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Abstract

Two salient limitations have long hindered the relevance of optimal transport
methods to machine learning. First, the O(n3) computational cost of standard
sample-based solvers (when used on batches of n samples) is prohibitive. Second,
the mass conservation constraint makes OT solvers too rigid in practice: because
they must match all points from both measures, their output can be heavily influ-
enced by outliers. A flurry of recent works has addressed these computational and
modeling limitations, but has resulted in two separate strains of methods: While
the computational outlook was much improved by entropic regularization, more
recent O(n) linear-time low-rank solvers hold the promise to scale up OT further.
In terms of modeling flexibility, the rigidity of mass conservation has been eased
for entropic regularized OT, thanks to unbalanced variants of OT that can penalize
couplings whose marginals deviate from those specified by the source and target
distributions. The goal of this paper is to merge these two strains, low-rank and
unbalanced, to achieve the promise of solvers that are both scalable and versa-
tile. We propose custom algorithms to implement these extensions for the linear
OT problem and its fused-Gromov-Wasserstein generalization, and demonstrate
their practical relevance to challenging spatial transcriptomics matching problems.
These algorithms are implemented in the ott-jax toolbox [Cuturi et al., 2022].

1 Introduction

Recent machine learning (ML) works have witnessed a flurry of activity around optimal transport
(OT) methods. The OT toolbox provides convenient, intuitive and versatile ways to quantify the
difference between two probability measures, either to quantify a distance (the Wasserstein and
Gromov-Wasserstein distances), or, in more elaborate scenarios, by computing a push-forward map
that can transform one measure into the other [Peyré and Cuturi, 2019]. Recent examples include,
e.g., single-cell omics [Bunne et al., 2021, 2022, Demetci et al., 2020, Nitzan et al., 2019, Cang et al.,
2023, Klein et al., 2023], attention mechanisms [Tay et al., 2020, Sander et al., 2022], self-supervised
learning[Caron et al., 2020, Oquab et al., 2023], and learning on graphs [Vincent-Cuaz et al., 2023].

On the challenges of using OT. Despite their long history in ML [Rubner et al., 2000], OT methods
have long suffered from various limitations, that arise from their statistical, computational, and
modelling aspects. The statistical argument is commonly referred to as the curse-of-dimensionality
of OT estimators: the Wasserstein distance between two probability densities, and its associated
optimal Monge map, is poorly approximated using samples as the dimension d of observation
grows [Dudley et al., 1966, Boissard and Le Gouic, 2014]. On the computational side, computing
OT between a pair of n samples involves solving a (generalized) matching problem, with a price
of O(n3) and above [Kuhn, 1955, Ahuja et al., 1993]. Finally, the original model for OT rests on a
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mass conservation constraint: all observations from either samples must be accounted for, including
outliers that are prevalent in machine learning datasets. Combined, these weaknesses have long
hindered the use of OT, until a more recent generation of solvers addressed these three crucial issues.

The Entropic Success Story. The winning approach, so far, to carry out that agenda has been
entropic regularization methods [Cuturi, 2013]. The computational virtues of the Sinkhorn algorithm
when solving OT [Altschuler et al., 2017, Peyré et al., 2016, Solomon et al., 2016, Le et al., 2021]
come with statistical efficiency [Genevay et al., 2019, Mena and Niles-Weed, 2019, Chizat et al.,
2020], and can also be seamlessly combined with unbalanced formulations by penalizing – rather
than constraint – mass conservation, both for the linear [Frogner et al., 2015, Chizat et al., 2018,
Séjourné et al., 2022, Fatras et al., 2021, Pham et al., 2020] and quadratic [Séjourné et al., 2021]
problems. These developments have all been implemented in popular OT packages [Feydy et al.,
2019, Flamary et al., 2021, Cuturi et al., 2022].

The Low-Rank Alternative. A recent strain of solvers relies instead on low-rank (LR) properties
of cost and coupling matrices [Forrow et al., 2018, Scetbon and Cuturi, 2020, Scetbon et al., 2021].
Much like entropic solvers, these LR solvers have a better statistical outlook [Scetbon and Cuturi,
2022] and extend to GW problems [Scetbon et al., 2022]. In stark contrast to entropic solvers,
however, LR solvers benefit from linear complexity O(nrd) w.r.t sample size n (using rank r and
cost dimension d) that can scale to ambitious tasks where entropic solvers fail [Klein et al., 2023].

The Need for Unbalanced Low-Rank Solvers. LR solvers do suffer, however, from a major practical
limitation: their inability to handle unbalanced problems. Yet, unbalancedness is a crucial ingredient
for OT to be practically relevant. This is exemplified by the fact that unbalancedness played a crucial
role in the seminal reference [Schiebinger et al., 2019], where it is used to model cell birth and death.

Our Contributions We propose in this work to lift this last limitation for LR solvers to:

• Incorporate unbalanced regularizers to define a LR linear solver (§ 3.1);
• Provide accelerated algorithms, inspired by some of the recent corrections proposed by [Séjourné

et al., 2022], to isolate translation terms that appear in dual subroutines (§ 3.2);
• Carry over and adapt these approaches to the GW (§ 3.3) and Fused-GW problems (§ 3.4);
• Carry out an exhaustive hyperparameter selection procedure within large scale OT tasks (spatial

transcriptomics, brain imaging), and demonstrate the benefits of our approach (§ 4).

2 Reminders on Low-Rank Transport and Unbalanced Transport

We consider two metric spaces (X , dX ) and (Y, dY), as well as a cost function c : X ×Y → [0,+∞[.
The simplex ∆+

n holds all positive n-vectors summing to 1. For n,m ≥ 1, a ∈ ∆+
n , and b ∈ ∆+

m,
given points x1, . . . , xn ∈ X and y1, . . . , ym ∈ Y , we define two discrete probability measures µ
and ν as µ :=

∑n
i=1 aiδxi

, ν :=
∑m

j=1 bjδyj
where δz is the Dirac mass at z.

Cost matrices. For q ≥ 1, consider first two square pairwise cost matrices, each encoding the
geometries of points within µ and ν, and a rectangular matrix that studies that across their support:

A := [dqX (xi, xi′)]1≤i,i′≤n, B := [dqY(yj , yj′)]1≤j,j′≤m , C := [c(xi, yj)]1≤i≤n,
1≤j≤m

.

The Kantorovich Formulation of OT is defined as the following parameterized linear program:

OT(µ, ν) := min
P∈Πa,b

⟨C,P ⟩ , where Πa,b :=
{
P ∈ Rn×m

+ , s.t. P1m = a, PT1n = b
}
. (1)

The Low-Rank Formulation of OT is best understood as a variant of (1) that rests on a low-rank
property for cost matrix C, and low-rank constraints for couplings P . More precisely, Scetbon
et al. [2021] propose to constraint the set of admissible couplings to those, within Πa,b, that have a
non-negative rank of r ≥ 1. That set can be equivalently reparameterized as

Πa,b(r) = {P ∈ Rn×m
+ |P = Q diag(1/g)RT , Q ∈ Πa,g, R ∈ Πb,g, and g ∈ ∆+

r }.
The low-rank optimal transport (LOT) problem simply uses that restriction in (1) to define :

LOTr(µ, ν) := min
P∈Πa,b(r)

⟨C,P ⟩ = min
Q∈Πa,g,R∈Πa,g,g∈∆+

r

⟨C,Qdiag(1/g)R⟩ . (2)
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Scetbon et al. [2021] propose and prove the convergence of a mirror-descent scheme to solve (2),
and obtain linear time and memory complexities with respect to the number of samples, where each
iteration in that descent scales as (n+m)rd, where d is the rank of C.

The Unbalanced Formulation of OT starts from (1) as well, but proposes to do without Πa,b and its
marginal constraints [Frogner et al., 2015, Chizat et al., 2018], and rely instead on two regularizers:

UOT(µ, ν) := min
P∈Rn×m

+

⟨C,P ⟩+ τ1KL(P1m|a) + τ2KL(PT1n|b) (3)

where τ1, τ2 > 0 and KL(p|q) :=
∑

i pi log(pi/qi) + qi − pi. This formulation is solved using
entropic regularization, with modified Sinkhorn updates [Frogner et al., 2015]. Proposing an efficient
algorithm able to merge (2) with (3) is the first goal of this paper.

