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Çağlar Hızlı
Aalto University
caglar.hizli@aalto.fi
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ABSTRACT

This work aims to recover the underlying states and their time evolution in a
latent dynamical system from high-dimensional sensory measurements. Previous
works on identifiable representation learning in dynamical systems focused on
identifying the latent states, often with linear transition approximations. As such,
they cannot identify nonlinear transition dynamics, and hence fail to reliably
predict complex future behavior. Inspired by the advances in nonlinear ICA, we
propose a state-space modeling framework in which we can identify not just
the latent states but also the unknown transition function that maps the past
states to the present. Our identifiability theory relies on two key assumptions: (i)
sufficient variability in the latent noise, and (ii) the bijectivity of the augmented
transition function. Drawing from this theory, we introduce a practical algorithm
based on variational auto-encoders. We empirically demonstrate that it improves
generalization and interpretability of target dynamical systems by (i) recovering
latent state dynamics with high accuracy, (ii) correspondingly achieving high future
prediction accuracy, and (iii) adapting fast to new environments. Additionally, for
complex real-world dynamics, (iv) it produces state-of-the-art future prediction
results for long horizons, highlighting its usefulness for practical scenarios.

1 INTRODUCTION

We focus on the problem of understanding the underlying states of a dynamical system from its
high-dimensional sensory measurements. This task is prevalent across various fields, including
reinforcement learning (Hafner et al., 2019a) and robotics (Levine et al., 2016). For example, consider
a cartpole, where instead of directly observing the underlying states (cart position and velocity, pole
angle and angular velocity; Fig. 1 (a)), we observe a video stream of its behavior (Fig. 1 (b)). Our main
objective is to learn latent representations and state transition functions from such high-dimensional
sequences, which are useful for downstream tasks such as optimal control of the observed system.

Due to the partially observed nature of the problem, learning dynamics in the data space (e.g., pixel
space) is not feasible, and previous works often focus on learning latent dynamical systems (Hafner
et al., 2019b). However, such latent models commonly are not guaranteed to recover the true under-
lying states and transitions (non-identifiability), resulting in entangled representations, lack of gen-
eralization across new domains, and poor interpretability (Schmidhuber, 1992; Bengio et al., 2013).

Identifiable representation learning aims to address these challenges by learning the underlying fac-
tors of variation in the true generative model. To achieve this, our approach builds on the classical ideas
of ICA, namely, the assumption of independent components. In the case of a linear emission function,
this independence assumption has been used to identify states in dynamical systems (Ciaramella et al.,
2006; Kerschen et al., 2007). For the nonlinear case, Hyvärinen & Morioka (2016; 2017) introduced
an identifiability framework using two main assumptions: (i) latent states show non-stationarity or
autocorrelation driven by an auxiliary variable (this is referred to as ‘sufficient variability’), and (ii)
given the auxiliary variable, they are conditionally independent. However, this framework assumes
mutually independent latent states that do not affect each other (Hyvärinen & Morioka, 2016; 2017;
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Figure 1: Sketch of our method and main theoretical contribution. (a) We assume an underlying
unobserved dynamical system, e.g., a cartpole, where the full state zt is composed of cart position
and velocity and angle and angular velocity of the pole: [x, ẋ, θ, θ̇]. (b) We partially observe the
system as a sequence of video frames x1:T , which are used as input to our method. (c) We learn
an inverse emission function ĝ−1 : xt 7→ ẑt that maps the raw observation signals to the estimated
latent state variables, as well as a transition function f̂ : ẑt 7→ ẑt+1 that maps the past latent states to
the present latent state. Identifiability of the latent states is ensured by Theorem 1. In addition to this,
our main contribution is the identifiability of the transition function ensured by Theorem 2.

Hyvärinen et al., 2019; Khemakhem et al., 2020). This mutual independence assumption is unrealistic
for dynamical systems, as the present state of the system depends on the past states, i.e., the transition
function propagates the system state by nonlinearly mixing the past state components.

Identifiability in dynamical systems. Recently, Yao et al. (2021; 2022) extended identifiability theory
to dynamical systems by replacing the assumption of mutually-independent states with temporally-
mixed states, conforming to the same non-stationarity and autocorrelation conditions. Under the refor-
mulated assumptions, they showed that it is possible to identify or recover the true latent states in a dy-
namical system (up to element-wise transformations). Using similar assumptions for an autoregressive
process in the observation space, Morioka et al. (2021) identified the ‘innovations’ or process noise,
which represents the stochastic impulses fed to the system. See Tab. 3 (App. A) for a comparison.

Although these approaches yield provably identifiable representations of the latent states, their
theoretical frameworks fall short in identifying the underlying dynamics. To resolve this, inspired
by nonlinear ICA, we introduce additional stochastic variables that are conditionally independent
of each other given auxiliary variables. This conditional independence assumption implicitly encodes
new, external information that is sufficiently independent of the observations (Hyvärinen et al.,
2019, App. E). Interestingly, the idea of conditioning on auxiliary variables has been proposed in
other contexts, e.g., Packard et al. (1980) showed that time-delayed auxiliary variables help resolve
underlying data generating dynamics of chaotic systems from the residual independent noise.

Our contributions. We present the first framework that allows for the identification of the unknown
transition function alongside latent states and the emission function1 (see Fig. 1). Following previous
works (Yao et al., 2021; 2022), we first establish the identifiability of the latent states (Fig. 1: Theorem
1). We show that identifying the transition function is ensured by further restricting the spaces of the
process noise prior and the transition function (Fig. 1: Theorem 2). These restrictions form our main
assumptions for identifiability: the process noise shows non-stationarity or autocorrelation driven by
an auxiliary variable, and the augmented transition function is bijective.

Next, we introduce our theoretically-informed learning algorithm based on variational auto-encoders,
where we build the identifiability conditions into the space of prior distributions of the latent states
and the process noise. Our framework ensures that the estimated forward transition function provably
converges to the true unknown transition function under our identifiability assumptions.

1Here, the term “identification” encapsulates not only the estimation but also a theoretical framework showing
in what circumstances the estimated model recovers the ground-truth generative model as in the nonlinear ICA
literature (Hyvärinen et al., 2023).
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Our findings show that our framework recovers latent states almost perfectly (Sec. 4.1), predicts the
future states of three different dynamical systems much more accurately than state-of-the-art baselines
(Secs. 4.1, 4.2 and 4.4), can be quickly adapted to new environments (Sec. 4.3), and enforcing our iden-
tifiability assumptions consistently improves identification and future prediction accuracy (App. E.2).

2 AN IDENTIFIABLE DYNAMICAL SYSTEM FRAMEWORK

This section starts with the notation and our generative dynamical model that leads to identifiable
variables and functions under certain assumptions. In Sec. 2.2 we state the assumptions to achieve
identifiability, followed by our main theoretical contribution in Sec. 2.3.

2.1 DATA GENERATING PROCESS

We are interested in inferring latent dynamical systems from high-dimensional observations x1:T ,2
where xt ∈ RD, with t the time point. As usual, we assume that the observations are generated from
a sequence of latent states z1:T , with zt ∈ RK , through an emission function g : RK → RD:

xt = g(zt).

Without loss of generality, the latent states z1:T evolve as a first-order Markov process3:

zt = f(zt−1, st),

where f : R2K → RK is an auto-regressive transition function and the process noise st ∈ RK

represents additional variables influencing the state evolution, e.g., random or unmodeled external
variations in the process, not captured by deterministic dynamics. For the cartpole example, this
would correspond to the strength and direction of the wind at any time.

Challenges in identifying the latent transition function. The transition function f(zt−1, st) = zt
maps a higher-dimensional space R2K to a lower-dimensional space RK , rendering it inherently
non-bijective. Consequently, multiple transition functions can correspond to the same sequence of
latent variables, resulting in non-identifiability.

Augmented dynamics. We solve this challenge by augmenting the transition function f and the
emission function g with previous time steps, resulting in the following generative process:

z0 ∼ pz0
(z0), # initial state (1)

st ∼ ps|u(st|u) =
∏
k

psk|u(skt|u), ∀t ∈ 1, . . . , T, # process noise (2)[
zt

zt−1

]
= faug

([
st

zt−1

])
=

[
f(zt−1, st)

zt−1

]
, ∀t ∈ 1, . . . , T, # state transition (3)[

xt

xt−1

]
= gaug

([
zt

zt−1

])
=

[
g(zt)

g(zt−1)

]
, ∀t ∈ 2, . . . , T, # observation (4)

where u is an auxiliary variable modulating the noise distribution ps|u that implies a non-i.i.d. structure
in the data generating process. For the auxiliary variable u, we consider two practical use cases:

• Setting u to an observed regime label r = 1, . . . , R leads to a nonstationary process noise
similar to Hyvärinen & Morioka (2016), where the data is observed under R distinct regimes.
For the cartpole system, this would imply several observation regimes under different wind
conditions, for which their distributions of process noise are sufficiently different.

• Setting u to the unobserved noise st−1 at previous time step implies an autocorrelated
noise process similar to Hyvärinen & Morioka (2017). For the cartpole system, this would
imply a single, windy environment where the wind speed or direction changes continuously.

2In practice, we observe multiple sequences, but we drop the sequence index in all notation for clarity. The
model definition trivially generalizes to multiple sequences under exchangeability.

3Higher-order processes can be represented as first-order ones by state augmentation.
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We build on Morioka et al. (2021), whose approach suffers from two key shortcomings: First, their
approach does not learn the transitions f . Second and more importantly, their theory is constrained to
autoregressive transitions between pairs of observational data (xt−1,xt). This becomes impractical
when modeling high-dimensional raw signals, such as videos, which requires modeling latent
dynamics (Hafner et al., 2019b). To tackle these, we propose a new latent dynamical framework in
which we apply the augmentation within the latent space, rather than in the observational space. This
requires augmenting the compositional function f ◦g rather than just a single function f , complicating
the analysis. Finally, identifiability of the latent transition function follows when assuming that the
augmented dynamics function is bijective (in addition to other identifiability assumptions in Sec. 2.2).

2.2 IDENTIFIABILITY THEORY

Let M = (faug,gaug, ps|u) denote the ground-truth model. By fitting the observed sequences,
we learn a model M̂ = (f̂aug, ĝaug, p̂s|u) such that the ground-truth and the learned densities
are observationally equivalent: pfaug,gaug,ps|u({xt}Tt=1) = pf̂aug,ĝaug,p̂s|u

({xt}Tt=1),∀xt ∈ X for t ∈
1, . . . , T . We make the following assumptions:

(A1) Injectivity and bijectivity. The emission functions g and ĝ are injective, implying the same for
the augmented functions gaug, ĝaug. The augmented transition functions faug, f̂aug are bijective.

