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Abstract

Random forests have been one successful ensemble algorithms in machine learning.1

Various techniques have been utilized to preserve the privacy of random forests2

from anonymization, differential privacy, homomorphic encryption, etc., whereas3

it rarely takes into account some crucial ingredients of learning algorithm. This4

work presents a new encryption to preserve data’s Gini impurity, which plays a5

crucial role during the construction of random forests. Our basic idea is to modify6

the structure of binary search tree to store several examples in each node, and7

encrypt data features by incorporating label and order information. Theoretically,8

we prove that our scheme preserves the minimum Gini impurity in ciphertexts9

without decrypting, and present the security guarantee for encryption. For random10

forests, we encrypt data features based on our Gini-impurity-preserving scheme,11

and take the homomorphic encryption scheme CKKS to encrypt data labels due12

to their importance and privacy. We conduct extensive experiments to show the13

effectiveness, efficiency and security of our proposed method.14

1 Introduction15

From the pioneer work [1], random forests have been one successful ensemble algorithms [2–4],16

with diverse applications such as ecology [5], computational biology [6], objection recognition [7],17

remote sensing [8], computer vision [9], etc. The basic idea is to construct a large number of random18

trees individually and make prediction based on an average of their predictions. Numerous variants19

of random forests have been developed to improve performance under different settings [10–21], as20

well as theoretical understandings on the success of random forests [21–26]. The splitting criterion,21

such as Gini impurity and information gain, has been one of the most important ingredients during22

the construction of random forests [1, 27].23

Various techniques have been adopted to preserve the privacy of random forests, particularly for24

sensitive tasks such as medical diagnosis, financial predictions, and so on. For example, differential25

privacy [28] has been successfully applied to preserve the privacy of random forests [29, 30] and26

decision trees [31–33], by adding certain noise perturbations. Another relevant approach is the secure27

multi-party computation for random forests and decision tree [34–38], where the privacy is preserved28

by multi-party joint computation over respective data inputs without leakage.29

Homomorphic encryption [39–42] has been one of the most important cryptosystems in privacy-30

preserving computing [43–46]. Based on such scheme, various algorithms have been developed to31

train privacy random forests and decision trees [47–51], while there are still some methods only32

focusing on inference without training due to computational costs [52–57]. Homomorphic encryption33

has also been used for regression problem [58, 59], neural network [60–64], collaborative filtering34

[65], and so on. In addition, LeFevre et al. [66] took the anonymization [67] for random forests by35

grouping similar attributes so as to hardly identify specific individual information.36
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Table 1: Comparisons of communications and complexities for different privacy-preserving decision trees. Here,
n denotes the number of examples in training dataset, and τ is the cardinality of label space. Let h and κ denote
the height and number of leaves of decision tree (h < κ), respectively. We also denote by ȷ̄ the average number
of possible splitting features and positions in the construction of decision trees, and p denotes the number of
clients for secure multi-party computation.

Scheme Training communication Training comp. complexity Predictive communication Predictive comp. complexity Privacy
of modelRounds Bandwidth Client Server Rounds Bandwidth Client Server

SMCDT [68] O(κ) O(ȷ̄τn) O(κȷ̄τn) O(κȷ̄τ) O(1) O(1) O(1) O(h) %

PPID3 [35] O(κ) O(p2ȷ̄τn) O(κp2ȷ̄τn) O(κp2ȷ̄τn) O(1) O(1) O(1) O(h) %

SID3 [36] O(hp) O(κȷ̄τ) O(κȷ̄τn) O(κȷ̄τ) O(1) O(1) O(1) O(h) %

OPPC4.5 [38] O(κp) O(pȷ̄τ) O(κȷ̄τ(n+ p)) O(mȷ̄τp) O(1) O(1) O(1) O(h) %

PivotRFs [69] O(κp) O(ȷ̄τ + τn) O(κȷ̄τn) O(κȷ̄τ) O(p) O(κ) O(κ) O(κ) !

MulPRFs [70] O(h) O(log n+ log d) O(hdn log n) O(hdn log n) O(h) O(1) O(h) O(h) %

PPD-ERTs [71] O(hp) O(κȷ̄τ) O(κȷ̄τn) O(κȷ̄τ) O(1) O(1) O(1) O(h) %

HEldpRFs [50] O(h) O(κȷ̄τ) O(κȷ̄τ) O(κȷ̄τn) O(1) O(κ) O(κ) O(κ) !

Our work O(h) O(κȷ̄) O(κ) O(κȷ̄τn) O(1) O(1) O(1) O(h) !

This work takes one step on data encryption from some crucial ingredients of learning algorithm, and37

main contributions can be summarized as follows:38

• We present a new encryption to preserve data’s Gini impurity, and the basic idea is to modify39

the structure of binary search trees to maintain several samples on each node, and encrypt40

data’s features by incorporating label and order information. Our scheme could change the41

data frequencies, which is also beneficial for data security.42

• Theoretically, we prove the preservation of minimum Gini impurity in ciphertexts without43

decryption, which plays an important role on the construction of random forests. Our scheme44

also satisfies the security against Gini-impurity-preserving chosen plaintext attack.45

• We present privacy-preserving training and predicting for random forests in popular client-46

server protocol. We take our Gini-impurity-preserving encryption for data’s features, and47

adopt the homomorphic encryption CKKS to encrypt data’s labels. Our encrypted decision48

tree takes smaller communication and computational complexities, as shown in Table 1.49

• Extensive experiments show that our encrypted random forests take significantly better50

performance than prior privacy random forests via encryption, anonymization and differential51

privacy, and are comparable to original (plaintexts) random forests without encryption. Our52

encrypted random forests make a good balance between computational cost and data security.53

2 Preliminaries54

Let X ⊂ Rd and Y = {1, 2, · · · , τ} (τ ≥ 2) denote the feature and label space, respectively. Let D55

be an underlying distribution over the producted space X × Y . Note that distribution D is unknown56

in practice, and what we can observe is a training data Sn = {(x1, y1), (x2, y2), ..., (xn, yn)},57

where each element is drawn i.i.d. from D. Let |A| be the cardinality of set A, and J·K denotes the58

corresponding encrypted value. Let N (µ, σ2) be a normal distribution of mean µ and variance σ2.59

Homomorphic Encryption (HE) is a cryptosystem, which allows operations on encrypted data without60

access to a secret key [39]. Given encryption function E(·) and decryption function D(·), HE scheme61

provides two operators ⊕ and ⊗ such that, for every pair of plaintexts x1 and x2,62

D (E(x1)⊕ E(x2)) = x1 + x2 and D (E(x1)⊗ E(x2)) = x1 × x2 ,

where + and × denote standard addition and multiplication operations, respectively.63

3 An Encryption for Gini Impurity64

This section presents the first encryption to preserve the minimum Gini impurity over encrypted data65

without decryption. For simplicity, we give the detailed encryption on one-dimensional feature by66

incorporating label information, and could make similar considerations for other dimensions.67
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Figure 1: A simple illustration for our encryption: each plaintext is encrypted into a ciphertext vector [ci, ei,j ].
Here, random numbers c1 < c2 < · · · < cs are introduced to preserve the Gini impurity for random forests, and
we take homomorphic encryption scheme for ei,j = Enc(kpub, j) in Eqn. (5), which is helpful for decryption.

