scott A. Smolka, editors, Tools406

and Algorithms for the Construction and Analysis of Systems - 19th International Conference,407

TACAS 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software,408

ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture Notes in409

Computer Science, pages 641–643. Springer, 2013.410

[5] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,411

and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint412

arXiv:2106.09685, 2021.413

[6] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-414

lot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,415

Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas416

Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.417

[7] Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. Code2inv: A deep learning418

framework for program verification. In Shuvendu K. Lahiri and Chao Wang, editors, Computer419

Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,420

2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer Science, pages 151–164.421

Springer, 2020.422

[8] Haoze Wu, Clark Barrett, and Nina Narodytska. Lemur: Integrating large language models in423

automated program verification. In The Twelfth International Conference on Learning Represen-424

tations, 2024.425

[9] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, and Yongqiang426

Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv preprint427

arXiv:2403.13372, 2024.428

12

	Limitations
	Societal Impacts
	FVELer Benchmark
	Dataset Format
	sel4_extraction/
	dataset_lemma_split.json
	sel4_thy_info.json
	sel4_session_info.json

	Datasheet
	Data Hosting, Licensing, and Maintenance

	Experiments on FVELer Test Set
	Implementation Details
	Results
	Case Study

	Implementations Details on Code2Inv and SV-COMP
	Evaluation Datasets
	Pre-processing
	Fine-tuning and Inference
	A Case of Python to C Dataset.