(A2) Conditionally independent noise. A single latent variable zkt is influenced by a single process
noise variable skt: zkt = fk(zt−1, skt). Let qk(skt,u) = log p(skt|u) denote the conditional
log-density of the noise variable skt. Let ηk(zkt,u) = log p(zkt|zt−1,u) denote the conditional
log-density of the state variable zkt. Conditioned on the auxiliary variable u, the log densities
decompose for all t ∈ 1, . . . , T :

log p(st|u) =
K∑

k=1

log p(skt|u)︸ ︷︷ ︸
qk(skt,u)

=

K∑
k=1

qk(skt,u), (5)

log p(zt|zt−1,u) =

K∑
k=1

log p(zkt|zt−1,u)︸ ︷︷ ︸
ηk(zkt,u)

=

K∑
k=1

ηk(zkt,u). (6)

(A3) Sufficient variability of latent state zt. For any zt, there exist some 2K values of u:
u1, . . . ,u2K , such that the 2K vectors

vl(zt,u1), . . . ,vl(zt,u2K) (7)

are linearly independent for some index l of the auxiliary variable u, where

vl(zt,u) =

(
∂2η1(z1t,u)

∂z1t∂ul
, · · · , ∂

2ηK(zKt,u)

∂zKt∂ul
,
∂3η1(z1t,u)

∂z21t∂ul
, · · · , ∂

3ηK(zKt,u)

∂z2Kt∂ul

)
. (8)

(A4) Sufficient variability of process noise st. For any st, there exist some 2K values of u:
u1, . . . ,u2K , such that the 2K vectors

wl(st,u1), . . . ,wl(st,u2K) (9)

are linearly independent for some index l of the auxiliary variable u, where

wl(st,u) =

(
∂2q1(s1t,u)

∂s1t∂ul
, · · · , ∂

2qK(sKt,u)

∂sKt∂ul
,
∂3q1(s1t,u)

∂s21t∂ul
, · · · , ∂

3qK(sKt,u)

∂s2Kt∂ul

)
. (10)

Discussion of Assumptions. In Assumption (A1), the bijectivity of the augmented latent transition
function captures the functional dependence between a latent pair (zt−1, zt) and the process noise
st. This differs from Morioka et al. (2021), who use an augmented transition model on observations
(xt−1,xt). Returning to the cartpole example, the transition function f would map a latent state zt
to two different future states z(1)t+1, z

(2)
t+1 if the corresponding wind variables s(1)t+1, s

(2)
t+1 differ. This as-

sumption would not hold if the controller or the transition function has intrinsic stochasticity, breaking
the bijectivity. Assumptions (A3, A4) imply that the latent states and the process noise are sufficiently
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different across different environments, similar to the autocorrelation and non-stationarity conditions
in Hyvärinen et al. (2019; 2023). Assumption (A3) generalizes the sufficient variability condition
defined for a regime label in Yao et al. (2021), to a general auxiliary variable u. For (A3) to hold, the
changes in the wind distribution should sufficiently change the distribution of latent states, i.e., 2D
positions and velocities. For (A4) to hold, we need to observe the cartpole system in sufficiently many
environments with sufficiently different wind (noise) conditions. These assumptions are violated,
e.g., if the wind is constant across the observed environments. For more details, see App. C.

2.3 MAIN THEORETICAL CONTRIBUTION

In this section, we state our main theoretical contribution, that is, the novel identifiability result
for a latent transition function f (Theorem 2). We start with a theorem on the identifiability of
the conditionally independent latent states zt|zt−1,u (Theorem 1), which is an extension of the
identifiability result established for the nonstationary noise case in Yao et al. (2021). The proofs are
detailed in Apps. C.1 and C.2.

Theorem 1 (Identifiability of latent states z1:T , based on Yao et al. (2021)). Under assumptions
(A1, A2, A3), latent states zt are identifiable up to a permutation and element-wise invertible
transformation, i.e., there exists a function h : RK → RK , such that zt = h(ẑt), where h = πz ◦ rz
is a composition of a permutation πz : [K] → [K] and an element-wise invertible transformation
rz : RK → RK . Equivalently, the same holds for the emission function, i.e., ĝ = g ◦ h.

Theorem 2 (Identifiability of the transition function f ). Under assumptions (A1, A2, A3, A4),
the process noise st is identifiable up to a permutation and element-wise invertible transformation,
i.e., there exists a function k : RK → RK , such that st = k(ŝt), where k = πs ◦ rs is a composition
of a permutation πs : [K] → [K] and an element-wise invertible transformation rs : RK → RK .
Equivalently, the same holds for the transition function f̂aug = h−1

aug ◦ faug ◦ kaug, since augmented
functions h−1

aug and kaug decompose into block-wise functions: h−1
aug = [h−1,h−1] and kaug = [k,h],

such that k and h are already shown to be compositions of a permutation and an element-wise
invertible transformation.

Proof sketch. Latent states zt and zt−1 are identifiable under sufficient variability and conditional
independence assumptions on states z. Intuitively, the idea is also to identify the noise variables st,
which leads to the identifiability of the transition function as zt = f(zt−1, st).

In the proof in App. C.2, we first show that the function kaug : R2K → R2K that maps the learned

pair (ŝt, ẑt−1) to the ground-truth pair (st, zt−1),
[

st
zt−1

]
= kaug

([
ŝt

ẑt−1

])
=

[
k1(ŝt, ẑt−1)
k2(ŝt, ẑt−1)

]
,

is bijective. Next, we show that the function components k1,k2 : R2K → RK that take the pair
(ŝt, ẑt−1) as input are equivalent to invertible element-wise functions k,h : RK → RK , such
that (i) k only depends on ŝt, i.e., st = k1(ŝt, ẑt) = k(ŝt) and (ii) h only depends on ẑt−1, i.e.,
zt−1 = k2(ŝt, ẑt−1) = h(ẑt−1). For (ii), we use the result of Theorem 1. For (i), we use the
assumption (A4), the sufficient variability in the process noise.

3 PRACTICAL IMPLEMENTATION USING VARIATIONAL INFERENCE

We turn our theoretical framework into a practical implementation using variational inference, which
approximates the true posterior over the noise and the latent states given the observations. In contrast
to previous works that approximate the inverse transition function (Yao et al., 2021; 2022), we
directly estimate the forward transition function. To achieve this, we first map the observation
xt to process noise st, from which we then obtain the latent states zt similar to Franceschi et al.
(2020). Different from Franceschi et al. (2020), our process noise prior pθ(s|u) does not depend
on the previous state zt−1, as this dependence would make the model non-identifiable. In the
implementation and the experiments, we set the auxiliary variable u to a regime label where the
data is observed under distinct regimes.

For a theory-informed implementation, we build our assumptions into the model as follows. We
enforce (i) conditionally independent process noise by using independent 1D conditional flows for
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pθ(skt|u), and (ii) conditionally independent latent states by modeling each output k of the transition
function fk(zt−1, skt) as a separate MLP. We provide the learning algorithm in Algorithm 1. For
space considerations, we provide the implementation details in Fig. 6 and Apps. D and F.3.

Sequential prediction of s1:T and z0:T . Each observation xt is mapped to an intermediate embedding
x̃t via an MLP or CNN backbone depending on the input modality. To infer the initial latent state, an
encoder (MLP) takes the embeddings x̃1:Tic up to time Tic as input. It outputs the parameters of the
initial state posterior, qϕ(z0|x̃1:Tic), from which the initial state z0 is sampled: z0 ∼ qϕ(z0|x̃1:Tic).

Once the initial state is sampled, the model predicts the noise st and the latent state zt iteratively
for each time step t = 1, . . . , T . At each step, the embeddings up to time t, x̃1:t, along with the
previously sampled state zt−1, are used to infer the process noise. A forward sequential model (RNN
+ MLP) takes [x̃1:t, zt−1] as input to compute the parameters of the noise posterior, qϕ(st|x̃1:t, zt−1),
from which the noise is sampled: st ∼ qϕ(st|x̃1:t, zt−1). Using the sampled noise st and the previous
state zt−1, the next state zt is predicted through the transition function zt = f(zt−1, st). Specifically,
the components of zt are computed as zkt = fk(zt−1, skt), for k = 1, . . . ,K. Due to the sequential
computation, the time complexity of a forward-pass is linear in the input sequence length O(T ).

ELBO computation and priors. The decoder takes the latent state zt as input and outputs the
parameters of the observation likelihood, pθ(xt|d(zt)). For the ELBO computation, we weigh the
KL term with the hyperparameter β (Higgins et al., 2017), which is selected through validation.
We assume a standard Gaussian prior for the initial state, p(z0) = N (0, I). We use the auxiliary
variable u in implementing the prior for the noise variables st, pθ(st|u) =

∏
k pθ(skt|u), where each

pθ(skt|u) is modeled as an independent, trainable 1D conditional flow. To allow for multi-modal
prior distributions of the 1D noise variables skt, we employ neural spline flows (Durkan et al., 2019).

Algorithm 1 Practical learning algorithm
Requires: Variational posterior networks (ICEncoder and NoiseEncoder) and Decoder

1. Encode initial condition parameters: µz0 , log σ
2
z0 = ICEncoder(x1:Tic)

2. Sample initial condition: z0 ∼ N (µz0 , σ
2
z0I)

3. For t ∈ 1, . . . , T :

(a) Encode noise parameters: µst , log σ
2
st = NoiseEncoder(x1:t, zt−1)

(b) Sample noise: st ∼ N (µst , σ
2
stI)

(c) Compute the next latent state: zt = f(st, zt−1)

(d) Decode: xt = Decoder(zt)

4. Compute ELBO: L = LR − βLKL. Samples {s1:T , z0:T } are used to approximate LKL:

LR =
∑T

t=1
Eqϕ(zt|... )[log pθ(xt|zt)],

LKL = DKL(qϕ(z0|x1:T )∥pθ(z0)) +
∑T

t=1
Eqϕ(zt−1|... )[DKL(qϕ(st|zt−1,x1:t)∥pθ(st|u))].

5. Update the parameters {θ, ϕ}.

4 EXPERIMENTS

In this section, we evaluate our method’s ability to (i) recover true system dynamics in controlled
setups to validate our theory (Sec. 4.1), (ii) accurately forecast long horizons in complex synthetic and
real-world datasets (Secs. 4.1 and 4.2), and (iii) adapt to unseen environments efficiently (Sec. 4.3).
In addition, we compare joint vs. two-stage dynamics training in Sec. 4.4, present an ablation study
and additional figures in App. E, and further details in App. F. Our implementation to reproduce the
study can be found at https://github.com/caglar-hizli/idf-latent-dyn.

Baselines. For latent dynamics identification, we compare with state-of-the-art identifiable representa-
tion learning (IRL) methods: β-VAE (Higgins et al., 2017), LEAP (linear: LEAP-LIN, non-parametric:
LEAP-NP; Yao et al., 2021), and TDRL (Yao et al., 2022). For sample-efficient adaptation, we
compare with the best-performing IRL method, LEAP-LIN. For future prediction, we compare with
state-of-the-art neural state-space, ODE and SDE methods: KALMANVAE (Fraccaro et al., 2017),
CRU (Schirmer et al., 2022), NODE (Chen et al., 2018), Latent NODE (Rubanova et al., 2019),
ODE2VAE (Yildiz et al., 2019), MONODE (Auzina et al., 2024), and Latent SDE (Li et al., 2020).
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Table 1: Results for synthetic and cartpole datasets (mean ± std.dev. across 5 seeds). Rows are
marked (N/A) for methods unable to predict the future or the process noise. LEAP-NP and TDRL
cannot generate future predictions as they only approximate the inverse transition function. MCC:
mean correlation coefficient; higher is better ↑. MSE[x̄future[τ ]] denotes mean squared error over τ
future time points; lower is better ↓. Best bolded based on Welch’s t-test with p < 0.01.