Gromov-Wasserstein (GW) Considerations. The GW problem [Mémoli, 2011] is a generalization
of (1) where the energy QA,B is a quadratic function of P defined through inner cost matrices A, B:

QA,B(P ) :=
∑

i,j,i′,j′

(Aii′ −Bjj′)
2PijPi′j′ =1T

mPTA⊙2P1m + 1T
nPB⊙2PT1n − 2⟨APB,P ⟩ (4)

where ⊙ is the Hadamard product. To minimize (4), the default approach rests on entropic regulariza-
tion [Solomon et al., 2016, Peyré et al., 2016] and variants [Sato et al., 2020, Blumberg et al., 2020,
Xu et al., 2019, Li et al., 2023]. Scetbon et al. [2022] adapted the low-rank framework to minimize
QA,B over low-rank matrices P , achieving a linear-time complexity when A and B are themselves
low-rank. Independently, [Séjourné et al., 2021] proposed an unbalanced generalization that also
applies to GW and which can be implemented practically using entropic regularization. Finally, the
minimization of a composite objective involving the sum of QA,B with ⟨C, ·⟩ is known as the fused
GW problem [Vayer et al., 2018].

3 Unbalanced Low-Rank Transport

3.1 Unbalanced Low-rank Linear Optimal Transport

We incorporate unbalancedness to low-rank solvers [Scetbon et al., 2021, 2022], moving gradu-
ally from the linear problem to the more involved GW and FGW problem. Using the framework
of [Frogner et al., 2015, Chizat et al., 2018], we extend first the definition of LOT, introduced in (2),
to the unbalanced case by considering the following optimization problem:

ULOTr(µ, ν) := min
P : rk+(P )≤r

⟨C,P ⟩+τ1KL(P1m|a) + τ2KL(PT1n|b), (5)

where rk+(P ) denotes the non-negative rank of P . Therefore by denoting Πr := {(Q,R, g) ∈
Rn×r

+ ×Rm×r
+ ×Rr

+: QT1n = RT1m = g}, and using the reparameterization of low-rank couplings,
we obtain the following equivalent formulation of ULOT:

ULOTr(µ, ν) = min
(Q,R,g)∈Πr

⟨C,Qdiag(1/g)RT ⟩︸ ︷︷ ︸
LC(Q,R,g)

+ τ1KL(Q1r|a) + τ2KL(R1r|b)︸ ︷︷ ︸
Ga,b(Q,R,g)

.
(6)

We introduce the more compact notation Ga,b(Q,R, g) := Fτ1,a(Q1r) + Fτ2,b(R1r), where
Fτ,z(s) := τKL(s|z) for τ > 0 and z ≥ 0 coordinate-wise. To solve (6), and using this split,
we move away from mirror-descent and apply instead proximal gradient-descent for the KL diver-
gence. At each iteration, we consider a linear approximation of LC where a KL penalization is added
to the objective (as in the classical mirror descent scheme). However, we leave Ga,b intact at each
iteration. Borrowing notations from [Scetbon et al., 2021], we must solve at each iteration the convex
optimization problem:

(Qk+1, Rk+1, gk+1) := argmin
ζ∈Πr

1

γk
KL(ζ, ξk) + τ1KL(Q1r|a) + τ2KL(R1r|b) , (7)

where (Q0, R0, g0) ∈ Πr is the initialization, and the triplet ξk := (ξ
(1)
k , ξ

(2)
k , ξ

(3)
k ) holds costs

matrices that are updated at each iteration k:

ξ
(1)
k := Qk ⊙ e−γkCRk diag(1/gk), ξ

(2)
k := Rk ⊙ e−γkC

TQk diag(1/gk)), ξ
(3)
k := gk ⊙ eγkωk/g

2
k ,
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with [ωk]i := [QT
kCRk]i,i for all i ∈ {1, . . . , r}, and (γk)k≥0 is a sequence of positive step sizes.

Reformulation using Duality. To solve (7), we apply Dykstra’s algorithm [1983], whose iterations
correspond to an alternating maximization on the dual formulation of (7):

Proposition 1. The convex optimization problem defined in (7) admits the following dual:

sup
f1,h1,f2,h2

Dk(f1, h1, f2, h2) := −F ⋆
τ1,a(−f1)−

1

γk
⟨eγk(f1⊕h1) − 1, ξ

(1)
k ⟩

− F ⋆
τ2,b(−f2)−

1

γk
⟨eγk(f2⊕h2) − 1, ξ

(2)
k ⟩ −

1

γk
⟨e−γk(h1+h2) − 1, ξ

(3)
k ⟩

(8)

where h1, h2 ∈ Rr, f1 ∈ Rn, f2 ∈ Rm, F ⋆
τ,z(·) := supy{⟨y, ·⟩ − Fτ,z(y)} is the convex conjugate

of Fτ,z . In addition strong duality holds and the primal problem admits a unique minimizer.

Remark 1. While we stick to KL regularizers in this work for simplicity, it is worth noting that this
can be extended to more generic regularizers Fτ1,a and Fτ2,b, as considered by Chizat et al. [2018].

We use an alternating maximization scheme to solve (8). Starting from h
(0)
1 = h

(0)
2 = 0r, we apply

for ℓ ≥ 0 the following updates (dropping iteration number k in (7) for simplicity):

f
(ℓ+1)
1 := arg sup

z
D(z, h(ℓ)

1 , f
(ℓ)
2 , h

(ℓ)
2 ), f

(ℓ+1)
2 := arg sup

z
D(f (ℓ+1)

1 , h
(ℓ)
1 , z, h

(ℓ)
2 ),

(h
(ℓ+1)
1 , h

(ℓ+1)
2 ) := arg sup

z1,z2

D(f (ℓ+1)
1 , z1, f

(ℓ+1)
2 , z2).

These maximizations can all be obtained in closed form, to result in the closed-form updates:

exp(γf
(ℓ+1)
1 ) =

(
a

ξ(1) exp(γh
(ℓ)
1 )

) τ1
τ1+1/γ

, exp(γf
(ℓ+1)
2 ) =

(
b

ξ(2) exp(γh
(ℓ)
2 )

) τ2
τ2+1/γ

gℓ+1 :=
(
ξ(3) ⊙ (ξ(1))T exp(γf

(ℓ+1)
1 )⊙ (ξ(2))T exp(γf

(ℓ+1)
2 )

)1/3
exp(γh

(ℓ+1)
1 ) =

gℓ+1

(ξ(1))T exp(γf
(ℓ+1)
1 )

, exp(γh
(ℓ+1)
2 ) =

gℓ+1

(ξ(2))T exp(γf
(ℓ+1)
2 )

When using “scaling” representations for these dual variables, ℓ ≥ 0, u(ℓ)
i := exp(γf

(ℓ)
i ) and

v
(ℓ)
i := exp(γh

(ℓ)
i ) for i ∈ {1, 2}, we obtain a simple update, provided in the appendix (Alg. 5).

Initialization and Termination. We use the stopping criterion proposed in [Scetbon et al., 2021] to
terminate the algorithm, ∆(ζ, ζ̃, γ) := 1

γ2 (KL(ζ, ζ̃) + KL(ζ̃, ζ)). Finding an efficient initialization
is a research topic in itself, explored for instance in [Cuturi et al., 2022]. Here we adopt the practical
choices proposed in [Scetbon and Cuturi, 2022], and follow them in adapting the choice of γk at each
iteration k of the outer loop. We summarize our proposal in Algorithm 1, which can be seen as an
extension of [Scetbon et al., 2021, Alg.2].

Convergence. The convergence proof for Dykstra’s algorithm (Alg. 5) can be found in [Bauschke
and Combettes, 2008]). In addition, [Scetbon et al., 2021] show the convergence of their scheme
towards a stationary points w.r.t to the criterion ∆(·, ·, γ) for γ fixed along the iterations of the outer
loop. The stationary convergence of our proposed algorithm can be directly derived from their results.