3.1 Theoretical Analysis for Gini Impurity68

Let A = {(a1, y1), · · · , (an, yn)} be a dataset with labels yi ∈ [τ ], and define the Gini value as69

Gini(A) = 1−
∑

y∈[τ ]
p2y ,

where py denotes the proportion of the label y. Let Al
a = {(ai, yi) : ai ≤ a, (ai, yi) ∈ A} and70

Ar
a = {(ai, yi) : ai > a, (ai, yi) ∈ A} be the left and right subsets of A w.r.t. a splitting point a,71

respectively. We define the Gini impurity w.r.t. dataset A and splitting point a as72

IG(A, a) = wl · Gini(Al
a) + wr · Gini(Ar

a) , (1)

where wl = |Al
a|/n and wr = |Ar

a|/n. Let I∗G(A) be the minimum Gini impurity of dataset A, i.e.,73

I∗G(A) = mina∈R{IG(A, a)} . (2)

The minimum Gini impurity plays a crucial role on nodes splitting during the construction of random74

forests. We could re-sort dataset A with a non-decreasing order for a1, a2, · · · , an as follows:75

A =
{
(a⟨1⟩, y⟨1⟩), (a⟨2⟩, y⟨2⟩), · · · , (a⟨n⟩, y⟨n⟩)

}
, (3)

where a⟨1⟩ ≤ a⟨2⟩ ≤ · · · ≤ a⟨n⟩, and y⟨1⟩, y⟨2⟩, · · · , y⟨n⟩ denote their corresponding labels. By76

incorporating label information, we partition dataset A into several datasets I1, I2, · · · , Is as follows:77

I1 =
{
(a⟨1⟩, y⟨1⟩), · · · , (a⟨k1⟩, y⟨k1⟩)

}
,

I2 =
{
(a⟨k1+1⟩, y⟨k1+1⟩), , · · · , (a⟨k1+k2⟩, y⟨k1+k2⟩)

}
, (4)

· · ·
Is =

{
(a⟨k1+k2+···+ks−1+1⟩, y⟨k1+k2+···+ks−1+1⟩), · · · , (a⟨n⟩, y⟨n⟩)

}
.

Here, any two adjacent datasets have different labels, and all samples have an identical label in one78

dataset Ij , i.e., y⟨i⟩ = y⟨i′⟩ for every (a⟨i⟩, y⟨i⟩) ∈ Ij and (a⟨i′⟩, y⟨i′⟩) ∈ Ij .79

We consider two important factors in encryption: i) preservation of the minimum Gini impurity80

I∗G(A) over the encrypted data, and ii) a cryptosystem for encoding and decoding data. Based on81

such recognition, we introduce the following encryption, for every example (a⟨i⟩, y⟨i⟩) ∈ Ij ,82

Ja⟨i⟩K =
(
Ja⟨i⟩K1, Ja⟨i⟩K2

)
=

{
(c1,Enc(kpub, i)) for j = 1 ,

(cj ,Enc(kpub, i− k1 − · · · − kj−1)) for 2 ≤ j ≤ s .
(5)

Here, c1, c2, · · · , cs are random numbers s.t. c1 < c2 < · · · < cs, which aim to preserve the83

minimum Gini impurity. We take the homomorphic encryption scheme CKKS with a public key kpub84

for Ja⟨i⟩K2 = Enc(kpub, i− k1 − · · · − kj−1) in Eqn. (5), and it is helpful for decryption. Figure 185

presents a simple illustration for our encryption, and the detailed decryption is given in Appendix A.86

We now present our main theorem as follows:87

Theorem 1. We have I∗G(A) = I∗G(A
′), for re-sort dataset A by Eqn. (3) and for the corresponding88

encrypted dataset A′ = {(Ja⟨1⟩K1, y⟨1⟩), · · · , (Ja⟨n⟩K1, y⟨n⟩)} from Eqns. (4)-(5).89

This theorem shows that our encryption could preserve the minimum Gini impurity over encrypted90

data. The detailed proof is presented in Appendix B, which involves the proof of piecewise mono-91

tonicity of IG(A, a) w.r.t. splitting point a, and then solves the minimum splitting point on plaintexts,92

as well as the corresponding point on encrypted data.93
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Algorithm 1 The Gini-impurity-preserving encryption
Input: Dataset A = {(a1, y1), · · · , (an, yn)}
Output: Binary search tree BT , ciphertexts {Ja1K, · · · , JanK}
Initialize: Tree BT = ∅ with its cipher1 = cmax/2, where cmax is a random number with cmax > n

1: for i = 1, · · · , n do
2: Set t = root of BT , tmin = 0, tmax = cmax and index= 1 %% Step-I
3: while t is an internal node and index==1 do
4: index= 0
5: if t.left ̸= ∅ and ai < max{aj : (aj , yj) ∈ t.left.samples} then
6: t = t.left, tmax = t.cipher1, index= 1
7: else if t.right ̸= ∅ and ai > min{aj : (aj , yj) ∈ t.right.samples} then
8: t = t.right, tmin = t.cipher1, index= 1
9: end if

10: end while
11: Update t = t.left if Eqn. (6) is true, and update t = t.right if Eqn. (7) is true
12: if yi = yj for every (aj , yj) ∈ t.samples then %% Step-II
13: Split node t by Algorithm 2 with inputs of (ai, yi) and the corresponding interval [tmin, tmax]
14: end if
15: Append example (ai, yi) into t.samples and update t.cipher2 = Enc(kpub, |t.samples|)
16: Encrypt JaiK = (t.cipher1, t.cipher2)
17: end for

3.2 Binary Search Tree for Encryption94

This section presents new binary search tree to encrypt a1, · · · , an dynamically, and it is helpful for95

un-ordered dataset A = {(a1, y1), · · · , (an, yn)}, or when example (ai, yi) arrives in a streaming96

data. We begin with an alternative structure for binary search tree to maintain several samples on a97

node from Eqns. (4)-(5), rather than previous only one sample [72, 73]. Our new structure is given by98

Struct Tree {Plaintext samples; Ciphertext cipher1, cipher2; Tree left, right} .

The samples stores one or multiple samples from A, and cipher1 and cipher2 are the first and second99

ciphertext in Eqn. (5), and left and right denote left and right child of the current node, respectively.100

We initialize an empty tree BT = ∅, and construct binary search tree iteratively. We maintain an101

interval [tmin, tmax] in each iteration so as to keep the increasing order of ciphertexts c1, c2, · · · , cs in102

Eqn. (5). During the i-th iteration, we receive a sample (ai, yi), and then take two steps as follows:103

Step-I: Search a node for sample (ai, yi) in binary search tree BT104

Let t be a node pointer with the initialization of the root of BT . We search a path downward in BT105

by comparing with ai, and the search will terminate when t is a leaf node or an empty node.106

For an internal node t, the search continues to its left child and updates tmax = t.cipher1 if the107

left child t.left ̸= ∅ and ai < max{aj : (aj , yj) ∈ t.left.samples}; and the search continues to its108

right child and updates tmin = t.cipher1 if the right child t.right ̸= ∅ and ai > min{aj : (aj , yj) ∈109

t.right.samples}; otherwise, the search terminates. This procedure of iterative searches can be easily110

implemented with a while loop.111

It is necessary to consider two special cases after the above search. We update t = t.left if112

t.left ̸= ∅, ai < min{aj : (aj , yj) ∈ t.samples} and yi = yj for all (aj , yj) ∈ t.left.samples. (6)

In a similar manner, we update t = t.right if113

t.right ̸= ∅, ai > max{aj : (aj , yj) ∈ t.samples} and yi = yj for all (aj , yj) ∈ t.right.samples. (7)

Step-II: Update the binary search tree BT114

After Step-I, we could find a node t for sample (ai, yi) and the corresponding interval [tmin, tmax].115

We directly append the example (ai, yi) into t.samples if yi = yj for every (aj , yj) ∈ t.samples;116

otherwise, it is necessary to split the node t according to ai.117
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Algorithm 2 Splitting a node for encryption
Input: Example (ai, yi), node t of binary search tree BT , and interval [tmin, tmax]
Output: Updated node t