MODELS

DATASET METRICS β-VAE KALMANVAE CRU LEAP-LIN LEAP-NP TDRL OURS

SYNTH.

MCC[z̄input] ↑ 0.60 ±0.05 0.64 ±0.05 0.47 ±0.05 0.68 ±0.03 0.89 ±0.04 0.73 ±0.04 0.94 ±0.09

MCC[s̄input] ↑ N/A N/A N/A 0.14 ±0.01 0.26 ±0.04 0.42 ±0.11 0.64 ±0.13

MSE[x̄future[2]] ↓ N/A 1.27 ±0.19 8.85 ±0.82 0.22 ±0.03 N/A N/A 0.06 ±0.02

MSE[x̄future[4]] ↓ N/A 1.32 ±0.27 8.75 ±0.85 0.18 ±0.03 N/A N/A 0.08 ±0.02

MSE[x̄future[8]] ↓ N/A 1.72 ±0.82 9.08 ±0.94 0.59 ±0.13 N/A N/A 0.20 ±0.08

CARTPOLE
MCC[z̄input] ↑ 0.68 ±0.01 0.65 ±0.07 0.85 ±0.05 0.81 ±0.07 0.76 ±0.07 0.56 ±0.09 0.95 ±0.02

MCC[z̄future[8]] ↑ N/A 0.73 ±0.05 0.70 ±0.06 0.78 ±0.05 N/A N/A 0.91 ±0.02

Figure 2: Correlation plots for first 8 input points. For illustration purposes, we use the data from the
seed with median performance. Cartpole system has 4 true states: cart position x and velocity ẋ, pole
angle θ and angular velocity θ̇. Left column: The correlation matrix between ground-truth states and
latent estimations for best-performing 3 models. Columns correspond to ground-truth states x, ẋ, θ, θ̇,
while rows correspond to most highly-correlated estimated latent dimensions. Darker colors on
diagonal imply better one-to-one mapping. Next 4 columns: 4 scatter plots between each ground-
truth state dimension and its aligned latent. Here, a diagonal line implies better one-to-one mapping.
An extended version, also covering the last Tfuture time steps, is available in Fig. 10 in App. E.

Metrics. For latent dynamics identification, we use mean correlation coefficient (MCC) between
the ground-truth states and the estimated latents, which is the standard metric in the nonlinear ICA
literature (Hyvärinen et al., 2019). MCC[z̄input] and MCC[s̄input] denote MCC on latent states and
process noise for the first Tinput steps. For future prediction, we use MCC[z̄future] on future latent
states and the mean squared error MSE[x̄future] on the future observations x̄future.

Datasets. In all experiments, the data is observed under R distinct regimes, and we set the auxiliary
variable u to the one-hot encoded regime label r. Synthetic: To validate our theory, we generate a
synthetic dataset satisfying our identifiability assumptions as commonly done in theoretical works on
IRL. We follow the setups in Yao et al. (2021; 2022). We have R = 20 regimes with nonstationary
noise: the (conditional) distribution of noise s varies between regimes. To evaluate the long-horizon
forecast performance, we use Tdyn = 4 observations for training the dynamical model and Tfuture = 8

7



Published as a conference paper at ICLR 2025

observations for evaluating future predictions. Cartpole: We use the setup as described in Yao et al.
(2022), with one modification: Yao et al. only use fixed action sequences, i.e., only always go-right or
always go-left, which is not representative of real-world scenarios. Instead, we implement continuous
actions to obtain a more realistic setup. We have R = 6 regimes (5 for training, 1 for testing),
with distinct gravity values. The underlying dynamics are deterministic; the noise s accounts for
the variability due to unknown initial conditions and different gravity values between the domains.
Mocap: To evaluate future predictions on long horizons with complex real-world dynamics, we use
three CMU motion capture (Mocap) datasets from the dynamical systems literature. The different
regimes correspond to different persons walking. MOCAP-SINGLE (Yildiz et al., 2019; Li et al., 2020)
contains walking sequences of a single subject (R = 1), and MOCAP-MULTI and MOCAP-SHIFT
(Auzina et al., 2024) consist of sequences of 6 different subjects (R = 6); in MOCAP-SHIFT, one
subject is left out for testing. Here, we interpret the process noise s as modeling the external variations
in the observed data, which might show nonstationary behavior due to subject-specific characteristics
such as limb lengths, joint angles, sensor positioning, sensor noise, or initial conditions.

4.1 OUR MODEL RECOVERS TRUE SYSTEM DYNAMICS BETTER IN CONTROLLED SETUPS

We present MCC and MSE results for the synthetic and cartpole datasets in Table 1. In the synthetic
dataset, all IRL methods (LEAP-LIN, LEAP-NP (Yao et al., 2021); TDRL (Yao et al., 2022); and
OURS) estimate latent states with high correlation to the true states, as indicated by MCC[z̄input]. Our
method has the highest MCC[z̄input] and MCC[s̄input] scores among all methods.

High values of MCC[z̄input] and MCC[s̄input] indicate a close alignment between the estimated and
true latent transition functions, as stated in Theorem 2. This is validated by our method’s superior
future prediction accuracy, with lower MSE[x̄future] across 2-, 4-, and 8-step horizons. It is important
to note that the IRL methods LEAP-NP and TDRL cannot generate future predictions (N/A) since
they approximate only the inverse transition function. As the prediction horizon increases—e.g., to 8
steps, twice as much as observed during training—the performance gap between our method and the
baselines widens further. See predicted trajectories with calibrated uncertainties in Fig. 11 in App. E.

For cartpole, methods that model complex temporal dependencies (LEAP-LIN, LEAP-NP (Yao et al.,
2021); CRU (Schirmer et al., 2022); and OURS) outperform others in MCC[z̄input] and MCC[z̄future].
For the top-performing models (LEAP-LIN (Yao et al., 2021), CRU (Schirmer et al., 2022), and
OURS), we present MCC correlation matrices and scatter plots comparing the ground-truth states with
the 4 most correlated latent dimensions for the first Tinput time steps in Fig. 2. An extended version of
this figure, also covering the last Tfuture time steps, is available in Fig. 10 in App. E. LEAP-LIN (Yao
et al., 2021) struggles to estimate well-aligned latents for both the first 8 input steps and the subsequent
8 future steps. CRU (Schirmer et al., 2022) recovers well-aligned latents for cart position x and angle
θ during the first 8 steps but loses accuracy in future predictions. In contrast, our method consistently
recovers the most highly correlated latents, with the performance gap increasing for future predictions.

Summary. Our method recovers the true latent dynamics more accurately than baselines in both
synthetic and cartpole setups, as shown by (i) higher MCC for input latents and (ii) more accurate
future predictions, with the performance gap widening as the prediction horizon increases.

4.2 OUR MODEL PREDICTS LONG-HORIZON REAL-WORLD DYNAMICS MORE ACCURATELY

Table 2: TEST-MSE(↓) for MOCAP-SINGLE, MOCAP-
MULTI and MOCAP-SHIFT. †Results from Li et al.
(2020). ††Results from Auzina et al. (2024).

MODELS MOCAP-SINGLE MOCAP-MULTI MOCAP-SHIFT

LEAP-LIN 17.08 ±2.24 57.9 ±10.5 51.1 ±2.8

NODE 22.49 ±0.88
† 72.2 ±12.4

†† 61.6 ±6.2
††

ODE2VAE 8.09 ±1.95
† - -

Latent NODE 5.98 ±0.28
† - -

Latent SDE 4.03 ±0.20
† - -

MONODE - 57.7 ±9.8
†† 58.0 ±10.7

††

OURS 3.82 ±0.40 19.6 ±1.2 36.0 ±1.9

We present the MSE results in Tab. 2 for
all Mocap datasets. These datasets exhibit
complex real-world dynamics with pre-
diction horizons of 75-300 steps. Across
all datasets, NODE (Chen et al., 2018)
performs the worst, highlighting the need
to model latent dynamics. As an addi-
tional strong baseline, we trained CRU
(Schirmer et al., 2022) on Mocap datasets.
Although this approach based on Kalman
filters fits the training data well, it reverts
to its linear prior when extrapolating into
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Figure 3: Left: Latent trajectories and skeletons for OURS model in MOCAP-SINGLE (observation
trajectories in Fig. 8). Right: Test trajectory predictions for LEAP-LIN and OURS in MOCAP-MULTI.
At test time, first 75 time points are given as input, and the full prediction horizon is T = 150 steps.

the (unseen) future. Consequently, it fails to predict the unseen time points, and we have omitted its
results from this section.

MOCAP-SINGLE consists of sequences from a single subject, which violates our identifiability
assumptions. Despite this model misspecification, our method achieves the lowest MSE. In contrast,
MOCAP-MULTI and MOCAP-SHIFT show non-i.i.d. structures, with multiple subjects treated as
distinct environments. Our method is particularly well-suited for these datasets, significantly out-
performing other baselines, including MONODE (Auzina et al., 2024), which is designed to handle
non-i.i.d. structures by predicting environment-specific dynamic variables.

In Fig. 3 (Right), we present the predictions of our model alongside those of LEAP-LIN for six
dimensions within the data space that are representative of complex dynamics (all other dimensions
are included in Fig. 12 in App. E). Both models exhibit high accuracy for the initial half of the
sequence, provided as input. However, our model demonstrates significantly improved extrapolation
into the future, indicative of a superior approximation of the underlying system. In Fig. 3 (Left),
we show estimated latent trajectories, along with the generated skeletons for time T = 300 on
MOCAP-SINGLE. The latent trajectories exhibit smooth, cyclic patterns with minimal differences
between trials, reflecting the cyclic nature of walking. The estimated trajectories for the joint angles
closely match the actual data trajectories, with calibrated uncertainties.

Summary. Our model achieves state-of-the-art performance across all datasets, outperforming
strong neural ODE/SDE baselines that were specifically designed for the task. Notably, our ap-
proach performs best on MOCAP-SINGLE that violates our assumptions, suggesting that our method
maintains strong real-world applicability, even in scenarios that challenge its core assumptions.

4.3 IDENTIFYING DYNAMICS IS THE KEY TO SUCCESSFUL ADAPTATION
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Figure 4: MCC[z̄future] with vary-
ing number of adaptation samples.