Complexity. Given ξ, solving Eq. (7) requires a time and memory complexity of O((n + m)r).
However computing ξ requires in general O((n2 +m2)r) time and O(n2 +m2) memory. Scetbon
et al. [2021] propose to consider low-rank approximation of the cost matrix C of the form C ≃ C1C

T
2

where C1 ∈ Rn×d and C2 ∈ Rm×d. In that case computing ξ can be done in O((n+m)rd) time
andO((n+m)(r+ d)) memory. Such approximations can be obtained using the algorithm in [Indyk
et al., 2019] which guarantees that for any distance matrix C ∈ Rn×m and α > 0 it can outputs
matrices C1 ∈ Rn×d, C2 ∈ Rm×d in O((m + n)poly( dα )) algebraic operations such that with
probability at least 0.99, ∥C −C1C

T
2 ∥2F ≤ ∥C −Cd∥2F +α∥C∥2F , where Cd denotes the best rank-d

approximation to C.
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Algorithm 1 ULOT(C, a, b, r, γ0, τ1, τ2, δ)
Inputs: C, a, b, r, γ0, τ1, τ2, δ
Q,R, g ← Initialization as proposed in [Scetbon and Cuturi, 2022]
repeat

Q̃ = Q, R̃ = R, g̃ = g,
∇Q = CR diag(1/g), ∇R = C⊤Qdiag(1/g),
ω ← D(QTCR), ∇g = −ω/g2,
γ ← γ0/max(∥∇Q∥2∞, ∥∇R∥2∞, ∥∇g∥2∞),

ξ(1) ← Q⊙ exp(−γ∇Q), ξ
(2) ← R⊙ exp(−γ∇R), ξ

(3) ← g ⊙ exp(−γ∇g),
Q,R, g ← ULR-Dykstra(a, b, ξ, γ, τ1, τ2, δ) (Alg. 5)

until ∆((Q,R, g), (Q̃, R̃, g̃), γ) < δ;
Result: Q,R, g

3.2 Improvements on the Unbalanced Dykstra Algorithm

A well documented source of instability of unbalanced formulations of OT lies in capturing efficiently
what optimal mass is targeted by such formulations. Séjourné et al. [2022] have proposed a technique
to address this issue and lower significantly computational costs. They propose first a dual objective
that is translation invariant. We take inspiration from this strategy and adapt it to our problem, to
propose the following variant of (8):

sup
f̃1,h̃1,f̃2,h̃2

(
DTI(f̃1, h̃1, f̃2, h̃2) := sup

λ1,λ2∈R
D(f̃1 + λ1, h̃1 − λ1, f̃2 + λ2, h̃2 − λ2)

)
(9)

It is clear from the reparameterization that both problems (8) and (9) have the same value and also that
(f̃1, h̃1, f̃2, h̃2) is solution of (9) if and only if (f̃1 + λ⋆

1, h̃1 − λ⋆
1, f̃2 + λ⋆

2, h̃2 − λ⋆
2) is solution of (8)

where (λ⋆
1, λ

⋆
2) solves DTI(f̃1, h̃1, f̃2, h̃2). To solve (9), we show that the variational formulation of

the translation invariant dual objective targeted inside (9) can be obtained in closed form.

Proposition 2. Let f̃1 ∈ Rn, f̃2 ∈ Rm and h̃1, h̃2 ∈ Rr, then the inner problem defined in (9) by
DTI(f̃1, h̃1, f̃2, h̃2) admits a unique solution (λ⋆

1, λ
⋆
2) and we have that

λ⋆
1 :=

(
1− τ1τ2

(1/γ + τ1)(1/γ + τ2)

)−1(
τ1/γ

1/γ + τ1
c1 −

τ1/γ

1/γ + τ1

τ2
1/γ + τ2

c2

)
(10)

λ⋆
2 :=

(
1− τ1τ2

(1/γ + τ1)(1/γ + τ2)

)−1(
τ2/γ

1/γ + τ2
c2 −

τ1/γ

1/γ + τ1

τ2
1/γ + τ2

c1

)
(11)

where

c1 := log

(
⟨exp(−f̃1/τ1), a⟩

⟨exp(−γ(h̃1 + h̃2)), ξ(3)⟩

)
, and c2 := log

(
⟨exp(−f̃2/τ2), a⟩

⟨exp(−γ(h̃1 + h̃2)), ξ(3)⟩

)
.

Using Proposition 2, we perform an alternate maximization scheme on the translation invariant
formulation of the dual DTI. Indeed using Danskin’s theorem (under the assumption that λ⋆

1, λ
⋆
2 do

not diverge), one obtains a variant of Algorithm 5, summarized in Algorithm 3.

Algorithm 2 compute-lambdas(a, b, ξ(3), u1, v1, u2, v2, γ, τ1, τ2)

Inputs: a, b, ξ(3), u1, v1, u2, v2, γ, τ1, τ2
ũ1 ← u

−1/γ/τ1
1 , ũ2 ← u

−1/γ/τ2
2

c1 ← log(⟨ũ1, a⟩)− log(⟨ξ(3), v−1
1 ⊙ v−1

2 ⟩), c2 ← log(⟨ũ2, b⟩)− log(⟨ξ(3), v−1
1 ⊙ v−1

2 ⟩)
Result: λ⋆

1, λ⋆
2 as in (10), (11)
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Algorithm 3 ULR-TI-Dykstra(a, b, ξ, γ, τ1, τ2, δ)

Inputs: a, b, ξ = (ξ(1), ξ(2), ξ(3)), γ, τ1, τ2, δ
v1 = v2 = 1r, u1 = 1n, u2 = 1m

repeat
ṽ1 = v1, ṽ2 = v2, ũ1 = u1, ũ2 = u2

λ1, λ2 ← compute-lambdas(a, b, ξ(3), u1, v1, u2, v2, γ, τ1, τ2) (Alg. 2)

u1 =
(

a
ξ(1)v1

) τ1
τ1+1/γ

exp(−λ1/τ1)
τ1

1/γ+τ1 , u2 =
(

b
ξ(2)v2

) τ2
τ2+1/γ

exp(−λ2/τ2)
τ2

1/γ+τ2 ,

λ1, λ2 ← compute-lambdas(a, b, ξ(3), u1, v1, u2, v2, γ, τ1, τ2) (Alg. 2)

g = exp(γ(λ1 + λ2))
1/3
(
ξ(3) ⊙ (ξ(1))Tu1 ⊙ (ξ(2))Tu2

)1/3
, v1 = g

(ξ(1))Tu1
, v2 = g

(ξ(2))Tu2

until 1
γ max(∥ log(ui/ũi)∥∞, ∥ log(vi/ṽi)∥∞) < δ;

Result: diag(u1)ξ
(1)
k diag(v1), diag(u2)ξ

(2)
k diag(v2), g

3.3 Unbalanced Low-rank Gromov-Wasserstein

The low-rank Gromov-Wasssertein (LGW) problem [Scetbon et al., 2022] between the two discrete
metric measure spaces (µ, dX ) and (ν, dY), written for compactness using (a,A) and (b, B), reads

LGWr((a,A), (b, B)) = min
P∈Πa,b(r)

QA,B(P ), (12)

Building upon § 3.1, we introduce the unbalanced low-rank Gromov-Wasserstein (ULGW) problem.
There is, however, a significant challenge that appears when introducing unbalanced regularizers
in (12): When P is constrained to be in Πa,b, the first two terms of the RHS in (12) simplify to
aTA⊙2a + bTB⊙2b. Hence, they are constant and discarded when optimizing. In an unbalanced
setting, these terms vary and must be accounted for:

ULGWr((a,A), (b, B)) := min
(Q,R,g)∈Πr

⟨A⊙2Q1r, Q1r⟩+ ⟨B⊙2R1r, R1r⟩

− 2⟨AQdiag(1/g)RTB,Qdiag(1/g)RT ⟩+ τ1KL(Q1r|a) + τ2KL(R1r|b)
(13)

To solve the problem, we apply the same scheme as proposed for ULOT, that is a proximal gradi-
ent descent where we linearize QA,B and add a KL penalization while leaving the soft marginal
constraints unchanged. Therefore the algorithm to solve ULGW is the same as that solving ULOT,
however, the kernels ξk now take into account the quadratic terms of the original LGW problem.
More formally, at each iteration k of the outer loop, we propose to solve

(Qk+1, Rk+1, gk+1) := argmin
ζ∈Πr

1

γk
KL(ζ|ξk) + τ1KL(Q1r|a) + τ2KL(R1r|b), (14)

where (Q0, R0, g0) ∈ Πr is an initial point, (γk)k≥0 is a sequence of positive step sizes, Pk =

Qk diag(1/gk)R
T
k , ξk := (ξ

(1)
k , ξ

(2)
k , ξ

(3)
k ) and

ξ
(1)
k := Qk ⊙ exp(−2γkA⊙2Qk1r1

T
r )⊙ exp(−4γkAPkBRk diag(1/gk)))

ξ
(2)
k := Rk ⊙ exp(−2γkB⊙2Rk1r1

T
r )⊙ exp(−4γkBPT

k AQk diag(1/gk)))

ξ
(3)
k := gk ⊙ exp(4γkωk/g

2
k) with [ωk]i := [QT

kAPkBRk]i,i ∀ i ∈ {1, . . . , r}.