1: Initialize an empty node l with l.samples = {(aj , yj) ∈ t.samples : aj < ai}
2: if l.samples ̸= ∅ then
3: if t.left ̸= ∅ then
4: Set l.cipher1 according to Eqn. (8), and update l.left = t.left, t.left = l
5: else
6: Set l.cipher1 according to Eqn. (9), and update t.left = l
7: end if
8: end if
9: Initialize an empty node r with r.samples = {(aj , yj) ∈ t.samples : aj > ai}

10: if r.samples ̸= ∅ then
11: if t.right ̸= ∅ then
12: Set r.cipher1 according to Eqn. (10), and update r.right = t.right, t.right = r
13: else
14: Set r.cipher1 according to Eqn. (11), and update t.right = r
15: end if
16: end if
17: Update t.samples = t.samples \ l.samples \ r.samples

We initialize an empty node l with l.samples = {(aj , yj) ∈ t.samples : aj < ai}, and it is sufficient118

to consider l.samples ̸= ∅. If t.left ̸= ∅, then we set119

l.cipher1 = (t.left.cipher1 + t.cipher1)/2 + ξ s.t. t.left.cipher1 < l.cipher1 < t.cipher1 , (8)
and update l.left = t.left, t.left = l; otherwise, we set120

l.cipher1 = (tmin + t.cipher1)/2 + ξ s.t. l.cipher1 ∈ (tmin, t.cipher1) , (9)
and update t.left = l. Here, ξ is random number sampled from N (0, 1), and notice that we may121

randomly sample ξ multiple times so that the condition holds in Eqns (8)-(9), respectively.122

We make similar update for the right child of node t: initialize an empty node r with r.samples =123

{(aj , yj) ∈ t.samples : aj > ai}, and consider r.samples ̸= ∅. If t.right ̸= ∅, then we set124

r.cipher1 = (t.cipher1+t.right.cipher1)/2+ξ s.t. t.cipher1 < r.cipher1 < t.right.cipher1 , (10)
and update r.right = t.right, t.right = r; otherwise, we set125

r.cipher1 = (t.cipher1 + tmax)/2 + ξ s.t. r.cipher1 ∈ (t.cipher1, tmax) , (11)
and update t.right = r. Algorithm 2 presents the detailed descriptions on the splitting of node t.126

Algorithm 1 presents an overview of our Gini-impurity-preserving encryption, and the decryption is127

given in Appendix A. Our scheme does not only keep the minimum Gini impurity, but also change128

frequencies to prevent decryption from frequencies, which is beneficial for encryption as in [74].129

Our scheme takes an average of O(n log n) computational complexity, since it requires O(log n) and130

O(1) computational complexities to search and update a node in each iteration, respectively.131

3.3 Security Analysis132

For ciphertext vector JaK = (JaK1, JaK2) in Eqn. (5), it suffices to discuss the first ciphertext JaK1,133

since the security of JaK2 has been analyzed in homomorphic encryption CKKS [41]. Following134

semantic security against chosen plaintext attacks [73, 75], we define a security game GameGIPCPA:135

• An adversary chooses two sequences with distinct plaintexts {a01, · · · , a0n} and {a11, · · · , a1n},136

and sends them to a challenger;137

• The challenger flips an unbiased coin b ∈ {0, 1} to select {ab1, · · · , abn}, and randomly sets their138

corresponding labels {yb1, · · · , ybn} with each ybi drawn independently and uniformly over [τ ]. The139

challenger encrypts {ab1, · · · , abn} by Eqns. (4) and (5), and sends the ciphertexts to the adversary;140

• The adversary outputs a guess of b, i.e., which sequence is selected for encryption.141

We then introduce the security against Gini-impurity-preserving chosen plaintext attack.142
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Algorithm 3 Finding the best splitting feature and position
Input: Encrypted datasets JSt

nK, available splitting feature and position JsKȷi=1, and secret key ksec
Output: index i∗

%% Server:
for i ∈ [ȷ] do

Calculate Gini impurity IG(JSt
nK, JsKi) from Eqn. (12) w.r.t splitting feature and position JsKi

end for
Send ciphertexts {IG(JSt

nK, JsKi)}i∈[ȷ] to the client
%% Client:

Get the decrypted {Dec(ksec, IG(JSt
nK, JsKi))}i∈[ȷ]

Set i∗ = −1 if Dec(ksec, IG(JSt
nK, JsKi)) = 0 for every i ∈ [ȷ]; otherwise, set i∗ by Eqn. (13)

Send i∗ to the server

Definition 2. A scheme is said to be indistinguishable under Gini-impurity-preserving chosen143

plaintext attack if the probability of outputs with the correct guess b is negligible for the adversary A144

in GameGIPCPA, that is, Pr[A(GameGIPCPA) = b] < 1/2+small constant.145

The following theorem shows that our encrypted plaintexts sequences are indistinguishable, and the146

detailed proof is presented in Appendix C.147

Theorem 3. Our scheme for the first ciphertexts Ja1K1, Ja2K1, · · · , JanK1 in Section 3.2 is security148

against Gini-impurity-preserving chosen plaintext attack.149

4 Encrypted Random Forests150

For encrypted random forests, we follow the popular client-server protocols [50, 72, 76, 77]. A151

client encrypts training and testing data, and transfers encrypted data to an honest-but-curious server.152

The server trains random forests from the encrypted data with the aid of client, and finally returns153

predictions on encrypted testing data.154

Encryption for training and testing datasets155

Recall training data Sn = {(x1, y1), · · · , (xn, yn)}with xi = (xi,1, · · · , xi,d). The client constructs156

d binary search treesBT1,BT2, · · · ,BTd according to Algorithm 1 over different dimensional features157

and labels in Sn, where BTj is used to encrypt features {x1,j , · · · , xn,j} for j ∈ [d].158

We take the homomorphic encryption CKKS [41] to encrypt training labels y1, · · · , yn. Each label159

yi is encoded with a vector of size τ by one-hot method, and we encrypt the vector by homomorphic160

encryption scheme CKKS with a public key kpub. The final ciphertexts JyiK = [Jyi,1K, · · · , Jyi,τ K]161

is given by Jyi,jK = Enc(kpub, 1) if j = yi; otherwise Jyi,jK = Enc(kpub, 0). We obtain the final162

training data JSnK = {(Jx1K, Jy1K), · · · , (JxnK, JynK)}.163

Let S̃n′ = {x̃1, · · · , x̃n′} be a testing data with instance x̃i = (x̃i,1, · · · , x̃i,d). For every plaintext164

x̃i,j with i ∈ [n′] and j ∈ [d], we search a node t in the binary search tree BTj , similarly to the node165

search (Step-I) in Section 3.2, and obtain its ciphertext Jx̃i,jK = [t.cipher,Enc(kpub, i)]. We have the166

encrypted testing data JS̃n′K = {Jx̃1K, · · · , Jx̃n′K}.167

Construction on encrypted random forests168

Encrypted random forests consist of individual decision trees DT1, · · · ,DTm, where each tree DTi169

is constructed as follows. We first take a bootstrap sample JS′
nK from JSnK, and initialize DTi with170

one node of data JS′
nK. We repeat the following procedure recursively for each leaf node, until the171

number of training samples is smaller than α, or all instances have the same label in the leaf node:172

• Select a k-subset B from d available features randomly without replacement;173

• Find the best splitting feature in B and position by Gini impurity from the encrypted data;174

• Split the current node into left and right children via the best splitting position and feature.175

Such construction is essentially similar to original random forests [1], whereas we require a different176

way to find the best splitting feature and position based on Gini impurity from the encrypted data.177
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Table 2: Datasets