In this section, we explore whether for dynamical model adapt-
ability it is more important to identify the underlying dynamics
than just the latent states. We utilize our modified cartpole
dataset, consisting of five source domains with varying gravity
levels g = {5, 10, 20, 30, 40} and a target domain with g = 90.
When tested on the target domain, the MCC[z̄future] of both
LEAP-LIN (Yao et al., 2021) and our method drops significantly.
To address this, we fine-tune the models on adaptation datasets
with N = {20, 50, 100, 1000} sequences. As a strong baseline,
we also train our model on an extended dataset that includes all
the data from the source and target domains.

As shown in Fig. 4, fine-tuning on just 50 sequences allows
our model to recover the MCC[z̄future] performance of the strong
baseline trained on the complete dataset. Fine-tuning our model
on even more data makes it a better expert on the adapted do-
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main. In contrast, the MCC score of LEAP-LIN (Yao et al., 2021) does not consistently improve,
regardless of dataset size.

Summary. The sample-efficient adaptation performance of our method suggests that identifying
dynamics plays a key role in successful dynamics adaptation, while identifying only the latent states
(LEAP-LIN, Yao et al., 2021) does not guarantee successful transfer to new domains.

4.4 JOINTLY LEARNING LATENTS AND THEIR DYNAMICS IMPROVES FUTURE PREDICTION
ACCURACY
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Figure 5: Comparison of MSE achieved by
our approach vs. two-stage LEAP training.

In principle, one can use an off-the-shelf identifiable
representation learning method, such as LEAP-NP
(Yao et al., 2021), identify the ground-truth factors,
and fit a state transition function on the inferred latent
codes. In this section, we demonstrate that such a two-
stage approach approximates an unknown transition
function less well than our joint learning procedure
that identifies the transition and emission functions.
We compare the two on our synthetic dataset. To
learn the unknown transitions, we train (i) a three-
layer MLP (1-MLP) and (ii) K three-layer MLPs (K-
MLP), with leaky-ReLU activations on the latent state
sequence z̄train inferred by LEAP-NP (Yao et al., 2021). We unroll the learned transition function for
an additional Tfuture time steps, decode all the latent states, and compute the MSE in the data space.
We repeat this three times and compare the average error with the error of our approach in Fig. 5.
Our approach achieves smaller errors at all time points, and the gap widens as we predict for longer
horizons. This indicates that identifying the emission and transition functions jointly improves future
prediction accuracy.

5 DISCUSSION

We have presented the first latent dynamical system that allows for the identification of the unknown
transition function, and theoretically proved its identifiability, based on standard assumptions. We
evaluated our approach on synthetic data, the cartpole environment and real-world Mocap datasets,
and showed that (i) the estimated latent states correlated strongly with the ground truth, (ii) our
method had the highest future prediction accuracy with calibrated uncertainties, (iii) it could adapt
to new environments using a handful of data, and (iv) it produces state-of-the-art future prediction
results on complex real-world dynamics for long horizons, highlighting its usefulness for practical
scenarios. The main limitation stems from the identifiability assumptions, which are further discussed
in detail in App. C. For future work, it would be intriguing to examine how their violation might
influence the final model’s performance. Finally, demonstrating improved downstream performance
from our method, e.g. in model-based policy learning, would be of interest.
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A RELATED WORK

Table 3: A comparison of our approach and the previous work, highlighting that our approach is the
first to predict future states of a dynamical system by utilizing a transition function that identifies the
underlying, true dynamics.

Identifies
latent states

Models
latent dynamics

Can predict
future

Identifies
latent dynamics

SLOWVAE, Klindt et al. (2020) ✓ ✗ ✗ ✗

IIA, Morioka et al. (2021) (✓) † ✗ ✗ ✗

LEAP, Yao et al. (2021) ✓ ✓ ✗/✓ †† ✗

TDRL, Yao et al. (2022) ✓ ✓ ✗ ✗

NODE, Chen et al. (2018) ✗ ✗ ✓ ✗

KALMANVAE, Fraccaro et al. (2017)
Latent NODE, Rubanova et al. (2019)
ODE2VAE, Yildiz et al. (2019)
Latent SDE, Li et al. (2020)
CRU, Schirmer et al. (2022)
MONODE, Auzina et al. (2024)

✗ ✓ ✓ ✗

OURS ✓ ✓ ✓ ✓

† only the process noise is identified, †† only for linear approximation (LEAP-LIN)

B IDENTIFIABILITY THEORY

In this section, we discuss the identifiability of the latent states and the transition function, and
provide the detailed proofs.

We assume a latent dynamical system which is viewed as high-dimensional sensory observations
x1:T , where t is the time point and xt ∈ RD. We assume a sequence of latent states z1:T , with
zt ∈ RK , are instantaneously mapped to observations via an emission function g : RK → RD:

xt = g(zt). (11)

The latent states z1:T evolve according to Markovian dynamics:

zt = f(zt−1, st), (12)

where f : R2K → RK is an auto-regressive transition function and st ∈ RK corresponds to process
noise.

Our aim is to jointly identify the latent states z1:T , the dynamics function f , and the process noise s1:T .
We remind that previous works (Klindt et al., 2020; Yao et al., 2021; 2022; Song et al., 2023) have
concentrated on identifying the latent states z1:T , possibly with linear transition approximations, but
not a general transition function f . Yet, without a general f , the methods can estimate the underlying
states only when corresponding observations are provided or provide simplistic approximations in
their absence. Hence, they cannot predict complex future behavior reliably.

Notice that learning a provably identifiable transition function f : R2K → RK is not straightforward,
since the transition function is not injective. A naive solution can be to simply use a plug-in method
(Yao et al., 2021; 2022) for identifying the latents and then fitting a transition function f on the
estimated latents, however, we show empirically in our experiments that it leads to poor prediction
accuracy for the future behavior.

B.1 NONLINEAR ICA

The nonlinear ICA assumes that the data is generated from independent latent variables z with a
nonlinear emission function g, following Eq. (11). It is well-known to be non-identifiable for i.i.d. data
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(Hyvärinen & Pajunen, 1999; Locatello et al., 2019). Recent seminal works (Hyvärinen & Morioka,
2016; 2017; Hyvärinen et al., 2019) showed that autocorrelation and nonstationarity existent in
non-i.i.d. data can be exploited to identify latent variables in an unsupervised way. Compared to the
vanilla ICA that considers independence only along latent dimensions, the idea of these works is
to introduce additional independence constraints reflecting the existent structure in the data. These
additional constraints are formulated mathematically as identifiability assumptions, which restrict the
space of the emission function g and the space of the latent prior pz (Hyvärinen et al., 2023; Xi &
Bloem-Reddy, 2023). The key insight is that, after sufficiently constraining the latent prior pz using
such assumptions, identifying the latent variables zt and identifying the injective emission function g
become equivalent tasks (Xi & Bloem-Reddy, 2023).

B.2 AUGMENTED DYNAMICS FOR IDENTIFIABLE SYSTEMS

To identify the transition function f such that zt = f(zt−1, st), we will use the same insight: After
sufficiently constraining the noise prior ps; given an identifiable latent pair (zt−1, zt), identifying the
noise variables st and identifying the bijective dynamics function f should be equivalent. Hence, in
addition to the identifiability assumptions restricting the space of the emission function g and the
space of the latent prior pz, we will further restrict the space of the dynamics function f , and the
space of the noise prior ps.

First, let us note that the identifiability of the process noise st is not trivial since the dynamics function
f : R2K → RK is not an injective function and hence it does not have an inverse. Following the
independent innovation analysis (IIA) framework Morioka et al. (2021), we trivially augment the
image space of the transition function and denote the bijective augmented function by faug : R2K →
R2K : [

zt
zt−1

]
= faug

([
st

zt−1

])
=

[
f(zt−1, st)

zt−1

]
(13)

Contrary to Morioka et al. (2021), which use an augmented autoregressive model on observations
(xt−1,xt), our formulation captures the functional dependence between a latent pair (zt−1, zt) and
the process noise st.

Next, we make the standard assumption in the temporal identifiability literature (Klindt et al., 2020;
Yao et al., 2021; 2022; Song et al., 2023) that each dimension of the transition function {fk}Kk=1 is
influenced by a single process noise variable skt. The output is a single latent variable zkt:

zkt = fk(zt−1, skt), for k ∈ 1, . . . ,K and t ∈ 1, . . . , T. (14)

Notice that this does not impose a limitation on the generative model, it just creates a segmentation
between noise variables and latent variables. For example, if this assumption is violated and there
exists a noise variable skt that affects both zit and zjt with i ̸= j, then the noise variable skt can
instead be modeled as a latent variable zkt.

We re-state the full generative model for completeness:

z0 ∼ pz0(z0), # initial state (15)

st ∼ ps|u(st|u) =
∏
k

psk|u(skt|u), ∀t ∈ 1, . . . , T, # process noise (16)[
zt

zt−1

]
= faug

([
st

zt−1

])
=

[
f(zt−1, st)

zt−1

]
, ∀t ∈ 1, . . . , T, # state transition (17)[

xt

xt−1

]
= gaug

([
zt

zt−1

])
=

[
g(zt)

g(zt−1)

]
, ∀t ∈ 2, . . . , T. # observation mapping

(18)

where u is an auxiliary variable, which modulates the noise distribution ps|u.

C DISCUSSION OF ASSUMPTIONS

In this section, we compare our assumptions with the related work while discussing their theoretical
and practical implications. To make a better connection with a real-world dynamical sytem example,
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we discuss an autonomously controlled drone. Here, the observations x1:T would be a video stream
of the flying drone instead of the system state z1:T containing absolute position, velocity, and
acceleration in 3D. The process noise s1:T might represent additional variables influencing the state
evolution, e.g., the strength and direction of the wind at any time or drone motor torque set by the
controller. In the next paragraph, we specifically consider the latent state zt as the 3D position
(location and orientation) of the drone at time t, and the external noise st as wind affecting the drone.

Here, we refer to the observational equivalence of the models as Assumption (A0), i.e., the
ground-truth and the learned densities are observationally equivalent: pfaug,gaug,ps|u({xt}Tt=1) =

pf̂aug,ĝaug,p̂s|u
({xt}Tt=1),∀xt ∈ X for t ∈ 1, . . . , T .