Note that (14) is the exact same optimization problem as (7), where only ξk has changed and therefore
can be solved using Algorithm 3. Algorithm 4 summarizes our strategy to solve (13).
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Algorithm 4 ULGW(A,B, a, b, r, γ0, τ1, τ2, δ)

Inputs: A,B, a, b, r, γ0, τ1, τ2, δ
Q,R, g ← Initialization as proposed in [Scetbon and Cuturi, 2022]
repeat

Q̃ = Q, R̃ = R, g̃ = g,
∇Q = 4AQdiag(1/g)RTBR diag(1/g) + 2A⊙2Q1r1

T
r ,

∇R = 4BR diag(1/g)QTAQdiag(1/g) + 2B⊙2R1r1
T
r ,

ω ← D(QTAQdiag(1/g)RTBR), ∇g = −ω/g2,
γ ← γ0/max(∥∇Q∥2∞, ∥∇R∥2∞, ∥∇g∥2∞),

ξ(1) ← Q⊙ exp(−γ∇Q), ξ
(2) ← R⊙ exp(−γ∇R), ξ

(3) ← g ⊙ exp(−γk∇g),
Q,R, g ← ULR-TI-Dykstra(a, b, ξ, γ, τ1, τ2, δ) (Alg. 3)

until ∆((Q,R, g), (Q̃, R̃, g̃), γ) < δ;
Result: Q,R, g

Convergence and Complexity. Similarly to linear ULOT, the unbalanced Dykstra algorithm is
guaranteed to converge [Bauschke and Lewis, 2000]. in addition, [Scetbon et al., 2022] prove the
convergence of their scheme to a stationary point of the problem. Because we use Algorithm 5, we
retain exactly the same complexity, both in terms of time of memory, to solve these inner problems.
The slight variation in kernel ξ compared to ULOT still retains the same O((n2 + m2)r) time
and O(n2 + m2) memory complexities. However, as in ULOT, we can take advantage of low-
rank approximations of the costs matrices A and B to reach linear complexity. Indeed, assuming
A ≃ A1A

T
2 and B ≃ B1B2 where A1, A2 ∈ Rn×dX and B1, B2 ∈ Rm×dY , then the total time and

memory complexities become respectivelyO(mr(r+ dY )+nr(r+ dX)) andO((n+m)(r+ dX +
dY )). Again, when A and B are distance matrices, we use the algorithms from [Indyk et al., 2019].

3.4 Unbalanced Low-rank Fused-Gromov-Wasserstein

We finally focus on the increasingly popular [Klein et al., 2023] fused-Gromov-Wasserstein problem,
which merges linear and quadratic objectives [Vayer et al., 2018]:

FGW(µ, ν) := min
P∈Πa,b

α⟨C,P ⟩+ ᾱQA,B(P ) (15)

where α ∈ [0, 1] and ᾱ := 1−α allows interpolating between the GW and linear OT geometries. This
problem remains a GW problem, where one replaces the 4-way cost M [i, i′, j, j′] := (Ai,i′ −Bj,j′)

2

appearing in (4) by a composite interpolated cost between the OT and GW geometries, redefined as
M [i, i′, j, j′] = αCi,j + ᾱ(Ai,i′ − Bj,j′)

2. Our proposed unbalanced and low-rank version of the
FGW problem includes |P | := ∥P∥1 the mass of P , to homogenize linear and quadratic terms,

ULFGWr(µ, ν) := min
P : rk+(P )≤r

α|P |⟨C,P ⟩+ ᾱQA,B(P ) + τ1KL(P1m|a) + τ2KL(PT1n|b) ,

(16)
which is expanded through the explicit factorization of P , noticing that |P | = |g| := ∥g∥1:

ULFGWr(µ, ν) := min
(Q,R,g)∈Πr

α|g|LC(Q,R, g) + ᾱQA,B(Q,R, g) + Ga,b(Q,R, g) (17)

Then by linearizing againH : (Q,R, g)→ α|g|LC(Q,R, g) + ᾱQA,B(Q,R, g) with an added KL
penalty and leaving Ga,b unchanged, we obtain at each iteration, the same optimization problem as
in (14) where the kernels ξk are now defined as

ξk := (ξ
(1)
k , ξ

(2)
k , ξ

(3)
k ),

ξ
(1)
k := Qk ⊙ exp(−γk∇QHk), ξ

(2)
k := Rk ⊙ exp(−γk∇QHk), ξ

(3)
k := gk ⊙ exp(−γk∇gHk)

∇QHk := α|gk|CRk diag(1/gk) + ᾱ
(
2A⊙2Qk1r1

T
r + 4APkBRk diag(1/gk)

)
∇RHk := α|gk|CTQk diag(1/gk) + ᾱ

(
2B⊙2Rk1r1

T
r + 4BPT

k AQk diag(1/gk)
)

∇gHk := α
(
⟨C,Pk⟩1r − |gk|ωlin

k /g2k
)
− 4ᾱωquad

k /g2k

[ωlin
k ]i := [QT

kCRk]i,i, [ωquad
k ]i := [QT

kAPkBRk]i,i ∀ i ∈ {1, . . . , r} .
These steps are summarized in Algorithm 6, proposed in the appendix. These steps result usually in a
quadratic complexity, both in time and memory, with respect to the number of points n and m. These
complexities become linear as soon as all three matrices C,A,B admit a low-rank factorization.
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(a) Visualization of measured and predicted gene ex-
pression of Nrgn.

(b) Visualization of measured and predicted gene ex-
pression of Slc24a2.

Figure 1: Spatial visualization of the two mouse brain sections used in Exp. 2

4 Experiments

We focus first in Exp. 1 on demonstrating the empirical benefits of the translation invariant (TI)
variant of our algorithms, as implemented in Algorithm 3, and which is subsequently used as an
inner routine to solve ULR problems. We compare in Exp. 2 unbalanced low-rank (ULR) solvers to
balanced low-rank (LR) counterparts, and follow in Exp. 3 by comparing ULR solvers to entropic
(E) counterparts. We conclude in Exp. 4 by comparing ULR solvers to [Thual et al., 2022], which
can learn a sparse transport coupling, in the unbalanced FGW setting.

Figure 2: Visualization of measured and predicted tissue regions
in the mouse brain in Exp. 2

Datasets. We consider two real-
world datasets, described in B.1,
and two synthetic datasets, that
are large enough to showcase our
solvers. The real-world datasets
consist of both a shared feature
space, used to compute the costs
matrices for the linear term in the
OT and FGW settings, as well
as geometries that are specific to
each source s and target t mea-
sures, and which are used to com-
pute the costs matrices for the
quadratic term in the GW and
FGW settings. In Exp. 1, we sim-
ply consider high dimensional Gaussians and mixture of Gaussians to evaluate the performance of
the TI variant. We use the mouse brain STARmap spatial transcriptomics data from [Shi et al., 2022]
for Exp. 2 and Exp. 3. We use data from the Individual Brain Charting dataset [Pinho et al., 2018],
to replicate the settings of [Thual et al., 2022], in Exp. 4.