Datasets #Inst #Feat Datasets #Inst #Feat Datasets #Inst #Feat Datasets #Inst #Feat

wdbc 569 30 adver 3,279 1,558 ailerons 13,750 41 adult 48,842 14

cancer 569 31 bibtex 7,396 1,836 house 22,784 16 mnist 70,000 780

breast 699 9 phpB0 7,797 617 a9a 32,563 123 miniboone 72,998 51

diabetes 768 8 pendigits 10,992 16 amazon 32,769 9 runwalk 88,588 6

german 1,000 24 phish 11,055 30 bank 45,211 17 covtype 581,012 54

Let t be the current leaf node for further splitting with the encrypted training data JSt
nK ⊆ JSnK, and178

JsK1, · · · , JsKȷ denote all possible splitting features and positions in the scope of the corresponding179

feature subset B from JSt
nK. Here, the information of feature and position can be derived from the180

corresponding index i ∈ [ȷ] and subset B.181

For each i ∈ [ȷ], the server partitions the current encrypted training data JSt
nK into left and right182

subsets, i.e., JSt
nKli and JSt

nKri , according to the splitting feature and position JsKi. Let nl and nr be183

the number of training examples in JSt
nKli and JSt

nKri , respectively, and denote by184

JSt
nKli = {(Jxl

1K, Jy
l
1K), · · · , (Jxl

nl
K, Jylnl

K)} and JSt
nKri = {(Jxr

1K, Jy
r
1K), · · · , (Jxr

nr
K, Jyrnr

K)} .

From Eqn. (1), we have Gini impurity IG(JSt
nK, JsKi) as185 [ nl

nl + nr
⊗ IG(JSt

nKli)
]
⊕
[ nr

nl + nr
⊗ IG(JSt

nKri )
]
, (12)

where IG(JSt
nKli) = 1⊖pl⊙pl and IG(JSt

nKri ) = 1⊖pr⊙pr, with pl = (1/nl)⊗(Jyl1K⊕, · · · ,⊕Jylnl
K)186

and pr = (1/nr) ⊗ (Jyr1K⊕, · · · ,⊕Jyrnr
K). Here, ⊕, ⊖, ⊗ and ⊙ denote the CKKS element-wise187

homomorphic addition, subtraction, multiplication and dot functions, respectively, as in [41].188

The client gets plaintexts {Dec(ksec, IG(JSt
nK, JsKi))}

ȷ
i=1 by decrypting with the secret key ksec, when189

the server sends ciphertexts {IG(JSt
nK, JsKi)}

ȷ
i=1. If all instances have the same label in JSt

nK, then190

we have Dec(ksec, IG(JSt
nK, JsKi)) = 0 for each i ∈ [ȷ], and we set i∗ = −1; otherwise, we set i∗ as191

i∗ ∈ argmini∈[ȷ]

{
Dec(ksec, IG(JSt

nK, JsKi))
}
. (13)

The client sends index i∗ to the server for further splitting. Algorithm 3 presents the detailed192

descriptions on finding the best splitting feature and position.193

For encrypted decision tree, the client requires the O(κ) computational complexity with κ leaves194

nodes, since the client performs constant basic operations for each node. The server takes the O(κȷ̄τn)195

computational complexity for Eqn. (12), where ȷ̄ is an average of number of possible splitting features196

and positions, and τ and n are the number of labels and training examples, respectively.197

Our method takes O(h) communication rounds of O(κȷ̄) communication bandwidth to train an198

encrypted decision tree of height h. This is because we consider the breadth-first search and aggregate199

all nodes in the same height and send to the client with a single message at one time.200

We do not require bootstrapping for homomorphic encryption in 3-depth homomorphic multiplicative,201

since we independently compute the splitting feature and position for each node from Eqn. (12). This202

is different from previous encrypted decision trees [50, 69], which could take expensive computational203

complexity for bootstrapping [39, 78].204

Prediction on encrypted testing dataset205

After getting decision trees DT1, · · · ,DTm, we predict label JỹiK = DT1(Jx̃iK)⊕ · · · ⊕ DTm(Jx̃iK)206

for test instance Jx̃iK ∈ JS̃n′K. The server sends ciphertexts {Jỹ1K, · · · , Jỹn′K} to the client, and the207

client decrypts those ciphertexts, and gets the final plaintext label by ỹi = argmaxj∈[τ ]{DecJỹi,jK}.208

During such prediction process, the server requires the O(h) computational complexity, since we209

search from the root to leaf node of tree. The client takes O(1) rounds of communication and210

communication bandwidth to transfer the testing data and predicting ciphertext without interaction.211
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Table 3: Comparisons of prediction accuracies (mean±std). •/◦ indicates that our encrypted random forests are
significantly better/worse than other compared random forests (pairwise t-tests at 95% significance level). ‘NA’
means that no results were obtained after running out 106 seconds (about 11.6 days).

Dataset Our encrypted RFs Original RFs AnonyRFs DiffPrivRFs PPD-ERTs PivotRFs MulPRFs HEldpRFs

wdbc .9525±.0141 .9617±.0018 .9091±.0205• .8998±.0024• .9222±.0037• .9609±.0101 .9510±.0114 .9195±.0029•
cancer .9766±.0082 .9824±.0143 .9271±.0016• .9034±.0578• .9600±.0022• .9510±.0130• .9656±.0102 .9823±.0024

breast .9855±.0012 .9881±.0011 .9657±.0021• .9271±.0515• .9678±.0129• .9806±.0086 .9769±.0107 .9275±.0023•
german .7939±.0124 .8033±.0205 .7300±.0214• .7400±.0141• .7610±.0168• .7533±.0122• .7823±.0154 .7043±.0027•
diabetes .7641±.0093 .7677±.0309 .7193±.0023• .7328±.0124• .7448±.0193 .7419±.0061• .7611±.0035 .7478±.0193•

adver .9851±.0011 .9888±.0014 .9278±.0018• .9390±.0051• NA .9664±.0043• NA NA

bibtex .7907±.0054 .7749±.0027• .7425±.0009• .7200±.0130• NA .7461±.0193• NA NA

phpB0 .9380±.0024 .9585±.0043◦ .8641±.0009• .8920±.0031• NA NA NA NA

pendigits .9917±.0024 .9906±.0016 .9072±.0104• .9154±.0126• .9639±.0048• .9070±.0130• NA NA

phish .9798±.0026 .9716±.0018 .9032±.0014• .9318±.0089• .9555±.0125• .9454±.0067• .9401±.0102• NA

ailerons .8795±.0027 .8819±.0015 .8104±.0105• .8322±.0091• .8589±.0043• .8571±.0082• .8766±.0025 NA

house .8794±.0007 .8913±.0039◦ .8255±.0011• .8475±.0025• .8541±.0149• .8508±.0016• .8742±.0023 NA

a9a .8321±.0011 .8303±.0012 .8046±.0027• .7909±.0084• .8345±.0144 .8314±.0071 .8051±.0102• NA

amazon .9491±.0109 .9478±.0060 .9193±.0024• .9104±.0035• .9221±.0024• .9401±.0128 .9400±.0032 NA

bank .8992±.0118 .9029±.0104 .8499±.0089• .8517±.0064• .8940±.0147 .8940±.0091 .8827±.0108 NA

adult .8663±.0019 .8691±.0018 .8206±.0032• .8355±.0053• .8452±.0106• .8243±.0076• .8594±.0103 NA

mnist .9674±.0105 .9763±.0101 .9362±.0006• .9059±.0157• NA NA NA NA

miniboone .9497±.0018 .9518 ±.0013 .8977±.0101• .9111±.0104• .9301±.00021• .9501±.0011 NA NA

runwalk .9784±.0014 .9798±.0032 .9523±.0024• .9401±.0040• .9572±.0074• .9511±.0071• NA NA

covtype .9787±.0042 .9650±.0104• .9112±.0015• .9407±.0018• .9569±.0134• NA NA NA

win/tie/loss 2/16/2 20/0/0 20/0/0 17/3/0 14/6/0 10/10/0 19/1/0

5 Experiment212

We conduct experiments on 20 datasets1 as summarized in Table 2. Most datasets have been well-213

studied in previous random forests. Besides the original (plaintexts) random forests [1], we compare214

with six state-of-the-art privacy-preserving random forests in recent years: anonymization random215

forests AnonyRFs [66]; differential-privacy random forests DiffPrivRFs [79]; distributed extremely216

privacy randomized forests PPD-ERTs [71]; random forests by partially HE and secure multiparty217

computation PivotRFs [69]; secure-multi-party-computation random forests MulPRFs [80]; random218

forests of fully HE on low-degree polynomial approximations HEldpRFs [50].219

For all random forests, we train 100 individual decision trees, and randomly select ⌊
√
d⌋ candidate220

features during node splitting. We set α = 10 for datasets of size smaller than 20,000 for our221

encrypted random forests; otherwise, set α = 100, following [81]. For multi-class datasets, we take222

the one-vs-all method for MulPRFs, since it is limited to binary classification. Other parameters are223

set according to their respective references, and more details can be found in Appendix D.224