Assumptions (A0,A1,A2) are standard assumptions in the nonlinear ICA literature (Klindt et al.,
2020; Morioka et al., 2021; Yao et al., 2021; 2022). Assumption (A0) ensures that the model
M̂ is sufficiently flexible that it learns the correct distribution in the limit of infinite data, e.g.,
the learned model components are universal approximators (neural networks), or for a variational
inference algorithm the family of the variational posterior contains the true posterior. For the drone
example, most likely the drone dynamics is nonlinear, and hence modeling the transition function
f by a linear function would violate this assumption. In Assumption (A1), the injectivity of the
augmented emission function implies that we have one-to-one mapping between the latent states
and the observation manifold. In the drone example, this implies that the 3D position should map
to a unique drone position in the pixel space. This could be violated in natural videos as they
exhibit complex dependencies such as occlusions. The bijectivity of the augmented latent transition
function captures the functional dependence between a latent pair (zt−1, zt) and the process noise
st, in contrast to Morioka et al. (2021), which use an augmented transition model on observations
(xt−1,xt). For the drone example, for a given 3D position zt−1, the transition function f must map
two distinct wind intensities st to distinct 3D positions zt. This assumption would not hold, e.g.,
if the physical system that applies the torque set by the controller has some intrinsic noise and the
transition function f is stochastic. Assumptions (A2, A3, A4) generalize the nonstationary noise
and the sufficient variability assumptions in Yao et al. (2021) to a general auxiliary variable u. For
the drone example, they imply that the underlying system can be decomposed into (conditionally)
independent 1D variables, e.g., the 3D position of the drone to 1D variables x, y, z, which are affected
independently by the x, y, z values of the wind intensity (noise). Assumptions (A4, A5) imply that the
latent states and the process noise show enough non-i.i.d. structure in the form of autocorrelation or
non-stationarity, i.e., they change sufficiently differently with respect to 2K values of u: u1, . . . ,u2K

(Hyvärinen et al., 2019; 2023). For (A5) to hold, we need to observe the drone in sufficiently many
environments with sufficiently different wind (noise) conditions. For (A4) to hold, the changes in the
wind distribution should sufficiently change the distribution of 3D positions (latent states). These
assumptions are violated, e.g., if the wind is constant across the observed environments.

Remark 1 Yao et al. (2021) used nonstationarity of the process noise for identifiability of the
conditionally independent latent states (Theorem 1). If the variable u is an observed categorical
variable (e.g., domain indicator), the assumptions (A4, A5) can be written in an alternative form
without partial derivatives with respect to ul (Hyvärinen et al., 2019) (see App. C.3 for the alternative
version).

Remark 2 In the presence of control inputs, we can write the augmented dynamics function given
the control input as faug(·|a) : R2K → R2K . The identifiability proof requires that the augmented
dynamics function to be bijective. Then, the identifiability proof continues to hold as long as the
augmented dynamics function conditioned for a given control input a, faug(·|a) : R2K → R2K , is
also bijective for any given a.

C.1 PROOF OF THEOREM 1: IDENTIFIABILITY OF THE LATENT STATES zt

This result is already shown in (Yao et al., 2021, Appendix A.3.2). Here, we follow Klindt et al.
(2020); Yao et al. (2021; 2022) and repeat their results in our notation as we also make use of this
result in App. C.2.

The injective functions g, ĝ : RK → RD are bijective between the latent space RK and the
observation space X ⊂ RD. We denote the inverse functions from the restricted observation space to
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the latent space by g−1, ĝ−1. This is also implicitly assumed in (Klindt et al., 2020; Yao et al., 2021;
2022; Song et al., 2023).

Using g and ĝ, we can relate the ground-truth and estimated latents zt and ẑt to each other:

xt = ĝ(ẑt) =

(
(g ◦ g−1) ◦ ĝ︸ ︷︷ ︸

h

)
(ẑt) =⇒ ĝ = g ◦ h =⇒ zt = h(ẑt), (19)

where the function h : ẑt 7→ zt maps the learned latents to the ground-truth latents. To show it is bi-
jective, we need to show it is both injective and surjective. Following Klindt et al. (2020), it is injective
since it is a composition of injective functions. Assume it is not surjective, then there exists a neigh-
borhood Uz for which g(Uz) /∈ ĝ(RK). This implies that the neighborhood of images generated by
g(Uz) has zero density under the learned observation density pĝaug,f̂aug,p̂s|u

(g(Uz)) = 0, while hav-
ing non-zero density under the ground-truth observation density pg,faug(x): pgaug,faug,ps|u(g(Uz)) > 0.
This contradicts the assumption that the observation densities match everywhere. Then, h is surjective.

Using zt = h(ẑt), we can analyze how the conditional densities of the ground-truth and estimated
latents zt and ẑt are related. For this, we perform change of variables on the conditional latent density
log p(ẑt|ẑt−1,u) as follows:

log p(ẑt|ẑt−1,u) = log p(zt|zt−1,u) + log |Ht|, (20)
K∑

k=1

log p(ẑkt|ẑt−1,u)︸ ︷︷ ︸
η̂k(ẑkt,u)

=

K∑
k=1

log p(zkt|zt−1,u)︸ ︷︷ ︸
ηk(zkt,u)

+ log |Ht| (21)

K∑
k=1

η̂k(ẑkt,u) =

K∑
k=1

ηk(zkt,u) + log |Ht| (22)

where Ht = Jh(ẑt) is the Jacobian matrix of h evaluated at ẑt. When we take derivatives of both
sides with respect to ẑit in Eq. (22), the left-hand side reduces to the single term since the conditional
density of the estimated latents factorize:

∂η̂i(ẑit,u)

∂ẑit
=

K∑
k=1

∂ηk(zkt,u)

∂zkt

∂zkt
∂ẑit

+
∂ log |Ht|

∂ẑit
. (23)

Next, we take derivatives with respect to ẑjt in Eq. (23), and the left-hand side becomes 0 since a
term η̂i(ẑit,u) does not depend on ẑjt.:

0 =

K∑
k=1

(
∂2ηk(zkt,u)

∂z2kt

∂zkt
∂ẑit

∂zkt
∂ẑjt

+
∂ηk(zkt,u)

∂zkt

∂z2kt
∂ẑit∂ẑjt

)
+

∂ log |Ht|
∂ẑit∂ẑjt

. (24)

Lastly, take derivatives with respect to ul in Eq. (24):

0 =

K∑
k=1

(
∂3ηk(zkt,u)

∂z2kt∂ul

∂zkt
∂ẑit

∂zkt
∂ẑjt

+
∂2ηk(zkt,u)

∂zkt∂ul

∂z2kt
∂ẑit∂ẑjt

)
, (25)

=

K∑
k=1

(
∂3ηk(zkt,u)

∂z2kt∂ul
[Ht]ki[Ht]kj +

∂2ηk(zkt,u)

∂zkt∂ul

∂z2kt
∂ẑit∂ẑjt

)
, (26)

since the Jacobian Ht does not depend on u. Using the sufficient variability assumption (A3) for
the latent states zt, we can plug in 2K values of u1, . . . ,u2K for which the partial derivatives of
the log conditional density ηk(zkt,u) form linearly independent vectors v(zt,u). We see that the
coefficients of these linearly independent vectors have to be zero: [Ht]ki[Ht]kj = 0. This implies
that the Jacobian matrix Ht of the transformation zt = h(ẑt) has at most 1 nonzero element in its
rows. Therefore, the learned latents ẑt are equivalent to the ground-truth latents zt up to permutations
and invertible, element-wise nonlinear transformations.

C.2 PROOF OF THEOREM 2: IDENTIFIABILITY OF THE LATENT TRANSITION f

In this section, we prove our main theoretical contribution, Theorem 2. We first define the function
that relates the ground-truth and estimated latent pairs (st, zt−1) and (ŝt, ẑt) to each other. Similar
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to the proof of Theorem 1, we can do this by using the relationship between (faug,gaug) and
(f̂aug, ĝaug): [

xt

xt−1

]
= (ĝaug ◦ f̂aug)

([
ŝt

ẑt−1

])
=

[
(ĝ ◦ f̂)(ẑt−1, ŝt)

ĝ(ẑt−1)

]
(27)

= (gaug ◦ faug) ◦ (gaug ◦ faug)−1 ◦ (ĝaug ◦ f̂aug)︸ ︷︷ ︸
kaug

([
ŝt

ẑt−1

])
(28)

Then, the function kaug : R2K → R2K maps the learned pair (ŝt, ẑt−1) to the ground-truth pair
(st, zt−1): [

st
zt−1

]
= kaug

([
ŝt

ẑt−1

])
=

[
k1(ŝt, ẑt−1)
k2(ŝt, ẑt−1)

]
. (29)

Similar to the function h being bijective in App. C.1, it follows that kaug is also bijective.

Now, we want to show that the augmented function kaug decomposes into invertible block-wise
functions k1,k2 : RK → RK such that (i) k1 only depends on ŝt, i.e., st = k1(ŝt) and (ii)
k2 only depends on ẑt−1, i.e., zt−1 = k2(ẑt−1). It is easy to show (ii) the second case, since
k2 = idz ◦ g−1 ◦ ĝ ◦ idẑ = h and we have already shown in App. C.1 that the function h : ẑt 7→ zt
is equal to h = g−1 ◦ ĝ and bijective. Hence, we can write h(ẑt−1) in the place of k2(ŝt, ẑt−1):[

st
zt−1

]
= kaug

([
ŝt

ẑt−1

])
=

[
k1(ŝt, ẑt−1)
h(ẑt−1)

]
. (30)

To show (i), we start by performing change of variables on the log density of the pair (ŝt, ẑt−1) for
the transformation kaug : (ŝt, ẑt−1) 7→ (st, zt−1):

log p(ŝt, ẑt−1|u) = log p(kaug(ŝt, ẑt−1)|u) + log |Jkaug(ŝt, ẑt−1)|, (31)
= log p([k1(ŝt, ẑt−1),h(ẑt−1)]|u) + log |Jkaug(ŝt, ẑt−1)|, (32)

where Jkaug(ŝt, ẑt−1) is the Jacobian matrix for the augmented function kaug evaluated at (ŝt, ẑt−1).
As the process noise is temporally independent given u: ŝt ⊥⊥ ẑt−1|u and st ⊥⊥ zt−1|u, we factorize
the densities in Eq. (32):

log p(ŝt|u) + log p(ẑt−1|u) = log p(k1(ŝt, ẑt−1)|u) + log p(h(ẑt−1)|u) + log |Jkaug(ŝt, ẑt−1)|.
(33)

The Jacobian Jkaug is upper block-diagonal since zt−1 does not depend on ŝt: Jkaug =

[
∂st
∂ŝt

∗
0 Ht

]
.

