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A IMPLEMENTATION

We applied both SO2 and SUF to CQL and IQL, respectively. Below are the implementation details:

Implementation of SO2. Excluding the Q-ensemble, SO2 relies on two key techniques: (1) Per-
turbed Value Update, and (2) increased Frequency of Q-value Update.

In CQL, the loss function is defined as:

LCQL(Q) = α · Es∼D [log
∑

a′ exp(Q(s, a′))−Q(s, a)] + 1
2 · E(s,a,s′)∼D

[(
Q(s, a)− B̂πQ̂target(s, a)

)2
]
. (1)

The Bellman backup for the target Q-function is expressed as:

B̂πQ̂target(s, a) = r + γ ·
(
Q̂target(s

′, a′ + ϵ)− β log π(a′|s′)
)
. (2)

In IQL, we apply noise to the value loss as follows:

LIQL(V ) = E(s,a)∼D
[
L2
τ (Q(s, a+ ϵ)− V (s))

]
. (3)

The value network then affects the Q-value loss through the following equation:

LIQL(Q) = E(s,a,s′)∼D

[
(r(s, a) + γV (s′)−Q(s, a))

2
]
. (4)

The noise term, ϵ, is defined as:
ϵ ∼ clip(N (0, σ),−c, c). (5)

Following the instructions in the SO2 (Zhang et al., 2024), we set σ = 0.3, c = 0.6, and the update
frequency Nupc = 10.

Implementation of SUF. This method increases the Critic UTD to expedite the fitting of the value
network, addressing the issue of value network underfitting on out-of-distribution (OOD) data and
reducing estimation bias. Simultaneously, it decreases the Actor UTD to improve the accuracy
of policy updates and mitigate misguidance caused by value bias. In the case of IQL, the value
network is updated together with the critic, ensuring consistent learning dynamics between the two
components. Following the instructions in the SUF (Feng et al., 2024), we set Gc = 20 and Ga =
1/4.

B EFFECT ON DATASET SIZE

We evaluate BAQ on MuJoCo tasks from the D4RL-v2 dataset1, which includes three environments:
HalfCheetah, Walker2d, and Hopper. Each environment contains datasets collected by policies of
varying quality, categorized as Medium, Medium-Replay, and Medium-Expert. To effectively model
the behavior of offline data, we first train a Behavior Cloning (BC) model on the offline datasets.
The size of these datasets significantly impacts the performance of our algorithm, as shown in Table
1.

Dataset Size
halfcheetah-medium-expert-v2 1,998,000
hopper-medium-expert-v2 1,998,966
walker2d-medium-expert-v2 1,998,318
halfcheetah-medium-replay-v2 201,798
hopper-medium-replay-v2 401,598
walker2d-medium-replay-v2 301,698
halfcheetah-medium-v2 999,000
hopper-medium-v2 999,998
walker2d-medium-v2 999,322

Table 1: Dataset sizes for different environments.

1https://github.com/Farama-Foundation/D4RL
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As shown in Table 1, the Medium-Expert datasets are approximately 2 × 106 in size, whereas the
Medium-Replay datasets are considerably smaller. The performance scores for Medium-Expert and
Medium-Replay are illustrated in Fig. 1 for CQL + Ours and Fig. 2 for IQL + Ours. Notably, both
approaches exhibit the same optimal parameters: (kq = 1, kρ = 2) for the larger datasets (Medium-
Expert) and (kq = 2, kρ = 1) for the smaller datasets (Medium-Replay).
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Figure 1: Heatmaps showing the relationship between kρ and kq in CQL + Ours settings.
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Figure 2: Heatmaps showing the relationship between kρ and kq in IQL + Ours settings.
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