Experimental Comparisons225

The performance is evaluated by five trials of 5-fold cross validation, and final prediction accuracies226

are obtained by averaging over these 25 runs, as summarized in Table 3. It is evident that our227

encrypted random forests take comparable performance with original random forests [1] on plaintexts,228

and this could well support our Theorem 1 on the preservation of minimum Gini impurity in the229

construction of random forests. Our encrypted random forests are also comparable to MulPRFs if230

they can obtain results within 106 seconds, since MulPRFs are essentially similar to original random231

forests, yet with different implementation of secure multi-party computation.232

From Table 3, our random forests are better than AnonyRFs and DiffPrivRFs, since the win/tie/loss233

counts show that our random forests win for most times and never lose. This is because AnonyRFs234

combine features by anonymization, while DiffPrivRFs add perturbations to features via differential235

privacy; therefore, both of them cause information lost in privacy process. Our random forests also236

achieve better performance than PivotRFs, since PivotRFs have to limit trees’ depth for random237

forests due to heavy computations for HE and communications for secure multi-party computation.238

Our random forests also outperform PPD-ERTs and HEldpRFs if results are obtained in 106 seconds,239

since PPD-ERTs adopt completely-random splitting, rather than selecting the minimum Gini impurity,240

while HEldpRFs take homomorphic encryption on features and employ low-degree polynomial241

approximation. Those approaches have modified the structures of original random forests.242

1Downloaded from www.openml.org
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Figure 2: Comparisons of training running time on different random forests. Notice that the y-axis is in log-scale,
and full black columns imply that no result was obtained after running out 106 seconds (about 11.6 days).

Figure 3: Security comparisons for different schemes: the more red the area, the higher the security.

Running Time243

All experiments are performed by c++ on the Ubuntu with 256GB main memory (AMD Ryzen244

Threadripper 3970X). We compare the training running time of our encrypted random forests and245

others, and the average CPU time (in seconds) is shown in Figure 2.246

As expected, original random forests take the least running time over raw datasets without privacy247

preservation. Our encrypted random forests take larger running time than AnonyRFs and DiffPrivRFs248

because they are essentially similar to original random forests, yet with some simple modifications or249

perturbations on features. Our encrypted random forests take better performance and higher security.250

Our encrypted random forests take smaller running time than PPD-ERTs, PivotRFs, MulPRFs and251

HEldpRFs, in particular for large datasets or high-dimensional datasets, where no results are obtained252

even after running out 106 seconds (almost 11.6 days). Because PPD-ERTs, PivotRFs and MulPRFs253

require expensive communication cost for multi-parity computation, while PivotRFs and HEldpRFs254

take heavy computation costs on HE scheme.255

Security Analysis256

We present security analysis for the first ciphertext JaK1 in ciphertext vector JaK = (JaK1, JaK2), and257

the second ciphertext JaK2 can be ensured by HE scheme. We compare with four state-of-the-art258

encryptions: differential privacy [79], anonymization [66], order-preserving scheme [82] and HE259

scheme [41]. Here, we present results of six datasets and randomly selecting one feature, and trends260

are similar on other dimensions and datasets. More results can be found in Appendix D.261

Figure 3 shows the comparison results, and we take the bitwise leakage matrices to measure the262

security as in [83]: the more red the area, the higher the security. As expected, HE scheme presents263

the highest security, yet with heavy computational costs, for example, no results are obtained for264

datasets of size exceeding 3000 even after running out 106 seconds. It is also observed that our265

scheme presents higher security than the other three schemes, since those schemes simply present266

perturbations, compression or preserve the entire order information regardless of learning ingredients.267

In comparison, our scheme could make a good balance between security and computational cost.268

6 Conclusion269

This work takes one step on data encryption from some crucial ingredients of learning algorithm.270

We present a new encryption to preserve data’s Gini impurity, which plays a crucial role during271

the construction of random forests. For random forests, we encrypt data features based on our272

Gini-impurity-preserving scheme, and take the homomorphic encryption scheme CKKS to encrypt273

data labels. Both theoretically and empirically, we validate the effectiveness, efficiency and security274

of our proposed method. An interesting work is to exploit other learning ingredients, such as gini275

index and information gain, for data encryption in the future.276
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A The Decryption for the Our Encryption Method492

(i) The decryption for the encryption in Section 3.1493

Here, we give the detailed decryption methods for our encryption motivation in Section 3.1. To494

decrypt the ciphertext Ja⟨i⟩K which is defined by Eqn. (5) as follows:495

Ja⟨i⟩K =
(
Ja⟨i⟩K1, Ja⟨i⟩K2

)
=

{
(c1,Enc(kpub, i)) for j = 1 ,

(cj ,Enc(kpub, i− k1 − · · · − kj−1)) for 2 ≤ j ≤ s .
(14)

We can get its corresponding plaintext a⟨i⟩ through the following steps:496

(1) Find the partition dataset Ij according to the Ja⟨i⟩K1.497

(2) Decrypt the ciphertext Ja⟨i⟩K2 by the secret key ksec of homomorphic encryption CKKS,498

and obtain the index k = Dec(ksec, Ja⟨i⟩K2] in partition dataset Ij .499

(3) Get the plaintext a⟨i⟩ as the k-th sample in partition dataset Ij and complete the decryption.500

Similarly, we give the detailed decryption for our Gini-impurity-preserving encryption in Section 3.2501

as follows.502

(ii) The Decryption for Our Gini-impurity-preserving Encryption in Section 3.2503

As shown in Section 3.2, we present new binary search tree structure to encrypt a1, · · · , an dynami-504

cally, and it is helpful for un-ordered dataset A = {(a1, y1), · · · , (an, yn)}, or when example (ai, yi)505

arrives in a streaming data, the detailed method can be shown in Algorithm 1. Thus, in order to506

decrypt the ciphertext JaK, we use the built binary search tree BT in encryption phase and the secret507

key ksec of CKKS to get its corresponding plaintext a as follows:508

(1) Let t be a node pointer with the initialization of the root of the built binary search tree BT .509

Then we search a path downward in binary search tree BT by comparing with JaK1. The510

search continues to its left child if JaK1 < t.cipher1; and the search continues to its right511

child if JaK1 > t.cipher1.512

(2) When JaK1 = t.cipher1, we obtain the index i of samples which stores in t.samples by the513

secret key ksec of CKKS as: i = Dec(ksec, JaK2), and use the index i to get the plaintext a514

which corresponding to the ciphertext JaK as a = t.samples[Dec(ksec, JaK2]).515

The detailed decryption method can be shown in Algorithm 4.516

The Formal Definition for Our Gini-impurity-preserving Encryption517

Here, we give a more formal definition of our Gini-impurity preserving encryption which consists of518

the following three algorithms:519

• S ← KeyGen(tmax): Generates the secret state S through initializing an empty binary520

search tree BT = ∅ ,and a security parameter tmax, where cmax is a random number with521

cmax > n. Besides, we maintain the interval [tmin, tmax] in each secret state S so as to keep522

the increasing order of ciphertexts c1, c2, · · · , cs in Eqn. (5) with tmin = 0 in the initial stage.523