Hence, its log determinant factorizes as log |Jkaug(ŝt, ẑt−1)| = log |Ht|+ log |∂st∂ŝt
|. We can add this

factorization into Eq. (33):

log p(ŝt|u) + log p(ẑt−1|u) = log p(k1(ŝt, ẑt−1)|u) + log p(h(ẑt−1)|u) + log |Ht|+ log |∂st
∂ŝt

|.
(34)

In addition, the noise is conditionally independent over its dimensions given u. Therefore, we can
further factorize the noise densities p(ŝt|u) =

∏
k p(ŝkt|u) and p(k1(ŝt, ẑt−1)|u) = p(st|u) =∏

k p(skt|u) with st = k1(ŝt, ẑt−1). We incorporate these factorizations into Eq. (34) as follows:∑
k

log p(ŝkt|u)︸ ︷︷ ︸
q̂k(ŝkt,u)

+ log p(ẑt−1|u) =
∑
k

log p(skt|u)︸ ︷︷ ︸
qk(skt,u)

+ log p(h(ẑt−1)|u) + log |Ht|+ log |∂st
∂ŝt

|,

(35)

When we take the derivative of both sides of Eq. (35) with respect to ŝit, the term log p(ẑt−1|u) at
the left-hand side, and the terms log p(h(ẑt−1)|u) and log |Ht| vanish as they do not depend on ŝit:

∂q̂i(ŝit,u)

∂ŝit
=

∑
k

∂qk(skt,u)

∂skt

∂skt
∂ŝit

+
∂ log |∂st∂ŝt

|
∂ŝit

. (36)
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Next, we take the derivative with respect to ul with l being an arbitrary dimension, and the term
∂ log | ∂st

∂ŝt
|

∂ŝit
vanishes since |∂st∂ŝt

| does not depend on u:

∂2q̂i(ŝit,u)

∂ŝit∂ul
=

∑
k

∂2qk(skt,u)

∂skt∂ul

∂skt
∂ŝit

. (37)

Lastly, take the derivative of both sides with respect to ẑj,t−1:

0 =
∑
k

(
∂3qk(skt,u)

∂s2kt∂ul

∂skt
∂ŝit

∂skt
∂ẑj,t−1

+
∂2qk(skt,u)

∂skt∂ul

∂2skt
∂ŝit∂ẑj,t−1

)
. (38)

Inspecting the Eq. (38), to ensure the sufficient variability assumption (A4) for the process noise st,
the term ∂skt

∂ŝit
∂skt

∂ẑj,t−1
= 0. Following a similar reasoning with Morioka et al. (2021), this implies that

any dimension k of st does not depend on both ŝt and ẑt−1 at the same time. Since st ⊥⊥ zt−1|u and
zt−1 = h(ẑt−1), st has to depend solely on ŝt: st = k1(ẑt−1, ŝt) = k(ŝt). This concludes that the
augmented function kaug decomposes into invertible block-wise functions k and h: kaug = [k,h]:[

st
zt−1

]
= kaug

([
ŝt

ẑt−1

])
=

[
k(ŝt)

h(ẑt−1)

]
. (39)

We still need to show that the function k that relates the ground-truth and estimated noise variables st
and ŝt, st = k(ŝt), is an element-wise function. For this, we get back to Eq. (37). We denote the
Jacobian matrix of function k by Jk and its evaluation at ŝt by Jk(ŝt) = Kt. We take the derivative
of both sides in Eq. (37) with respect to ŝmt for some index m:

0 =
∑
k

(
∂3qk(skt,u)

∂s2kt∂ul
[Kt]ki[Kt]km +

∂2qk(skt,u)

∂skt∂ul

∂2skt
∂ŝit∂ŝmt

)
. (40)

Now, inspecting the Eq. (40), we see that to ensure the sufficient variability assumption (A4), the
product [Kt]ki[Kt]km = 0. This implies that each dimension skt of the true process noise depends
only on a single dimension of the learned process noise ŝt. Hence, the function k is equal to a
composition of permutation and element-wise, invertible nonlinear transformation: k = π ◦ T .

As the final step, we follow Eq. (28) and write the relationship between the augmented functions as:

gaug ◦ faug ◦ kaug = ĝaug ◦ f̂aug, (41)

ĝ−1
aug ◦ gaug︸ ︷︷ ︸

h−1
aug

◦faug ◦ kaug = f̂aug, (42)

h−1
aug ◦ faug ◦ kaug = f̂aug, (43)

where haug denotes simply the concatenation [h,h], and hence we have h−1
aug = [h−1,h−1]. We

have already shown that both h and k are compositions of permutations and element-wise invertible
transformations. Inspecting Eq. (43), we see that the augmented transition function f̂aug and the true
augmented transition function faug are related to each other only through functions h and k which
are compositions of permutations and element-wise invertible transformations. Hence, we conclude
that the augmented transition function f̂aug is equivalent to the true augmented transition function
faug up to compositions of permutations and element-wise transformations.

C.3 ALTERNATIVE VERSIONS OF SUFFICIENT VARIABILITY ASSUMPTION

If the variable u is an observed categorical variable (e.g., domain indicator), the assumptions (A4,
A5) can be written in an alternative form without partial derivatives with respect to ul, similar to
Hyvärinen et al. (2019); Yao et al. (2021). For example, for the latent states zt, the alternative version
of the (A4) takes the form:

• Sufficient variability of latent states for a categorical u (Yao et al., 2021). For any zt,
there exist some 2K+1 values for u: u1, . . . ,u2K , such that the 2K vectors v(zt,uj+1)−
v(zt,uj) with j = 0, 1, . . . , 2K, are linearly independent where

v(zt,u) =

(
∂η1(z1t,u)

∂z1t
, · · · , ∂ηK(zKt,u)

∂zKt
,
∂2η1(z1t,u)

∂z21t
, · · · , ∂

2ηK(zKt,u)

∂z2Kt

)
∈ R2K .

(44)
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A similar categorical version is provided in (Hyvärinen et al., 2019, Assumption 3), while the
continuous version is provided in the same work (Hyvärinen et al., 2019, Appendix D).

D VARIATIONAL INFERENCE

Similar to previous works (Yao et al., 2021; 2022), we want to maximize the marginal log-likelihood
log p(x1:T |u) that is obtained by marginalizing over the latent states z1:T and process noise s1:T :

log pθ(x1:T |u) = log

∫
z,s

pθ(x1:T , z0:T , s1:T |u) dz0:T ds1:T , (45)

where we decompose the joint distribution as follows:

pθ(x1:T , z0:T , s1:T |u) = pθ(z0)

T∏
t=1

pθ(st|u) pθ(zt|zt−1, st)︸ ︷︷ ︸
δ(zt−f(st,zt−1))

pθ(xt|zt). (46)

Note that the state transitions pθ(zt|zt−1, st) are assumed to be deterministic. The above integral is
intractable due to non-linear dynamics f and observation g functions. As typically done with the deep
latent variable models, we approximate the log marginal likelihood by a variational lower bound, i.e.,
we introduce an amortized approximate posterior distribution qϕ(z0:T , s1:T |x1:T ,u) that decomposes
as follows:

qϕ(z0:T , s1:T |x1:T ,u) = qϕ(z0|x1:T ,u)

T∏
t=1

qϕ(st|z0:t−1, s1:t−1,x1:T ,u)︸ ︷︷ ︸
qϕ(st|zt−1,x1:t)

qϕ(zt|z0:t−1, s1:t,u)︸ ︷︷ ︸
qϕ(zt|zt−1,st)

(47)

We simplify the variational posterior q(st|·) as qϕ(st|z0:t−1, s1:t−1,x1:T ,u) = qϕ(st|zt−1,x1:t),
corresponding to a filtering distribution. As in the generative model, we choose qϕ(zt|zt−1, st) =
pθ(zt|zt−1, st) = δ (zt − f(st, zt−1)):

qϕ(z0:T , s1:T |x1:T ,u) = qϕ(z0|x1:T )

T∏
t=1

qϕ(st|zt−1,x1:t)pθ(zt|zt−1, st), (48)

where the functional forms of the densities qϕ(z0|·) and qϕ(st|·) are chosen as diagonal Gaussian
distributions whose parameters are computed by recurrent neural networks. The variational lower
bound takes the following form:

L(θ, ϕ) = Eqϕ(z0:T ,s1:T )

[
log pθ(x1:T |z1:T ) + log

pθ(z0:T , s1:T |u)
qϕ(z0:T , s1:T |x1:T ,u)

]
(49)

=

T∑
t=1

Eqϕ(zt)[log pθ(xt|zt)]︸ ︷︷ ︸
Reconstruction term, LR

+Eqϕ(z0:T ,s1:T )

[
log

pθ(z0:T , s1:T |u)
qϕ(z0:T , s1:T |x1:T ,u)

]
︸ ︷︷ ︸

KL term, LKL

. (50)
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The reconstruction term can easily be computed in a variational auto-encoder framework. Below, we
provide the derivation of of the KL term:

LKL = Eqϕ(z0:T ,s1:T )

[
log

pθ(z0)

qϕ(z0|x1:T ,u)
+ log

pθ(z1:T , s1:T |u)
qϕ(z1:T , s1:T |x1:T ,u)

]
(51)

= −DKL(qϕ(z0|x1:T ,u)||pθ(z0)) + Eqϕ(z0:T ,s1:T )

[
log

pθ(z1:T , s1:T |u)
qϕ(z1:T , s1:T |x1:T ,u)

]
(52)

= −DKL(qϕ(z0|x1:T ,u)||pθ(z0)) + Eqϕ(z0:T ,s1:T )

[
T∑

t=1

log
pθ(st|u)pθ(zt|zt−1, st)

qϕ(st|zt−1,x1:T ,u)qϕ(zt|zt−1, st)

]
(53)

= −DKL(qϕ(z0|x1:T ,u)||pθ(z0)) +
T∑

t=1

Eqϕ(z0:T ,s1:T )

[
log

pθ(st|u)
qϕ(st|zt−1,x1:T ,u)

]
(54)

= −DKL(qϕ(z0|x1:T ,u)||pθ(z0)) +
T∑

t=1

Eqϕ(st,zt−1|zt−2,st−1,x1:T ,u)

[
log

pθ(st|u)
qϕ(st|zt−1,x1:T ,u)

]
︸ ︷︷ ︸

−Eqϕ(zt−1|zt−2,st−1)[DKL(qϕ(st|zt−1,x1:T ,u)||pθ(st|u))]

(55)

E ADDITIONAL EXPERIMENTAL DISCUSSION AND RESULTS

E.1 IS NOISE HARDER TO ESTIMATE?

In Sec. 4, we observe that MCC[z̄input] > MCC[s̄input] for all models. In the generative model,
observations x(t) directly depend on z(t): x(t) = g(z(t)), while the dependency to s(t) is indirectly
through z(t): x(t) = g(f(zt−1, st)). To reconstruct observations x(t), the model has to recover z(t)
without having to fully identify the noise s(t). Hence, the noise is harder to estimate, to the best of
our understanding.

E.2 ABLATION: HOW DOES EACH MODEL COMPONENT AFFECT THE PERFORMANCE?

2 3 4 5 6 7 8

#Prediction Steps
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0.5

1.0

1.5

2.0

2.5

M
se

[x̄
f
u
tu
re

]

β-Vae, Mcc[z̄train] = 0.60

+ 1-Mlp Transition, Mcc[z̄train] = 0.67

+ K-Mlp Transition, Mcc[z̄train] = 0.84

+ Conditional Flow, Mcc[z̄train] = 0.95

Figure 7: MCC vs. MSE results for
ablations for different time steps.