Metrics. Following Klein et al. [2023], we evaluate maps by focusing on the two following metrics:
(i) pearson correlation ρ computed between the source s feature matrix F s and the barycentric
projection of the target t to the source scaled by the target marginals bt: TT

t→s (F
t 1

bt ); (ii) F1 score
computed between the original source s labels ls and the inferred source labels, computed by taking
the argmaxj Bi,j of the barycentric projection of the target t one hot encoded labels Lt, scaled by
the target marginal bt, to the source TT

t→s (L
t 1

bt ).

Experiment 1: Benchmarking The Translation Invariant Variant. We evaluate the effect of the
proposed TI procedure on the computational cost of ULR solvers: We compare the time taken when
solving unbalanced LR problems, with or without using the TI objective. In Figure 3, we compare
the execution time (using our ott-jax implementation) of unbalanced LR Sinkhorn on large and
high dimensional Gaussian distributions. The results presented are averaged over 10 random seeds
with error bars. We use a 1e− 9 convergence threshold and 1000 maximal number of iterations for
Dykstra, in 64-bit precision. We observe that the use of our proposed TI objective is consistently
beneficial when solving ULR problems. See also Appendix B.3 for additional experiments.
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Figure 3: Execution time of unbalanced LR Sinkhorn, with (Alg. 3) or without (Alg. 5) the TI
variant. We fix the rank to r = 10; n points (displayed in thousands) are sampled from two Gaussian
distributions in d = 30 of means respectively −1.2 and 1.3, and standard deviations 1 and 0.2.
(left) displays large τ (close to balanced), (right) is smaller τ (more unbalanced). We use the same
convergence threshold for the outer loop, for all sample sizes. As n gets bigger, this results in a
relatively looser threshold, explaining why timings can slightly decrease w.r.t. n. What matters is,
therefore, the comparative performance of TI vs non-TI for a fixed n, not the behaviour w.r.t. n.

solver mass % val ρ test ρ F1 mac. F1 mic. F1 weig.
LOT 1.000 0.282 0.386 0.210 0.411 0.360
ULOT 0.889 0.301 0.409 0.200 0.425 0.363

LGW 1.000 0.227 0.288 0.487 0.716 0.692
ULGW 1.001 0.222 0.287 0.463 0.701 0.665

LFGW 1.000 0.365 0.443 0.576 0.720 0.714
ULFGW 0.443 0.379 0.463 0.582 0.733 0.724

Table 1: Exp.2, Results for spatial transcriptomics dataset
(brain coronal section from Shi et al. [2022]).

Experiment 2: ULOT vs. LOT on
Gene Expression / Cell Type Anno-
tation. We evaluate the accuracy of
ULOT solvers for a large-scale spatial
transcriptomics task, using gene ex-
pression mapping and cell type anno-
tation. We compare it to the balanced
LR alternative using the Pearson cor-
relation ρ as described in the metrics
section. We leverage two coronal sec-
tions of the mouse brain profiled by
STARmap spatial transcriptomics by [Shi et al., 2022]. They consist of n ≈ 40, 000 cells in both the
source and target brain section. Each cell is described by 1000 gene features, in addition to 2D spatial
coordinates. As a result A,B are ≈ 40k× 40k, and the fused term C is a squared-Euclidean distance
matrix on 30D PCA space computed on the gene expression space. We selected 10 marker genes for
the validation and test sets from the HPF_CA cluster. We run an extensive grid search as reported in
B.2, we pick the best hyperparameters combination using performance on the 10 validation genes as
a criterion, and we report that metric on the other genes in Table 1, as well as qualitative results in
Figure 1 and Figure 2. Clearly, ULFGW is the best performing solver across all metrics. Interestingly,
the ULOT does not consistently outperforms its balanced version, and unbalancedness seems to hurt
performance for the LGW solvers. Nevertheless, both solvers display inconsistent performance across
metrics, whereas the ULFGW and LFGW are consistently superior to the rest of the solvers. These
results highlight how the flexibility given by the FGW formulation to leverage common and disparate
geometries, paired with the unbalancedness relaxation, can provide state of the art algorithms for
matching problems in large-scale, real world biological problems.

solver mass % val ρ test ρ F1 mac. F1 mic. F1 weig.
UEOT 1.012 0.368 0.479 0.511 0.763 0.751
LOT 1.000 0.335 0.440 0.511 0.760 0.751
ULOT 0.998 0.356 0.461 0.518 0.770 0.762

UEFGW 1.015 0.343 0.475 0.564 0.839 0.831
LFGW 1.000 0.348 0.453 0.512 0.762 0.753
ULFGW 0.339 0.368 0.491 0.556 0.826 0.818

Table 2: Exp. 3: Results for spatial transcriptomics dataset
(Olfactory bulb section from Shi et al. [2022]).

Experiment 3: ULOT vs. UEOT.
We compare the performance of
ULOT solvers to their unbalanced en-
tropic alternatives (UEOT). We use
the same datasets as in Exp. 2, but
must pick a smaller subset (Olfactory
bulb), to avoid OOM errors for en-
tropic UGW solvers, since they can-
not handle the 40k sizes considered
in Exp. 2 (see B.1). This results in
n ≈ 20, 000 source and≈ 15, 000 tar-
get cells, and 1000 genes. Similar to Exp. 2, the fused term C is a squared-Euclidean distance matrix
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Figure 4: Visualization of measured and predicted right auditory click contrast map in Exp.4.

on 30-D PCA space, computed on gene expressions. As done in Exp. 2, we select 10 marker genes
for the validation and 10 genes for the test set, from cluster OB_1. We run an extensive grid search,
as in Exp. 2 and B.2. In Table 2, shows that ULFGW outperforms entropic solvers w.r.t. ρ, but is
worse when considering F1 scores. On the other hand, ULFGW confirms its superiority compared
to the balanced alternative LFGW. Taken together, these results suggest that while unbalanced LR
solvers are on par with unbalanced entropic solvers in terms of performance, in small data regimes,
they unlock the applications of unbalanced OT to larger scales.

Experiment 4: ULOT to align brain meshes. In this experiment, we compare the performance of
our ULFGW solver to FUGW-sparse, a new approach of the unbalanced FGW problem based on a
full-rank formulation proposed in Thual et al. [2022]. This method was demonstrated to be effective
in aligning brain anatomies, encompassing both mesh structures and functional signals associated
with each vertex. For their empirical analysis, they utilized the Individual Brain Charting dataset
Pinho et al. [2018].

solver mass val ρ test ρ
FUGW-sparse 0.999 0.492 0.472
LFGW 1.000 0.513 0.663
ULFGW 0.981 0.533 0.643

Table 3: Results on the brain
anatomy with functional signal data
from Pinho et al. [2018] in Exp.4.

The dataset uses the fsaverage7 mesh, which describes n ≈
160, 000 vertices. We embed them into a 30-dimensional em-
bedding space using an approximation of the geodesic dis-
tances with landmark multi-dimensional scaling [De Silva and
Tenenbaum, 2004] where 2048 points were used as anchors.
Each vertex has an associated functional signal that entails 22
features. For both the quadratic and linear terms, we compute
the costs based on the squared Euclidean distance. We eval-
uate the performance of the method by comparing each best
hyperparameter combinations based on the average correlation
between the barycentric projection and ground-truth value of 5 features, across a test set of 5 contrast
maps. See also Appendix B.2 for additional experimental details and results. In Table 3, we observe
that ULFGW and LFGW outperforms FUGW-sparse. In this setting, there is no clear evidence that
the unbalanced version performs better than its balanced counterpart for low-rank methods.