In this way, the ciphertexts are random numbers only containing semi-order information of524

the plaintexts, and the ciphertext will differ when the same plaintext is encrpyted twice.525

• S′, JxiK← Encrypt(S, xi): When sample (xi, yi) arrives, we will take three steps to encrypt526

the feature xi and update the the secret state to S′ as follows:527

(1) Step-I: Search a node for sample (xi, yi) in binary search tree BT as shown in Algo-528

rithm 1. Let t be a node pointer with the initialization of the root of BT . We search a529

path downward in BT by comparing with xi. The search will terminate when t is a530

leaf or an empty node.531

(2) Step-II: Update the binary search tree BT . After Step-I, we could find a node t for532

sample (xi, yi) and the corresponding interval [tmin, tmax]. We directly append the533

example (xi, yi) into t.samples if yi = yj for every (xj , yj) ∈ t.samples; otherwise,534

it is necessary to split the node t according to xi. Algorithm 2 presents the detailed535

descriptions on the splitting of node t.536
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Algorithm 4 Decryption
Input: Tree node t of BT , ciphertext JaK
Output: plaintext a

1: if JaK1 > t.cipher1 then
2: return Decryption(t.right, JaK)
3: else if JaK1 < t.cipher1 then
4: return Decryption(t.left, JaK)
5: else
6: Return a = t.samples[Dec(ksec, JaK2])
7: end if

(3) Step-III: Computes a ciphertext JxiK and update the state from S to S′. Append537

example (ai, yi) into t.samples and update t.cipher2 = Enc(kpub, |t.samples|). Then538

we compute the ciphertext JxiK = (t.cipher1, t.cipher2), and updates the state from S539

to S′ through our updated BT .540

• xi ← Decrypt(S′, JxiK): Computes the plaintext xi for ciphertext JxiK based on state S′541

with the built binary search tree BT in encryption phase and the secret key ksec of CKKS as542

follows:543

(1) Let t be a node pointer with the initialization of the root of the built binary search544

tree BT . Then we search a path downward in binary search tree BT by comparing545

with JxiK1. The search continues to its left child if JxiK1 < t.cipher1; and the search546

continues to its right child if JxiK1 > t.cipher1.547

(2) When JxiK1 = t.cipher1, we obtain the index i of samples which stores in t.samples by548

the secret key ksec of CKKS as: i = Dec(ksec, JxiK2), and use the index i to get the plain-549

text xi which corresponding to the ciphertext JxiK as xi = t.samples[Dec(ksec, JxiK2]).550

B Proof of Theorem 1551

Lemma 4. For dataset A = {(a1, y1), · · · , (an, yn)}, let I1, I2, · · · , Is be the corresponding552

partitions as defined by Eqn. (4). There exists a splitting point a∗ such that IG(A, a∗) = I∗G(A) and553

a∗ ∈
⋃

i∈[s−1]

{max{ak : (ak, yk) ∈ Ii}/2 + min{ak : (ak, yk) ∈ Ii+1}/2} ,

where IG(A, a∗) and I∗G(A) are defined by Eqns. (1) and (2), respectively.554

Proof. Without loss of generality, we assume that a1, a2, · · · , an are distinct elements. Our goal is555

to solve the optimal splitting point a∗ ∈ argmina∈R{IG(A, a)}, and we begin with some notations556

used in our proof. For every label j ∈ [τ ], we denote by557

νj = |{i ∈ [n] : yi = j}| ,

i.e., the number of the label j in dataset A. Let a be a splitting point, which splits A into left and558

right datasets Al
a and Ar

a, that is,559

Al
a = {(ai, yi) : ai ≤ a, (ai, yi) ∈ A} ,

Ar
a = {(ai, yi) : ai > a, (ai, yi) ∈ A} .

For any given a ∈ R and j ∈ [τ ], we further denote by560

νlj = |{i ∈ [n] : yi = j, ai ≤ a}| ,

i.e., the number of label j in subsets Al
a. This follows that561

IG(A, a) = wl − wl

∑
j∈[τ ]

(νlj)
2

|Al
a|2

+ wr − wr

∑
j∈[τ ]

(νj − νlj)
2

(n− |Al
a|)2

,
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where wl = |Al
a|/n, and wr = 1−wl. In the following, we will explore the monotonicity of function562

IG(A, a) when563

a ≥ max{ak : (ak, yk) ∈ Ii−1}/2 + min{ak : (ak, yk) ∈ Ii}/2
a ≤ max{ak : (ak, yk) ∈ Ii}/2 + min{ak : (ak, yk) ∈ Ii+1}/2 ,

for i = 2, 3, · · · , s− 1. It is easy to observe that νj and νlj keep constants except for νlj∗ , where j∗564

denotes the label of instances in Ii. It remains to discuss the variable νlj∗ , and we have565

n2 ∂IG(A, a)

∂νlj∗
=

1

n

∑
j∈[τ ]

(νlj)
2

(wl)2
− 2

νlj∗
wl
− 1

n

∑
j∈[τ ]

(νj − νlj)
2

(wr)2
+ 2

(νj∗ − νlj∗)

wr

=
1

n

∑
j∈[τ ]

( νlj
wl

)2

−

(
νj − νlj
wr

)2
+ 2

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)

=
1

n

∑
j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2


+
1

n

(νlj∗
wl

)2

−

(
νj∗ − νlj∗

wr)

)2
+ 2

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)

=
1

n

∑
j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2
+

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)(
2−

νj∗ − νlj∗
nwr

−
νlj∗
nwl

)

)
.

It is easy to observe that566

0 ≤
νj − νlj
wr

≤ n and 0 ≤
νlj
wl
≤ n for each j ∈ [τ ] . (15)

It is sufficient to consider two cases as follows:567

• We consider the first case568 ∑
j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2
 ≥ 0 ,

and this follows that569

0 ≤
∑

j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2


=
∑

j∈[τ ],j ̸=j∗

(
νlj
wl

+
νj − νlj
wr

)(
νlj
wl
−

νj − νlj
wr

)

≤
∑

j∈[τ ],j ̸=j∗

2n

(
νlj
wl
−

νj − νlj
wr

)
= 2n

∑
j∈[τ ],j ̸=j∗

(
νlj
wl
−

νj − νlj
wr

)
.

We have570

n−
∑

j∈[τ ],j ̸=j∗

νj − νlj
wr

≥ n−
∑

j∈[τ ],j ̸=j∗

νlj
wl

, (16)

and it holds that571

νj∗ − νlj∗
wr

≥
νlj∗
wl

. (17)
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Combining with Eqns. (15)-(17), we have572

∂IG(A, a)

∂νlj∗
≥ 0 ,

which proves the increasing function of IG(A, a).573

• We now consider the second case574 ∑
j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2
 < 0 ,

and this follows that575 ∑
j∈[τ ]

( νlj
wl

)2

−

(
νj − νlj
wr

)2
 <

(
νlj∗
wl

)2

−

(
νj∗ − νlj∗

wr

)2

=

(
νlj∗
wl

+
νj∗ − νlj∗

wr

)(
νlj∗
wl
−

νj∗ − νlj∗
wr

)
< 2n

(
νlj∗
wl
−

νj∗ − νlj∗
wr

)
.