To understand how each model component affects the perfor-
mance, we set up an ablation study. We chose β-VAE (Higgins
et al., 2017) as the base model. On top of it, we add three
model components one by one: (i) 1-MLP-DYN: a single MLP
modeling K outputs of the transition function {fk}Kk=1, (ii)
K-MLP-DYN: K independent MLPs modeling K outputs of
the transition function {fk}Kk=1, and (iii) OURS: an additional
conditional normalizing flow to model the nonstationarity
p(s|u). We present MSE[x̄future] results for prediction steps
Tpred ∈ {2, 4, 8} in Fig. 7, together with the MCC[z̄input] values
in the legend. β-VAE cannot make future predictions, hence we
only report its MCC[z̄input] result. We see that adding K−MLP
transitions results in larger performance improvements both in
terms of disentanglement (MCC[z̄input]) and future predictions
(MSE[x̄future]), compared to adding 1−MLP transitions or
conditional flows. As expected, the improvement in future prediction accuracy is larger compared
to the improvement in disentanglement performance, since conditional flows only indirectly affect
the future predictions through the noise samples while directly affecting the noise distribution. More
importantly, the results suggest that as we predict for longer horizons (e.g. 8 steps), a higher MCC
on the latent states corresponds to a larger improvement on the future prediction performance.
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st ∼ qϕ(st|zt−1,x1:t) st ∼ qϕ(st|zt−1,x1:t)

Training on x1:T Future prediction of xT+1:

Figure 6: Diagram of the model architecture: In training, the observation x is passed through the
encoder eϕ to get the intermediate representation x̃. We learn the distribution over the initial latent
state z0 conditional on the representations of the first Tic observations (in the diagram, we show
Tic = 1; in our experiments, we use Tic = 2). The latent state is decoded by the decoder dθ to
produce the predicted observation x̂ (which is trained to match the corresponding actual observation).
The next value of the latent state is computed by the transition function fθ, which depends both on
the previous state and on the process noise s. In training, the process noise s is sampled from the
variational posterior that depends on the previous state as well as on the representation created by a
recurrent neural network (GRU) that has received up to the current observation. In future prediction,
the process noise s is sampled from the prior, which is a learned normalizing flow.
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Figure 8: Test trajectory prediction samples, their corresponding skeletons and latent trajectories
for MOCAP-SINGLE. At test time, the model takes first 3 time points as input, and predicts the full
horizon (T = 300).
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Figure 9: Test predictions for MOCAP-SINGLE. (Top row) From left to right, each column shows
latent trajectory samples until times [50, 100, 200, 300]. (Bottom row) From left to right, each
column shows samples at times [50, 100, 200, 300] transformed into skeletons, together with test data.

Figure 10: Extension of Fig. 2. (Left 4 columns) The same columns as Fig. 2. (Right 4 columns)
The same plots produced for the 8-step future predictions.
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Figure 11: For the synthetic experiment, model predictions in the data space with the estimated
uncertainties. Our model uses the first T0 = 2 data points to encode the initial latent state z0 and
Tdyn = 4 data points to encode the noise sequence s̄train. We unroll our model for T0+Tdyn+Tfuture =
14 steps ahead, where the future noise variables s7:14 follow the learned prior flow. We draw 32
trajectory samples x0:14 by sampling from the initial state and process noise. Above, black and blue
dots show the training and test data points. The red curves are the mean trajectories and the red region
corresponds to ±2 standard deviation computed empirically. We observe near-perfect predictions and
low uncertainty for the input data (the first Ttrain = T0 + Tdyn = 6 time points) while the uncertainty
grows as we unroll over time. Further, the uncertainty grows even more when the model predictions
are off. Therefore, almost all test points lie in the ±2 std region, reflecting the high calibration level
our probabilistic model attains.
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Figure 12: Test trajectory predictions for all 50 dimensions for LEAP-LIN and OURS in MOCAP-
MULTI. At test time, first 75 time points are given as input, and the full prediction horizon is T = 150
time points.

F EXPERIMENTAL DETAILS

F.1 DATASETS

We chose three datasets with different characteristics to keep our experimental setup (i) as general
as possible, and (ii) comparable with the related works that are closest to ours (LEAP (Yao et al.,
2021) and TDRL (Yao et al., 2022)). Our datasets include: (i) a synthetic dataset satisfying our
modeling assumptions as common in nonlinear ICA literature (Hyvärinen & Morioka, 2016; 2017;
Hyvärinen et al., 2019; Yao et al., 2021; 2022), (ii) a cartpole dataset with high-dimensional video
observations whose low-dimensional ground-truth dynamics are governed by a set of nonlinear
differential equations (Yao et al., 2022), and (iii) the high-dimensional (50-dim) real-world Mocap
dataset with longer training and prediction horizons (ranging between 75-300) (Yao et al., 2021;
2022; Yildiz et al., 2019; Li et al., 2020; Auzina et al., 2024).

Our motivation for the synthetic experiment is to validate our theory, and for the cartpole experiment
is to show our model’s ability to recover low-dimensional latent dynamics from a different kind of
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high-dimensional input modality (videos). To test our model’s capability to predict longer sequences
of complex real-world dynamics, we also included the MOCAP experiment.

Note on nonstationarity and observation regimes. In the experiments, we observe (xt,ut) pairs
where each observation xt has an associated regime label ut. For the synthetic experiment, we
have R = 20 regimes. For the cartpole experiment, we have R = 6 regimes (5 for training, 1 for
testing). For the MOCAP experiment, the different regimes correspond to different persons walking.
In MOCAP-SINGLE, we have just one person, hence R = 1, and ut is constant, demonstrating a case
violating our assumptions. In MOCAP-MULTI and MOCAP-SHIFT, we have 6 persons, hence R = 6.
For each observation xt, the model (or the prior p(st|u)) takes ut, i.e., the one-hot encoded regime
label, as input.

Synthetic dataset. We first set up a synthetic experiment to evaluate latent dynamics identification.
Same as Yao et al. (2021; 2022), we generate multivariate time-series following our data generating
process in Eqs. (1)–(4): the dimension of s, z and x is K = 8, the number of regimes is R = 20,
the distribution of noise s changes between distinct regimes to provide non-stationarity to satisfy
our assumptions, skt = 1

ak(u)
ϵt, ϵ ∼ N (0, 0.1), the functions f and g are a 2-linear layer random

MLPs, and we choose z1:T to be a second-order Markov process, i.e., zt = f(zt−2, zt−1, st). We
summarize the generative process as follows:

z0, z1 ∼ N (0, 1), (56)

skt =
1

ak(u)
ϵt, ϵt ∼ N (0, 0.1), t = 2, ..., T, (57)

zt = f(zt−2, zt−1, st), t = 2, ..., T, (58)
xt = g(zt), t = 0, ..., T, (59)

where ak(u) ∼ U(0, 1) is a uniform random variable that modulates the noise variance between
distinct regimes. Hence, the noise s represents random or unmodeled external variations in the
process, not captured by deterministic dynamics. Here, the distribution of s simply changes between
distinct regimes to provide non-stationarity to satisfy the identifiability assumptions (see App. F.2).

For each environment, we generate 7500/750/750 sequences as train/validation/test data. We chose
the synthetic training sequences as T0 + Tdyn = 2 + 4 = 6 as in LEAP (Yao et al., 2021) and TDRL
(Yao et al., 2022), to keep our setup comparable to the two closest related works. Including the future
time points, each sequence has the total length T = T0 + Tdyn + Tfuture = 2 + 4 + 8 = 14. As we
have a second-order Markov process, first T0 = 2 states (z0, z1) are spared as initial states. The next
4 observations x2:5 are used for training the dynamical model. The last 8 observations x6:13 are used
for evaluating future predictions. We choose the future prediction horizon Tfuture = 8 as the double of
the training sequence length. If the dynamics are truly identified, the model should predict future
states well, even for this longer horizon.

Cartpole dataset. Next, we use a more challenging video dataset of a cartpole system (Brockman
et al., 2016). The environment simulates a latent physical system with a pole attached to a cart from a
pivot point. The system has 4 states: position and velocity of the cart, and the angle and the angular
velocity of the pole ([xcart, θpole, ẋcart, θ̇pole]). Observations consist of video sequences of the system
and we use the true states only to compute MCC.

As in Huang et al. (2021); Yao et al. (2022), we use a modified setup with: (i) 5 source domains
used for training with different levels of gravity g = {5, 10, 20, 30, 40} and mass m = 1.0, and (ii)
a target domain with g = 90 to check the methods’ ability to extrapolate. The regime labels are
non-informative and observed, while the gravity values are unobserved. However, Yao et al. (2022)
assign a single constant action (only left or only right) to each environment, which is very unrealistic.
In contrast to this, we observe the system under random binary actions, which move the cart to left
or right at each step. We generate sequences of length T = T0 + Tdyn + Tfuture = 1 + 7 + 8 = 16:
the first frame for the initial state, the next 7 frames for training the dynamical model, and the
last 8 frames for future prediction. For each source domain, we have 900/100/100 sequences as
train/validation/test data. For the target domain, we have data sets with different numbers of samples
Ntarget = {20, 50, 100, 1000}.
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Mocap datasets. To evaluate future predictions on long horizons with complex real-world dynamics,
we use three datasets from the CMU motion capture (Mocap) library containing human action
trajectories (Wang et al., 2007; Yao et al., 2021; 2022): MOCAP-SINGLE (Yildiz et al., 2019),
MOCAP-MULTI (Auzina et al., 2024) and MOCAP-SHIFT (Auzina et al., 2024). For all Mocap
datasets, each observation xt ∈ R50 has 50 dimensions, after the preprocessing used in (Yildiz et al.,
2019; Li et al., 2020).

MOCAP-SINGLE contains 23 walking trials of single subject 35, split into 16/3/4 train/val/test
sequences. Each sequence has 300 time points. At test time, the models take first 3 data points as
input and predict the whole trajectory. MOCAP-MULTI and MOCAP-SHIFT contain a total of 56
walking trials for 6 subjects. Each sequence is down-sampled by a factor of 2 to 150 time points. The
models take first 75 data points as input and predict the whole trajectory. The detailed subject and
trial ids can be found in the Appendix of Auzina et al. (2024).

F.2 ASSUMPTIONS (A3, A4) ON SYNTHETIC AND CARTPOLE DATASETS

In the synthetic experiment, we use noise with (randomly) modulated variance between environments.
Under this modulated noise, sufficient variability assumptions (A3, A4) hold.

Assumption (A4) in the synthetic experiment. We start with the analysis for the noise s (assump-
tion (A4)). Our ground-truth functions for this experiment are:

skt =
1

ak(u)
ϵt, (60)

zkt = fk(zt−1, zt−2) + skt. (61)
Without loss of generality, let us assume ϵ is a standard normal random variable: ϵ ∼ N(0, 1) to
simplify the derivations. The log probability of noise is:

log p(skt|u) = qkt = − log 2π + log ak − a2k
2
s2kt.

Then, the required partial derivatives take the following form:
∂2qkt

∂skt∂ul
= −2ak(u)

∂ak
∂ul

(u)skt, (62)

∂3qkt
∂s2kt∂ul

= −2ak(u)
∂ak
∂ul

(u). (63)

These two equations tell us that if the 2K functions −2ak(u)
∂ak

∂ul
(u)skt and −ak(u)

∂ak

∂ul
(u) for

k = 1, . . . ,K in u are linearly independent, then the assumption (A4) holds.