Conclusion. Recent practical successes of OT methods to natural sciences have demonstrated the
relevance of OT to their analysis pipelines, but have also shown, repeatedly, that a certain degree of
freedom to depart from the rigid assumption of mass conservation is needed in practice. On the other
hand, and across the same range of applications, low-rank approaches can hold the promise of scaling
OT methods to relevant sample sizes for natural sciences. This paper merges these two strains and
demonstrate the practical relevance of these novel algorithms.
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Appendix

A Algorithms

Algorithm 5 ULR-Dykstra(a, b, ξ, γ, τ1, τ2, δ, α)

Inputs: a, b, ξ = (ξ(1), ξ(2), ξ(3)), γ, τ1, τ2, δ
v1 = v2 = 1r, u1 = 1n, u2 = 1m

repeat
ṽ1 = v1, ṽ2 = v2, ũ1 = u1, ũ2 = u2

u1 =
(

a
ξ(1)v1

) τ1
τ1+1/γ

, u2 =
(

b
ξ(2)v2

) τ2
τ2+1/γ

,

g =
(
ξ(3) ⊙ (ξ(1))Tu1 ⊙ (ξ(2))Tu2

)1/3
, v1 = g

(ξ(1))Tu1
, v2 = g

(ξ(2))Tu2

until 1
γ max(∥ log(ui/ũi)∥∞, ∥ log(vi/ṽi)∥∞) < δ;

Result: diag(u1)ξ
(1)
k diag(v1), diag(u2)ξ

(2)
k diag(v2), g

Algorithm 6 ULFGW(A,B, a, b, r, γ0, τ1, τ2, δ)

Inputs: A,B,C, a, b, r, t, γ0, τ1, τ2, δ, α
Q,R, g ← Initialization as proposed in [Scetbon and Cuturi, 2022]
repeat

Q̃ = Q, R̃ = R, g̃ = g,
∇Q = α|g|CR diag(1/g) + ᾱ

(
2A⊙2Q1r1

T
r + 4AQdiag(1/g)RTBR diag(1/g)

)
,

∇R = α|g|CTQdiag(1/g) + ᾱ
(
2B⊙2R1r1

T
r + 4BR diag(1/g)QTAQ diag(1/g)

)
,

ωlin ← D(QTCR), ωquad ← D(QTAQdiag(1/g)RTBR)
∇g = α

(
⟨C,Qdiag(1/g)RT ⟩1r − |gk|ωlin/g2

)
− 4ᾱωquad/g2,

γ ← γ0/max(∥∇Q∥2∞, ∥∇R∥2∞, ∥∇g∥2∞),

ξ(1) ← Q⊙ exp(−γ∇Q), ξ
(2) ← R⊙ exp(−γ∇R), ξ

(3) ← g ⊙ exp(−γk∇g),
Q,R, g ← ULR-TI-Dykstra(a, b, ξ, γ, τ1, τ2, δ) (Alg. 3)

until ∆((Q,R, g), (Q̃, R̃, g̃), γ) < δ;
Result: Q,R, g

B Experiments

B.1 Datasets and preprocessing

We downloaded the two publicly available datasets from the respective publications:

• STARmap mouse brain sections from [Shi et al., 2022]
• Brain mesh anatomy and functional signal from [Pinho et al., 2018]

We reprocessed the datasets using standard tools from the SCANPY pipeline [Wolf et al., 2018].
Specifically, we log-normalized gene expression of all genes present in dataset. We selected two
brain coronal sections for Exp.1 and two Coronal Olfactory Bulb (OB) sections for Exp.2, from
the STARmap dataset. For Exp.3, we used the meshes together with their functional signal of the
brains to recapitulate Exp.1 in [Thual et al., 2022]. A visualization of the STARmap dataset for
the two subsets used in Exp.1 and Exp.2 can be seen in Figure 5 and an overview of the cell type
proportions present in each of the section pairs can be see in Figure 6. These visualization highlight
the differences in terms of spatial organization and cell type proportions of the brain sections used in
the experiment.

B.2 Experimental settings

For FUGW-sparse presented in Table 3, we compute the coupling in 2 stages: (i) similarly as in
Thual et al. [2022], we subsample the mesh to 10% of the points using Ward’s algorithm and compute
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(a) Visualization of the brain coronal sections used in
Exp.1. (b) Visualization of the OB sections used in Exp.2.

Figure 5: Spatial visualization of the two mouse brain sections used in Exp.1.

(a) Visualization of cell type frequencies for the brain
coronal sections used in Exp.1.

(b) Visualization of cell type frequencies for the OB
sections used in Exp.2.

Figure 6: Cell type frequencies of the datasets used in Exp.1 and Exp.2.

the coarse optimal transport coupling. And (ii) we then use this coarse coupling to define a sparsity
mask on the full mesh by selecting for each source (target) vertex the most coupled target (source)
vertex and its neighbors within 4

max_distance radius using the approximation of the geodesic distances.
This mask is then used to compute the fine-grained sparse coupling.

For all experiments, we ran the grid search as defined by 4 and selected the best set of hyperparameters
based on the validation correlation. We report results of top performing hyperparameters for the
evaluated algorithms in Table 5 for Exp.1, Table 6 for Exp.2 and Table 7 for Exp.3

values
rank 10, 50, 100
reg (ours) 0.0, 0.001, 0.01
reg (fugw-sparse) 0.0001, 0.001, 0.01
tau1 0.1, 1.0, 100.0
tau2 0.1, 1.0, 100.0

Table 4: Hyperparameters considered in our grid-search.

solver rank tau1 tau2 temp reg mass val ρ test ρ F1-mac F1-mic F1-wei
lot 10 - - 0.200 0.010 1.000 0.282 0.386 0.210 0.411 0.360
ulot 10 1.000 1.000 0.200 0.010 0.889 0.301 0.409 0.200 0.425 0.363
lgw 100 - - 0.200 0.001 1.000 0.227 0.288 0.487 0.716 0.692
ulgw 100 100.000 100.000 0.200 0.010 1.001 0.222 0.287 0.463 0.701 0.665
lfgw 50 - - 0.400 0.010 1.000 0.365 0.443 0.576 0.720 0.714
ulfgw 100 0.100 0.100 0.400 0.001 0.443 0.379 0.463 0.582 0.733 0.724

Table 5: Results on the large spatial transcriptomics dataset (brain coronal section from [Shi et al.,
2022]).
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solver rank tau1 tau2 temp reg mass val ρ test ρ F1-mac F1-mic F1-wei
uot - 0.909 0.999 0.400 0.100 1.012 0.368 0.479 0.511 0.763 0.751
lot 10 - - 0.200 0.010 1.000 0.335 0.440 0.511 0.760 0.751
ulot 10 1.000 100.000 0.200 0.010 0.998 0.356 0.461 0.518 0.770 0.762
ufgw - 0.500 0.999 0.600 0.100 1.015 0.343 0.475 0.564 0.839 0.831
lfgw 10 - - 0.600 0.010 1.000 0.348 0.453 0.512 0.762 0.753
ulfgw 10 0.100 0.100 0.600 0.001 0.339 0.368 0.491 0.556 0.826 0.818

Table 6: Results on the small subset STARmap dataset (OB section from [Shi et al., 2022]).

solver rank tau1 tau2 reg reg mass val ρ test ρ
fugw-sparse - 1.000 0.100 0.200 0.01 0.999 0.492 0.472
lfgw 100 - - 0.600 0.000 1.000 0.513 0.663
ulfgw 100 1.000 0.100 0.600 0.001 0.981 0.533 0.643

Table 7: Results on the brain anatomy and functional signal from [Pinho et al., 2018]).

experiment val ρ tst ρ F1-mac F1-mic F1-wei
Exp. 1 mean 0.362 0.449 0.546 0.687 0.677

std 0.027 0.022 0.054 0.062 0.061
Exp. 2 mean 0.356 0.463 0.538 0.800 0.791

std 0.008 0.018 0.021 0.031 0.032
Table 8: Effect of k-means initialization [Scetbon and Cuturi, 2022]. We report mean and standard
deviation of test criterion for ULFGW, with the best hyperparameter on validation data for each
experiment. We use 5 initial seeds for Exp. 1. We observe more variability in validation performance
for Exp. 2, and therefore start with 10 seeds, pruning the lowest performing 5 seeds.

(a) Visualization of measured and predicted gene ex-
pression of Gad1.

(b) Visualization of measured and predicted gene ex-
pression of Gnrg4.

Figure 7: Measured and predicted gene expression for the small subset STARmap dataset (OB section
from [Shi et al., 2022]) for ULRFGW.

