
Table 1: The comparison results with pre-training methods (Fmax) on GO term and EC number
prediction. The best results are shown in bold.

Category Method GO-BP GO-MF GO-CC EC

Sequence ESM-1b [1] 0.452 0.659 0.477 0.869
ESM-2 [2] 0.472 0.662 0.472 0.874

Sequence-Function
ProtST-ESM-1b [3] 0.480 0.661 0.488 0.878
ProtST-ESM-2 [3] 0.482 0.668 0.487 0.878
DeepGO-SE [4] 0.438 0.564 0.427 0.810

Sequence-Structure

ESM-GearNet [5] 0.516 0.684 0.506 0.890
GearNet-ESM-INR-MC [6] 0.518 0.683 0.504 0.896
SaProt [7] 0.356 0.678 0.414 0.884

ProtGO-ESM (Student) 0.520 0.693 0.536 0.887

Table 2: Experimental results comparison on the CATH dataset (inverse folding).

Model Perplexity ↑ Recovery (%) ↓
Short Single All Short Single All

ESM-IF [8] 8.18 6.33 6.44 31.30 38.50 38.30
PiFold [9] 6.04 6.31 4.55 39.84 38.53 51.66
VFN-IF [10] 5.70 5.86 4.17 41.34 40.98 54.74
ProtGO (Ours) 5.65 5.70 4.08 42.88 41.03 55.21
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