For our synthetic setup, we choose the modulator variables ak(u) uniformly random between [0, 1].
To simplify the analysis, let us assume that we have ak =

√
2ulwk with wk ∼ U(0, 1). Then, the 2K

functions become −2wkskt and −wk, which are random functions. This results in a 2K×2K matrix
with random entries in the form of −wk and −2wkskt with wk ∼ U(0, 1) and skt ∼ N (0, a−2

k ). We
conjecture that the probability of these random vectors to be linearly independent is 1. To validate
this empirically, we sampled 10000 2K × 2K matrices with entries −2wkskt and −wk, where
wk ∼ U(0, 1) and skt ∼ N(0, w2

k). They all had rank 2K.

Assumption (A3) in the synthetic experiment. The analysis for the latent z (assumption (A3)) is
similar. We write the log probability as follows:

log p(zkt|zt−1,u) = ηkt = − log 2π + log ak − a2k
2
(zkt − fk(zt−1))

2.

Then, the required partial derivatives take the following form:
∂2ηkt
∂zkt∂ul

= −2ak(u)
∂ak
∂ul

(u)(zkt − fk(zt−1)), (64)

∂3ηkt
∂z2kt∂ul

= −2ak(u)
∂ak
∂ul

(u). (65)

Since zkt − fk(zt−1) = skt, the 2K equations here have the same form as in Eqs. (62) and (63) in
the analysis of assumption (A4). Then, using the same reasoning, the assumption (A3) holds.
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Table 4: Architecture components for the synthetic experiment (Tinput = 2 + 4 = 6, Tic = 4, D =
8, L = 2).

Base Encoder ICEncoder NoiseEncoder TransitionMLP (D× MLPs) Decoder

Input: RTinput×D Input: RTic×64 Input: RTinput×64
D× Input: RL×D+1 Input: RTinput×D

FC 64, Leaky-ReLU FC 64, Leaky-ReLU GRU 64, 1 layer D× FC 64, Leaky-ReLU FC 64, Leaky-ReLU
FC 64, Leaky-ReLU FC 64, Leaky-ReLU Concat[·, zt−L:t−1] D× FC 64, Leaky-ReLU FC 64, Leaky-ReLU
FC 64, Leaky-ReLU FC L × 2 × D FC 64, Leaky-ReLU D× FC 1 FC 8
FC 64 FC 64, Leaky-ReLU

FC 2 × D

Table 5: Other hyperparameters for our method for the synthetic experiment.

Parameter Value
lr 2e-3
β 2.5e-03
βz0

1e-03
weight decay 1e-6
batch size 32
latent dim. 8

Cartpole dataset. While we simulate cartpole data under different gravity values to create nonsta-
tionarity, Assumptions (A3, A4) do not exactly hold in the cartpole experiment since the nonlinear
differential equations underlying the cartpole system are deterministic.

F.3 ARCHITECTURE AND OPTIMIZATION DETAILS

In this section, we report the architecture details. We optimize our model with Adam optimizer
with default parameters, except the learning rate which is chosen by validation. We chose all
hyperparameters for our method, KALMANVAE, two versions of LEAP, CRU and TDRL with cross-
validation. β-VAE uses the hyperparameters chosen for our method. In particular, we performed
random search as well as Bayesian optimization (in some cases) over learning rate, loss weights (e.g.,
β), weight regularization, the number of layers in all MLPs, and latent dimensionality.

Conditional normalizing flows. In all experiments, we use 1D conditional normalizing flows to
model the nonstationary prior for the noise variables. We employ the implementation from Stimper
et al. (2023). These flows are 1-layer neural spline flows conditioned on the auxiliary variable u. The
auxiliary variable u is first one-hot encoded and then embedded using 1 linear layer before taken as
input.

F.3.1 SYNTHETIC DATA EXPERIMENTS

Our method. For the synthetic experiment, the architectural components of our model are detailed
in Tab. 4. In addition to the architecture layers, our method has several other hyperparameters selected
by validation. They are listed in Tab. 5.

Baseline methods. For the baselines KALMANVAE, CRU, TDRL, LEAP-LIN and LEAP-NP, we
use the architectures provided for multivariate time-series in their public code base. The identifiable
representation learning methods TDRL, LEAP-LIN and LEAP-NP have similar architectures to ours,
since they also perform synthetic experiments to validate their theoretical findings. The rest of the
hyperparameters are specified in Tab. 6. For the hyperparameters with multiple values, we perform a
sweep over them to determine the final value by validation. For the others with a single value, we
keep the recommended values in the publicly available code base.

F.3.2 CARTPOLE EXPERIMENTS

For the cartpole experiment, the architectural components of our model used in the cartpole experiment
are detailed in Tab. 7. We present the rest of the hyperparameters for our method in Tab. 8.
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Table 6: Hyperparameters of the baseline methods for the synthetic experiment.

Model Parameter Value

TDRL

learning rate [2e-3, 1e-3]
β [1e-2, 3e-3, 2e-3, 1e-3, 1e-4]
γ 1e-2
latent dim. 8

LEAP-LIN and LEAP-NP

learning rate [2e-3, 1e-3]
β [1e-2, 3e-3, 2e-3, 1e-3, 1e-4]
γ 2e-2 (LEAP-LIN), 9e-3 (LEAP-NP)
σ 1e-6
latent dim. 8

CRU
learning rate [5e-3, 3e-3, 1e-3]
latent dim. [16, 32]

KALMANVAE

learning rate 1e-3
β [10, 1, 0.1, 1e-2, 1e-3]
init. cov [10, 1, 0.1]
latent dim. [2, 4, 8]

Table 7: Architecture components for the cartpole experiment (Tinput = 1 + 7 = 8, Tic = 4, L =
1,K = 8).

Encoder CNN Decoder Deconv

Input: Tinput × 64× 64× nc Input: Tinput × RK

3× 3 Conv2d, 32 GeLU, stride 2 FC 64, Unflatten
3× 3 Conv2d, 32 GeLU, stride 2 3× 3 Upconv2d, 64 GeLU, stride 2
3× 3 Conv2d, 64 GeLU, stride 2 3× 3 Upconv2d, 32 GeLU, stride 2
3× 3 Conv2d, 64 GeLU, stride 2 3× 3 Upconv2d, 32 GeLU, stride 2
Flatten 3× 3 Upconv2d, nc Sigmoid, stride 2

ICEncoder NoiseEncoder TransitionMLP (K× MLPs)

Input: RTic×64 Input: RTinput×64 D× Input: RL×D+1

FC 64, Leaky-ReLU GRU 64, 1 layer D× FC 64, Leaky-ReLU
FC 64, Leaky-ReLU Concat[·, zt−L:t−1] D× FC 64, Leaky-ReLU
FC L× 2×D FC 64, Leaky-ReLU D× FC 1

FC 64, Leaky-ReLU
FC 2×D

Table 8: Other hyperparameters for our method for the cartpole experiment.

Name Value

lr 2e-4
β 1e-1
βz0

1e-1
weight decay 0.0
batch size 8
latent dim. 8

Baseline methods. Among the baselines, TDRL (Yao et al., 2022) also has an experiment on
the modified cartpole setup. We keep their architecture, including the backbone CNN and its
deconvolution decoder. For CRU, LEAP-LIN (Yao et al., 2021) and LEAP-NP (Yao et al., 2021), we
use the same backbone CNN and the deconvolutional decoder from Yao et al. (2022), since it is a
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larger network compared to ours with 1 additional conv2d layer (filters: 32,32,64,64,64), i.e., it has
more parameters. For KALMANVAE, we tried the CNN encoder/decoder components from TDRL
Yao et al. (2022) and our architecture, but the algorithm kept throwing numerical errors among 5
seeds (it finished only 1/5 seed without errors). Therefore, we used the simple CNN encoder used in
their own implementation. The rest of the hyperparameters are specified in Tab. 9.

Table 9: Hyperparameters of the baseline methods for the cartpole experiment.

Model Parameter Value

TDRL

learning rate [2e-3, 1e-3]
β [1.0, 1e-1, 1e-2, 1e-3]
γ [100, 10, 1]
σ [1e-2, 1e-3]
latent dim. 8

LEAP-LIN and LEAP-NP

learning rate [2e-3, 1e-3, 5e-4]
β [1.0, 1e-1, 1e-2]
γ [20, 10, 1]
σ [1e-6, 0.0]
λl1 [1e-1, 1e-2, 0.0]
latent dim. 8

CRU
learning rate [5e-3, 3e-3, 1e-3]
latent dim. [16, 32]

KALMANVAE

learning rate [7e-3, 3e-3, 1e-3]
β [1, 0.1]
init. cov [20, 1, 0.1]
latent dim. [2, 4, 8]

F.3.3 MOCAP EXPERIMENTS

For Mocap experiments, we adapt the architecture used in Yildiz et al. (2019) to our model, e.g., we
use the same number of layers and hidden dimensions for the base encoder and the decoder. We also
use its observational density which is a diagonal Gaussian where a single diagonal variance parameter
is estimated. The details are presented in Tab. 10.

Table 10: Architecture components for the Mocap experiments (Tic = 3, D = 50,K = 3, L = 1).

Base Encoder ICEncoder NoiseEncoder TransitionMLP Decoder

Input: RTinput×D Input: RTic×30 Input: RTinput×30
D× Input: RL×D+1 Input: RTinput×D

FC 30, Leaky-ReLU FC 30, Leaky-ReLU GRU 30, 1 layer FC 30, Leaky-ReLU FC 30, Leaky-ReLU
FC 30 FC L × 2 × K Concat[·, zt−L:t−1] FC 30, Leaky-ReLU FC 30, Leaky-ReLU

FC 30, Leaky-ReLU FC K FC D + 1
FC 2 × D

The rest of the hyperparameters for our method are shown in Tab. 11. Additionally, we have observed
that gradually increasing the training sequence length during training improves training stability
for our method. For example, we start training with shorter sequences, e.g., with 25-step long and
we train the model with these for 1 epoch. Afterwards, the training continues with 75-step long
sequences until convergence.
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Table 11: Other hyperparameters for our method for the Mocap experiment.

Name Value

lr 2e-4
β 1e-1
βz0

1e-1
weight decay 0.0
batch size 8
latent dim. 3

Baseline methods. For LEAP-LIN (Yao et al., 2021), we use its recommended architecture for
Mocap datasets, since it also has an experiment on another Mocap dataset. For CRU, we adapt the
encoder and decoder layers in Yildiz et al. (2019). The rest of the hyperparameters are specified in
Tab. 12. Particularly, we tried to increase the input sequence length, but we observed that the model
cannot be trained with sequences longer than 10-steps.

Table 12: Hyperparameters of the baseline methods for the Mocap experiment.

Model Parameter Value

CRU
learning rate [5e-3, 3e-3, 1e-3]
latent dim. [16, 32]

LEAP-LIN

learning rate [1e-3, 5e-4, 1e-4]
β [1.0, 1e-1]
γ [20, 10, 1]
σ [1e-6, 0.0]
λl1 [1e-3, 0.0]
latent dim. 8
sequence length [5,7,10]
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