B.3 Additional Experiments on the TI procedure

Here, we provide additional experiments in order to measure the effect of the TI version on the
computational performance of LR solvers.
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Figure 8: Speed-up of TI variant when varying τ1, τ2. (left) ULR Sinkhorn for n = 25k points in
30d, rank=10, as in Figure 3. (middle) ULR-GW for n = 50k points in src/tgt in 30d / 40d, means
-1.2 / 1.3, std 1/0.2 between Gaussians.(right) ULR-GW as in middle, but data comes from GMMs
(sklearn’s blobs) with 10/15 clusters.
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Figure 9: We used the Lobby room from Stanford 3D Indoor Scene Dataset (S3DIS) [Armeni
et al., 2016] that consists of 1M points. (left) source-to-target, and target-to-source accuracies on
the scene data, in a pure GW setting of balanced, unbalanced and unbalanced (TI variant). We
use random initializer for all, 150 max outer iterations. The backward accuracy is comparable
to what is mentioned in https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_
949.pdf (≈ 0.41). (right) same as left, but showing timings, also comparable to those mentioned in
the Quantized GW paper [Chowdhury et al., 2021] (10 min.)

C Proofs

C.1 Proof of Proposition 1

Let n,m ≥ r ≥ 1, γ > 0, , ξ := (ξ(1), ξ(2), ξ(3)) where ξ(1) ∈ Rn×r
+ , ξ(2) ∈ Rm×r

+ and ξ(3) ∈ Rr
+

and let us recall that KL(·, ·) is the generalized Kullback-Leibler divergence defined as KL(p|q) :=∑
i pi log(pi/qi) + qi − pi. Then observe that

min
(Q,R,g)∈Πr

1

γ

[
KL(Q, ξ(1)) + KL(R, ξ(2)) + KL(g, ξ(3))

]
+ τ1KL(Q1r|a) + τ2KL(R1r|b)

is a convex problem satisfying the Slater’s condition and therefore strong duality holds. Therefore we
have:

min
(Q,R,g)∈Πr

1

γ

[
KL(Q, ξ(1)) + KL(R, ξ(2)) + KL(g, ξ(3))

]
+ τ1KL(Q1r|a) + τ2KL(R1r|b)

= sup
λ1,λ2

min
Q,R,g

⟨λ1, g −Q⊤1n⟩+ ⟨λ2, g −R⊤1m⟩+
1

γ

[
KL(Q, ξ(1)) + KL(R, ξ(2)) + KL(g, ξ(3))

]
+ τ1KL(Q1r|a) + τ2KL(R1r|b)

= sup
λ1,λ2

min
Q

1

γ
KL(Q, ξ(1)) + τ1KL(Q1r|a) + ⟨λ1,−Q⊤1n⟩

+min
R

1

γ
KL(R, ξ(2)) + τ2KL(R1r|b) + ⟨−λ2, R

⊤1m⟩+min
g

1

γ
KL(g, ξ(3)) + ⟨g, λ1 + λ2⟩.

Now consider
min
g

1

γ
KL(g, ξ(3)) + ⟨g, λ1 + λ2⟩

and observe that this problem can be solved explicitly. The first-order optimality condition gives us
that g∗ = exp(−γ(λ1 + λ2))⊙ ξ(3) solves the problem and

min
g

1

γ
KL(g, ξ(3)) + ⟨g, λ1 + λ2⟩ = −

1

γ
⟨exp(−γ(λ1 + λ2)), ξ

(3)⟩+ ⟨ξ(3),1⟩.
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Let us now focus on the following convex optimization problem,

min
Q

1

γ
KL(Q, ξ(1)) + τ1KL(Q1r|a) + ⟨−λ1, Q

⊤1n⟩ (18)

and note that it admits a unique solution due to the strict convexity of Q → KL(Q, ξ(1)). Then
by denoting Fτ,z(s) := τKL(s|z) and Gλ(s) := ⟨s,−λ⟩, and by applying the Fenchel-Rockafellar
theorem [Rockafellar, 1970], we obtain that strong duality holds, the dual problem of (18) is

sup
f1,h1

−F ∗
τ1,a(−f1)−G∗

λ1
(−h1)−

1

γ
⟨exp(γ(f1 + h1)), ξ

(1)⟩

and that (f1, h1) solves the dual if and only if −f1 ∈ ∂Fτ1,a(Q1r),−h1 ∈ ∂Gλ1(Q
⊤1n) and

Q = diag(exp(γf1))ξ
(1) diag(exp(γh1)) where Q is the solution of (18). Recall that here we denote

for any convex set X ∈ Rq and function f : X → R ∪ {+∞}, f∗ its convex conjugate defined for
any y ∈ X∗ := {x∗ s.t. supx∈X⟨x, x∗⟩ − f(x) < +∞} by f∗(y) := supx∈X⟨x, y⟩ − f(x) and
∂f(x) := {y s.t. f(x′)− f(x) ≥ ⟨y, x− x′⟩ ∀x′ ∈ X}. Now remarks that

G∗
λ1
(−h1) = sup

s
⟨s, λ1 − h1⟩ =

{
+∞ if λ1 ̸= h1

0 otherwise .

therefore G∗
λ1

ensures that λ1 = h1. Similarly we obtain that

min
R

1

γ
KL(R, ξ(2)) + τ2KL(r1r|b) + ⟨−λ2, R

⊤1m⟩ (19)

is equal to its dual defined as

sup
f2,h2

−F ∗
τ2,b(−f2)−G∗

λ2
(−h2)−

1

γ
⟨exp(γ(f2 + h2)), ξ

(2)⟩

where again

G∗
λ2
(−h2) =

{
+∞ if λ2 ̸= h2

0 otherwise

and with the primal-dual relationship R = diag(exp(γf2))ξ
(2) diag(exp(γh2)) such that −f2 ∈

∂Fτ2,b(R1r),−h2 ∈ ∂Gλ2
(R⊤1m). Finally the dual can be written as

sup
λ1,λ2

sup
f1,h1

−F ∗
τ1,a(−f1)−G∗

λ1
(−h1)−

1

γ
⟨exp(γ(f1 + h1)), ξ

(1)⟩

+ sup
f2,h2

−F ∗
τ2,b(−f2)−G∗

λ2
(−h2)−

1

γ
⟨exp(γ(f2 + h2)), ξ

(2)⟩

− 1

γ
⟨exp(−γ(λ1 + λ2)), ξ

(3)⟩+ ⟨ξ(3),1⟩

and using the definition of G∗
λ1
(−h1) and G∗

λ2
(−h2), we obtain the desired dual up to an additive

constant (⟨ξ(3),1⟩) which does not affect the solution of the problem and conclude the proof.

C.2 On the Iterations of the Dykstra’s Algorithm

Recall that we propose to consider an alternate maximization scheme to solve (8). Starting from
h
(0)
1 = h

(0)
2 = 0r, we apply for ℓ ≥ 0 the following updates (dropping iteration number k in (7) for

simplicity):

f
(ℓ+1)
1 := arg sup

z
D(z, h(ℓ)

1 , f
(ℓ)
2 , h

(ℓ)
2 ), f

(ℓ+1)
2 := arg sup

z
D(f (ℓ+1)

1 , h
(ℓ)
1 , z, h

(ℓ)
2 ),

(h
(ℓ+1)
1 , h

(ℓ+1)
2 ) := arg sup

z1,z2

D(f (ℓ+1)
1 , z1, f

(ℓ+1)
2 , z2).

where

D(f1, h1, f2, h2) = −F ∗
τ1,a(−f1)−

1

γ
⟨eγ(f1⊕h1) − 1, ξ(1)⟩ − F ∗

τ2,b(−f2)−
1

γ
⟨eγ(f2⊕h2) − 1, ξ(2)⟩

− 1

γ
⟨e−γ(h1+h2) − 1, ξ(3)⟩.
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Let us consider the first update of the scheme that consists in solving

f
(ℓ+1)
1 := arg sup

z
D(z, h(ℓ)

1 , f
(ℓ)
2 , h

(ℓ)
2 )

To solve this problem, we again apply the Fenchel-Rockafellar theorem [Rockafellar, 1970] and
obtain that

sup
f1

−F ∗
τ1,a(−f1)−

1

γ
⟨exp(γ(f1 + h1)), ξ

(1)⟩ = min
s

Fτ1,a(s) +
1

γ
KL(s|ξ(1) exp(γh1))

and the optimality condition gives that f∗
1 is solution of the LHS if and only if s∗ solves the RHS

and belongs to the subdifferential of f1 → exp(γ(f1 + h1)), ξ
(1)⟩ at f∗

1 , that is s∗ = exp(γf∗
1 ) ⊙

ξ(1) exp(γh1). However the RHS problem can can be solved exactly and one obtained that s∗ =
a(τ1/(1/γ+τ1)) ⊙ ξ(1) exp(γh1)

(1/(1/1+γτ1)), therefore when combined with the previous equation
on s∗ we obtain that

exp(γf∗
1 ) =

s∗

ξ(1) exp(γh1)
=

(
a

ξ(1) exp(γh1)

) τ1
1/γ+τ1

,

Similarly, the solution of arg supz D(f1, h1, z, h2) is

exp(γf∗
2 ) =

(
b

ξ(2) exp(γh2)

) τ2
1/γ+τ2

.