We have576

n2 ∂IG(A, a)

∂νlj∗
=

1

n

∑
j∈[τ ]

( νlj
wl

)2

−

(
νj − νlj
wr)

)2
+ 2

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)

< 2

(
νlj∗
wl
−

νj∗ − νlj∗
wr

)
+ 2

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)
= 0 ,

which proves the decreasing function of IG(A, a).577

In a summary, we prove the piecewise monotonicity of IG(A, a) for578

a ≥ max{ak : (ak, yk) ∈ Ii−1}/2 + min{ak : (ak, yk) ∈ Ii}/2
a ≤ max{ak : (ak, yk) ∈ Ii}/2 + min{ak : (ak, yk) ∈ Ii+1}/2 ,

with i = 2, 3, · · · , s − 1. Moreover, it is easy to observe the monotonicity of IG(A, a) from579

νlj = 0(j ̸= j∗) when580

a ∈ (−∞, (max{ak : (ak, yk) ∈ I1}+min{ak : (ak, yk) ∈ I2}) /2] ;

and from νj − νlj = 0 (j ̸= j∗) when581

a ∈ [(max{ak : (ak, yk) ∈ Is−1}+min{ak : (ak, yk) ∈ Is}) /2,+∞) .

It is not necessary to consider the splitting point a∗ > max{ak : (ak, yk) ∈ Is} with |Ar
a| = 0, as582

well as the splitting point a∗ < min{ak : (ak, yk) ∈ I1} with |Al
a| = 0, i.e., without splitting dataset583

A. This completes the proof.584

Proof of Theorem 1585

According to Lemma 4, we could find an optimal splitting point a∗ such that586

a∗ ∈
⋃

i∈[s−1]

{
max{ak : (ak, yk) ∈ Ii}+min{ak : (ak, yk) ∈ Ii+1}

2

}
.

It is easy to observe that, for i ∈ [s− 1]587

IG(A, (max{ak : (ak, yk) ∈ Ii}+min{ak : (ak, yk) ∈ Ii+1}/ 2) = IG(A, (ci + ci+1)/2) ,

where ci is the identical ciphertext for those elements in ∈ Ii, and we complete the proof.588

We also give the following theorem to show that our encryption method in Algorithm 1 could also589

preserve the minimum Gini impurity over encrypted data.590
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Theorem 5. We have I∗G(A) = I∗G(Â), for re-sort dataset A by Eqn. (3) and for the corresponding591

encrypted dataset Â = {(Ja⟨1⟩K1, y⟨1⟩), · · · , (Ja⟨n⟩K1, y⟨n⟩)} accroding to Algorithm 1.592

Proof. The alternative structure BT for binary search tree to maintain several samples on a node as593

shown in Section 3.2 keeps the property that the values of all nodes on the left subtree are less than594

the values of their root nodes while the values of all nodes on the right subtree are larger than the595

values of their root nodes. In this way, we can obtain a monotone increasing sequence I1, I2, · · · , Is596

by inorder traversing the built Tree BT in Algorithm 1. Each Ii for j ∈ [s] contains several samples597

as follows:598

I1 =
{
(a⟨1⟩, y⟨1⟩), · · · , (a⟨k1⟩, y⟨k1⟩)

}
I2 =

{
(a⟨k1+1⟩, y⟨k1+1⟩), , · · · , (a⟨k2⟩, y⟨k2⟩)

}
(18)

· · ·
Is =

{
(a⟨ks−1+1⟩, y⟨ks−1+1⟩), · · · , (a⟨n⟩, y⟨n⟩)

}
,

where a⟨i′⟩ < a⟨j′⟩ when (a⟨i′⟩, y⟨i′⟩) ∈ Ii, (a⟨j′⟩, y⟨j′⟩) ∈ Ij and i < j. What’s more, the data in599

each sequence Ii have only the following two cases:600

(1) all samples have an identical label in one sequence Ij (j ∈ [s]), i.e., y⟨i⟩ = y⟨i′⟩ for every601

(a⟨i⟩, y⟨i⟩), (a⟨i′⟩, y⟨i′⟩) ∈ Ij .602

(2) all samples have an identical value in one sequence Ij (j ∈ [s]), i.e., a⟨i⟩ = a⟨i′⟩ for every603

(a⟨i⟩, y⟨i⟩), (a⟨i′⟩, y⟨i′⟩) ∈ Ij .604

Thus, we can use Theorem 1 to proof the I∗G(A) = I∗G(Â) for the case(1) which includes this situation.605

Then for the case(2), as the value in each Ij (j ∈ [s]) is identical, this split value has been preserved606

and will not change the minimum Gini-impurity of random forests, thus I∗G(A) = I∗G(Â) as well.607

608

C Proof of Theorem 3609

Here, we give a proof of security against Gini-impurity-preserving chosen plaintext attack of our610

encryption scheme on the JaK1 of Section 3.3 , while the security of homomorphic encryption CKKS611

on the JaK2 can be found in [41] and has a higher security. We prove by constructing a simulator of612

the encryption that produces identical outputs for each of the two challenge sequences following [73].613

Our simulator proceeds as follows. The adversary sends two sequences of distinct plaintexts614

{a01, a02, · · · , a0n} and {a11, a12, · · · , a1n} to a challenger. The simulator simulates the unbiased coin615

by the random source, i.e. the random source could be replaced by hash functions (a random oracle),616

to select sequence {ab1, ab2, · · · , abn} and randomly set their corresponding labels {yb1, yb2, · · · , ybn}617

with each ybi drawn independently and uniformly over [τ ].618

Given the sequence {ab1, ab2, · · · , abn} and the corresponding labels {yb1, yb2, · · · , ybn}, the simulator619

needs to compute the ciphertexts. The simulator first re-sorts the sequence {ab1, ab2, · · · , abn} and620

gets a non-decreasing order {ab⟨1⟩, a
b
⟨2⟩, · · · , a

b
⟨n⟩} where ab⟨1⟩ ≤ ab⟨2⟩ ≤ · · · ≤ ab⟨n⟩ according to621

Eqns. (3). Then, the simulator gets the partitions Ĩb = {Ib1, Ib2, · · · , Ibs} according to Eqns. (4) with622

Ib1 =
{
(ab⟨1⟩, y

b
⟨1⟩), · · · , (a

b
⟨i1⟩, y

b
⟨i1⟩)

}
Ib2 =

{
(ab⟨i1+1⟩, y

b
⟨i1+1⟩), , · · · , (a

b
⟨i2⟩, y

b
⟨i2⟩)

}
· · ·

Ibs =
{
(ab⟨is−1+1⟩, y

b
⟨is−1+1⟩), · · · , (a

b
⟨n⟩, y

b
⟨n⟩)
}

.

It is easy to see that the results of dataset partitions Ĩb for {a01, a02, · · · , a0n} and {a11, a12, · · · , a1n}623

with the selected {yb1, yb2, · · · , ybn} are consistent. Once the dataset partition Ĩb has been determined,624

the simulator encrypts the selected plaintext sequences {ab1, ab2, · · · , abn} with the dataset partitions625
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Algorithm 5 Simulator encryption

Input: {ab1, · · · , abn} and Ĩb = {Ib1, · · · , Ibs}
Output: Built tree BT and ciphertexts {Jab1K, Jab2K, · · · , JabnK}

1: for i ∈ [n] do
2: t= root of BT , index=1
3: while t is an internal node and index==1 do
4: index=0
5: if Ibt > Ibj (abi ∈ Ibj ) then
6: t = t.left, index=1
7: else if Ibt < Ibj (abi ∈ Ibj ) then
8: t = t.right, index=1
9: end if

10: end while
11: Update t.cipher2 = Enc(kpub, |t.samples|), and set JabiK = (t.cipher1, t.cipher2)
12: end for

Ĩb by the binary search tree BT as shown in Algorithm 5. While it encrypts abi and finally stores abi626

in BT , it also stores Ibj (j ∈ [s]) in node of BT , i.e. for each node t in the tree BT we also know Ibt .627

