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Appendix

Appendix A: Derivation Details of evidence lower-bound (ELBO)

In this section, we show the derivation details of ELBO(x, ỹ).
Recall that the causal decomposition of the instance-dependent label noise is

P (X, Ỹ , Y, Z) = P (Y )P (Z)P (X|Y,Z)P (Ỹ |Y,X).

Our encoders model following distributions

qφ(Z, Y |X) = qφ2
(Z|Y,X)qφ1

(Y |X),

and decoders model the following distributions

pθ(X, Ỹ |Y, Z) = pθ1(X|Y,Z)pθ2(Ỹ |Y,X).

Now, we start with maximizing the log-likelihood pθ(x, ỹ) of each datapoint (x, ỹ).

log pθ(x, ỹ) = log

∫
z

∫
y

pθ(x, ỹ, z, y)dydz

= log

∫
z

∫
y

pθ(x, ỹ, z, y)
qφ(z, y|x)
qφ(z, y|x)

dydz

= logE(z,y)∼qφ(Z,Y |x)

[
pθ(x, ỹ, z, y)

qφ(z, y|x)

]
≥ E(z,y)∼qφ(Z,Y |x)

[
log

pθ(x, ỹ, z, y)

qφ(z, y|x)

]
:= ELBO(x, ỹ)

= E(z,y)∼qφ(Z,Y |x)

[
log

p(z)p(y)pθ1(x|y, z)pθ2(ỹ|y, x))
qφ(z, y|x)

]
= E(z,y)∼qφ(Z,Y |x)[log (pθ1(x|y, z))] + E(z,y)∼qφ(Z,Y |x)[log (pθ2(ỹ|y, x))]

+ E(z,y)∼qφ(Z,Y |x)

[
log

(
p(z)p(y)

qφ2
(z|y, x)qφ1

(y|x)

)]
(1)

The ELBO(x, ỹ) above can be further simplified. Specifically,

E(z,y)∼qφ(Z,Y |x)[log (pθ2(ỹ|y, x))] = Ey∼qφ1
(Y |x)Ez∼qφ2

(Z|y,x)[log (pθ2(ỹ|y, x))]
=Ey∼qφ1

(Y |x)[log (pθ2(ỹ|y, x))], (2)
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and similarly,

E(z,y)∼qφ(Z,Y |x)

[
log
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p(z)p(y)

qφ2
(z|y, x)qφ1

(y|x)

)]
=Ey∼qφ1

(Y |x)Ez∼qφ2
(Z|y,x)

[
log

(
p(z)p(y)

qφ2(z|y, x)qφ1(y|x)

)]
=Ey∼qφ1

(Y |x)Ez∼qφ2
(Z|y,x)

[
log

(
p(y)

qφ1
(y|x)

)]
+ Ey∼qφ1

(Y |x)Ez∼qφ2
(Z|y,x)

[
log

(
p(z)

qφ2
(z|y, x)

)]
=Ey∼qφ1

(Y |x)

[
log

(
p(y)

qφ1
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)]
+ Ey∼qφ1

(Y |x)Ez∼qφ2
(Z|y,x)

[
log

(
p(z)

qφ2
(z|y, x)

)]
=− kl(qφ1

(Y |x)‖p(Y ))− Ey∼qφ1
(Y |x) [kl(qφ(Z|y, x)‖p(Z))] , (3)

By combing Eq. 1, Eq. 2 and Eq. 3, we get

ELBO(x, ỹ) = E(z,y)∼qφ(Z,Y |x) [log pθ1(x|y, z)] + Ey∼qφ1
(Y |x) [log pθ2(ỹ|y, x)]

− kl(qφ1
(Y |x)‖p(Y ))− Ey∼qφ1

(Y |x) [kl(qφ(Z|y, x)‖p(Z))] ,

which is the ELBO in our main paper.

Appendix B: Loss Functions

In this section, we provide the empirical solution of the ELBO and co-teaching loss. Remind that our
encoder networks and decoder networks in the the first branch are defined as follows

Y1 = q̂φ1
1
(X), Z1 ∼ q̂φ1

2
(X,Y1), X1 = p̂θ11 (Y1, Z1), Ỹ1 = p̂θ12 (X1, Y1),

Let S be the noisy training set, and d2 be the dimension of an instance x. Let y1 and z1 be the
estimated clean label and latent representation for the instance x, respectively, by the first branch.
As mentioned in our main paper (see Section 3.2), the negative ELBO loss is to minimize 1). a
reconstruction loss between each instance x and p̂θ11 (x, y1); 2). a cross-entropy loss between noisy
labels p̂θ12 (x1, x1) and ỹ; 3). a cross-entropy loss between q̂φ1

2
(x, y1) and uniform distribution

P (Y ); 4). a cross-entropy loss between q̂φ1
2
(x, y1) and Gaussian distribution P (Z). Specifically, the

empirical version of the ELBO for the first branch is as follows.∑
(x,ỹ)∈S

ˆELBO
1
(x, ỹ) =

∑
(x,ỹ)∈S

[
β0

1

d2
‖x− p̂θ11 (y1, z1)‖1 − β1ỹ log p̂θ12 (x1, y1)

+β2q̂φ1
1
(x) log q̂φ1

1
(x) + β3

J∑
j=1

(1 + log((σj)
2)− (µj)

2 − (σj)
2)

 .
The hyper-parameter β0 and β1 are set to 0.1, and β2 are set to 1e − 5 because encouraging the
distribution to be uniform on a small min-batch (i.e., 128) could have a large estimation error. The
hyper-parameter β3 are set to 0.01. The empirical version of the ELBO for the second branch shares
the same settings as the first branch.

For co-teaching loss, we directly follow Han et al. [1]. Intuitively, in each mini-batch data, both
encoders q̂φ1

1
(X) and q̂φ2

1
(X) select their small-loss instances as the useful knowledge and exchange

the knowledge to each other by a cross-entropy loss. The number of the small-loss instances used for
training decays with respect to the training epoch. The experimental settings for co-teaching loss are
the same as the settings in the original paper [1].

Appendix C: More Experimental Settings

In this section, we summarize the network structures for different datasets. The network structure for
modeling qφ1(Y |X) and the dimension of the latent representation Z has been discussed in our main
paper. For the optimization method, we use Adam with the default learning rate 1e− 3 in Pytorch.
The source code has been included in our supplementary material.
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For FashionMNIST [3], SVHN [2], CIFAR10 and CIFAR100, we use the same number of hidden layers
and feature maps. Specifically, 1). we model qφ2(Z|Y,X) and pθ2(Ỹ |Y,X) by two 4-hidden-layer
convolutional networks, and the corresponding feature maps are 32, 64, 128 and 256; 2). we model
pθ1(X|Y,Z) by a 4-hidden-layer transposed-convolutional network, and the corresponding feature
maps are 256, 128, 64 and 32. We ran 150 epochs for each experiment on these datasets.

For Clothing1M [4], 1). we model qφ2
(Z|Y,X) and pθ2(Ỹ |Y,X) by two 5-hidden-layer convo-

lutional networks, and the corresponding feature maps are 32, 64, 128, 256, 512; 2). we model
pθ1(X|Y,Z) by a 5-hidden-layer transposed-convolutional network, and the corresponding feature
maps are 512, 256, 128, 64 and 32. We ran 40 epochs on Clothing1M.
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