Let us now consider the following optimization problem corresponding to the last update if the
alternate maximization scheme, that is

(h
(ℓ+1)
1 , h

(ℓ+1)
2 ) := arg sup

z1,z2

D(f (ℓ+1)
1 , z1, f

(ℓ+1)
2 , z2).

In fact this problem can be solved directly using simply the first-order condition of optimality that
gives the two following equations:

exp(γh1)⊙ (ξ(1))⊤ exp(γf1)− exp(−γh1)⊙ (ξ(3))⊙ exp(−γh2) = 0 and

exp(γh2)⊙ (ξ(2))⊤ exp(γf2)− exp(−γh2)⊙ (ξ3))⊙ exp(−γh1) = 0

leading to

g = (ξ3) ⊙ (ξ(1))⊤ exp(γf1)⊙ (ξ(2))⊤ exp(γf2))
1/3

and

exp(γh1) =
g

(ξ(1))⊤ exp(γf1)
, exp(γh2) =

g

(ξ(2))⊤ exp(γf2)
.

C.3 Proof of Proposition 2

Let us consider the following optimization problem

DTI(f̃1, h̃1, f̃2, h̃2) := sup
λ1,λ2∈R

D(f̃1 + λ1, h̃1 − λ1, f̃2 + λ2, h̃2 − λ2)

Therefore we have

sup
λ1,λ2∈R

D(f̃1 + λ1, h̃1 − λ1, f̃2 + λ2, h̃2 − λ2)

= −F ∗
τ1,a(−(f̃1 + λ1))− F ∗

τ2,b(−(f̃2 + λ2))−
1

γ
⟨e−γ(h̃1+h̃2) ⊙ eγ(λ1+λ2), ξ(3)⟩+ C

where C does not depends on λ1 and λ2. Now observe that

F ∗
τ1,a(s) = sup

x
⟨x, s⟩ − τ1KL(s|a)
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and by applying the first-order optimality condition, we obtain that x∗ = exp(s/τ1)⊙ a solves the
above optimization problem and

F ∗
τ1,a(s) = τ1⟨exp(s/τ1), a⟩.

Similarly,
F ∗
τ2,b(s) = τ2⟨exp(s/τ2), b⟩,

Then by appyling the first-order optimality condition we obtain the two following equations

exp(−λ1/τ1)⟨exp(−f̃1/τ1), a⟩ − exp(γλ1)⟨exp(γλ2), ξ
(3) ⊙ exp(−γ(h̃1 + h̃2))⟩ = 0 and

exp(−λ2/τ2)⟨exp(−f̃2/τ2), b⟩ − exp(γλ2)⟨exp(γλ1), ξ
(3) ⊙ exp(−γ(h̃1 + h̃2))⟩ = 0.

which is equivalent to

exp

(
λ1

1/γ + τ1
τ1/γ

)
=

⟨exp(−f̃1/τ1), a⟩
⟨ξ(3), exp(−γ(h̃1 + h̃2))⟩

exp(−γλ2) and

exp

(
λ2

1/γ + τ2
τ2/γ

)
=

⟨exp(−f̃2/τ2), b⟩
⟨ξ(3), exp(−γ(h̃1 + h̃2))⟩

exp(−γλ1)

Then applying log to the system, we obtain that

λ1γ
1/γ + τ1

τ1
= c1 − γλ2 and

λ2γ
1/γ + τ2

τ2
= c2 − γλ1

where

c1 := log

(
⟨exp(−f̃1/τ1), a⟩

⟨exp(−γ(h̃1 + h̃2)), ξ(3)⟩

)
, and c2 := log

(
⟨exp(−f̃2/τ2), a⟩

⟨exp(−γ(h̃1 + h̃2)), ξ(3)⟩

)
.

Finally we obtain a simple linear system and the solution follows.

C.4 Double Regularizations: Low-rank Structure and Entropy

Our proposed procedure can be easily extended to the case where one wants to add entropy in addition
to the low-rank constraint to solve unbalanced low-rank and entropic optimal transport problems.
More precisely, let us consider the general case where one aims at solving for any ε > 0

ULOTr,ε(µ, ν) := min
(Q,R,g)∈Πr

⟨C,Qdiag(1/g)RT ⟩︸ ︷︷ ︸
LC(Q,R,g)

+ τ1KL(Q1r|a) + τ2KL(R1r|b)− εH(Q,R, g)︸ ︷︷ ︸
Ga,b,ε(Q,R,g)

(20)
where H(Q,R, g) = H(Q) +H(R) +H(g) and H(p) := −

∑
i pi(log(pi) − 1). Note that here,

compared to (6), we have simply add en entropic term to the objective to smooth the matrices Q,R
and the barycenter g. To solve this problem, we propose to consider the exact same strategy as the
one proposed to solve (6) where we slightly modify Ga,b,ε and explicitely show the dependency w.r.t.
ε. Now by applying the linearzation step of LC(Q,R, g), we now aim to solve at iteration k the
following optimization problem:

(Qk+1, Rk+1, gk+1) := argmin
ζ∈Πr

1

γk
KL(ζ, ξk) + εH(ζ) + τ1KL(Q1r|a) + τ2KL(R1r|b) (21)

In fact, this problem can be reformulated as a problem of the form (14) where we simply have to
modify ξk and γ. Indeed observe that we have

1

γ
KL(Q|ξ(1))− εH(Q) =

1

γε
KL(Q|ξ(1)ε )

where γε =
1

1/γ+ε and ξ
(1)
ε := (ξ(1))γε/γ . Therefore we obtain that

argmin
ζ∈Πr

1

γ
KL(ζ, ξ) + εH(ζ) + τ1KL(Q1r|a) + τ2KL(R1r|b)

= argmin
ζ∈Πr

1

γε
KL(ζ, ξε) + τ1KL(Q1r|a) + τ2KL(R1r|b)

21



where ξε := (ξ
(1)
ε , ξ

(2)
ε , ξ

(3)
ε ). Therefore the entropic version of our problem can be solved using

the exact same solver as the one proposed in the main paper where only simple updates of the
gradient-step γ and the kernels ξ are required at each iteration. We summarize the proposed algorithm
below.

Algorithm 7 ULOTε(C, a, b, r, γ0, τ1, τ2, δ)

Inputs: C, a, b, ε, γ0, τ1, τ2, δ
Q,R, g ← Initialization as proposed in [Scetbon and Cuturi, 2022]
repeat

Q̃ = Q, R̃ = R, g̃ = g,
∇Q = CR diag(1/g), ∇R = C⊤Qdiag(1/g),
ω ← D(QTCR), ∇g = −ω/g2,
γ ← γ0/max(∥∇Q∥2∞, ∥∇R∥2∞, ∥∇g∥2∞),
γ ← 1

1/γ+ε

ξ(1) ← Q⊙ exp(−γ∇Q), ξ
(2) ← R⊙ exp(−γ∇R), ξ

(3) ← g ⊙ exp(−γ∇g),

ξ(1) ← (ξ(1))γε/γ , ξ(2) ← (ξ(2))γε/γ , ξ(3) ← (ξ(3))γε/γ ,
Q,R, g ← ULR-Dykstra(a, b, ξ, γ, τ1, τ2, δ) (Alg. 5)

until ∆((Q,R, g), (Q̃, R̃, g̃), γ) < δ;
Result: Q,R, g

22
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