While the output of Algorithm 5 is deterministic with the dataset partitions Ĩb, when we set the628

same random seed in Algorithm 1, the output between Algorithm 5 with Ĩb and Algorithm 1 with629

corresponding {yb1, yb2, · · · , ybn} is indistinguishable. Thus, the simulator produces the same output630

for both sequences {a01, a02, · · · , a0n} and {a11, a12, · · · , a1n}, and the probability that the adversary631

wins GameGIPCPA against our encryption is negligible larger than 1/2. When we set different random632

seeds in Algorithm 1, the probability that the adversary wins GameGIPCPA against our encryption will633

also negligible larger than 1/2, while it has higher security.634

D Experimental Details635

Experimental Settings636

Here we give the address of the the comparison methods we used in Section 5. The method without637

given the address is that the code is not published, and we have reproduced the code according to the638

content of its paper.639

• PPD-ERTs 2 : The PPD-ERTs method is based on the extremely randomized trees algorithm640

for learning from distributed structured data. The data is assumed to be horizontally parti-641

tioned. To share partial information with the mediator, parties employ a secure multiparty642

computation layer on top of distributed ERT, which is robust to k colluding parties;643

• PivotRFs 3 : The PivotRFs method is a private and efficient solution for tree-based models644

which under the vertical federated learning setting. The solution is based on a hybrid of645

threshold partially homomorphic encryption and secure multiparty computation techniques;646

• MulPRFs4: The MulPRFs method is based on the original random forest [1] with the secure647

multiparty computation library MP-SPDZ, and we take the sh2 protocol which supports648

semi-honest two-party computation to run this method;649

• AnonyRFs 5: The AnonyRFs method trains the random forests based on anonymization650

library Mondrian which is a top-down greedy data anonymization algorithm for relational651

dataset, and proposed by LeFevre et al. [66];652

• DiffPrivRFs 6 : The DiffPrivRFs method adopts random forests based on differential privacy653

library Diffprivlib which is a general-purpose library for experimenting with, investigating654

and developing applications in, differential privacy;655

2The code is taken from https://github.com/AminAminifar/kPPDERT_cloud.
3The code is taken from https://github.com/nusdbsystem/pivot.
4The code is taken from https://github.com/csiro-mlai/decision-tree-mpc.
5The code is taken from https://github.com/qiyuangong/Mondrian.
6The code is taken from https://github.com/IBM/differential-privacy-library.
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Table 4: Hyperparameters of all tree ensemble models used in our experiments. ‘NP’ means that no applicable
parameters in corresponding method(max_bin denotes the maximun splitting point of each feature).

Parameter Our Work PPD-ERTs HEldpRFs PivotRFs MulPRFs AnonyRFs DiffPrivRFs original RFs

max_depth None None 5 4 None None None None

n_estimators 100 100 100 100 100 100 100 100

max_features ⌊
√
d ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋

differentia privacy level ϵ NP NP NP NP NP NP 1 NP

anonymization parameter k NP NP NP NP NP 10 NP NP

multi-party size p 2 2 2 2 2 NP NP NP

max_bin NP NP NP 16 NP NP NP NP

Table 5: The hyperparameters of minimum samples α to split a leaf of all tree ensemble models for all datasets
used in our experiments.

Parameter wdbc cancer breast diabetes german adver bibtex phpB0 pendigits phish

α 10 10 10 10 10 10 10 10 10 10

Parameter ailerons house a9a amazon bank adult mnist miniboone runwalk covtype

α 10 100 100 100 100 100 100 100 100 100

• original RFs 7: The orignal plaintext random forests [1] implemented by sklearn.656

Then we give the hyperparameters used in our experiments which are summarized in Table 4 and657

Table 5. Except for n_estimators and minimum samples α to split a leaf, the other values were copied658

from their original works [50, 66, 70, 71, 79].659

Average Compression Ratio660

Here, we focuses on the evaluation of the effectiveness of Gini-impurity preserving encryption in661

terms of compression ratio, which is a key factor in data security and privacy. The compression662

ratio measures the extent to which the size of the feature space can be reduced without significant663

information loss. In Table 2, we provide details of the datasets used in our experiments, which include664

a diverse range of data types and sizes. We assess the compression performance of our method by665

comparing the feature space size before and after encryption, as illustrated in Figure 4.666

The results show that the average compression ratio achieved across the 20 datasets is 66%, indicating667

a significant reduction in feature space size while retaining the minimal Gini-impurity of the original668

data. Notably, our method achieves a compression rate of 0.6% on the runwalk dataset, which is a669

substantial improvement in terms of data security and privacy. These findings highlight the potential670

of our approach to enable efficient and effective encryption of sensitive data in various applications.671

For further observation, we aimed to test the efficacy of our Gini-impurity preserving encryption672

method on the UCI iris dataset. The iris dataset is a widely used benchmark dataset in machine673

learning and consists of 4 attributes: sepal length, sepal width, petal length, and petal width, each with674

a varying number of distinct values. To evaluate the impact of our encryption method, we applied it675

to the iris dataset and compared the number of distinct values before and after encryption for each676

attribute.677

Our results in Table 6 indicate that the number of distinct values decreases significantly after678

encryption, with the largest reduction observed for sepal width. This reduction in the number679

of distinct values is a direct result of our many-to-one mapping approach, which compresses the680

range of plaintext values. The minimum compression rate observed in the iris dataset is 21.43%,681

demonstrating the effectiveness of our encryption algorithm in reducing the size of the plaintext682

dataset while preserving the Gini impurity. Overall, these findings suggest that our encryption method683

may be a useful tool for protecting sensitive data in machine learning applications.684

7The code is taken from https://github.com/scikit-learn/scikit-learn.
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Figure 4: Average compression ratio of the feature space for datasets in Table 2 before and after our Gini-
impurity preserving encryption.

Table 6: Number of attribute values in Iris datasets.

Attribute Size(plaintext) Size(ciphertext) compression ration

sepal length 34 24 70.58%

sepal width 22 19 86.36%

petal length 42 9 21.43%

petal width 21 7 33.33%

Running Time685

To provide a clear comparison of the efficiency of our method in Section 4 with other existing methods,686

we have conducted a comprehensive analysis of the computational time required for training. In687

particular, we have compared the orders of magnitude improvement in runtime of training which688

achieved by our approach with other state-of-the-art methods, which is presented Table 7.689

For prediction inference, we also give the running time comparisons(in seconds) for different methods690

as shown in Figure 5. The results show that our encrypted random forests could take comparable691

running time with original random forests, AnonyRFs and DiffPrivRFs, as for our Gini-impurity692

preserving encryption method only requires O(h) time complexity without other additional operations,693

where O(h) denotes the height of binary search tree BT .694

Furthermore, when considering the computational time required for the trained model obtained in695

106 seconds (almost 11.6 days), our encrypted random forests show superior efficiency compared696

to other methods, such as MulPRFs, PPD-ERTs, PivotRFs, and HEldpRFs. This is due to the fact697

that MulPRFs, PivotRFs, and PPD-ERTs require expensive communication costs for multi-parity698

computation, while HEldpRFs incur heavy computation costs on the HE scheme. We have also699

provided a detailed analysis of the orders of magnitude improvement achieved by our approach700

compared to other methods for prediction inference in Table 8.701

Security702

In this supplementary experiment, we aim to further investigate the security of the our Gini-impurity703

preserving encryption method, and present the rest results of the fourteen datasets with random704

selection of one-dimensional features, and trends are similar on other dimensions, as depicted in705

Figure 6. We compare our Gini-impurity-preserving scheme with other four encryption methods:706

differential privacy [79], anonymization [66], order-preserving scheme [82] and HE scheme [41].707

To achieve this, we take the bitwise leakage matrices to measure the security as in [83], and we first708

discretize and scale the feature space values to integers within the range of [0, 27]. Then we select709

200 samples from each dataset and evaluate the security of the feature space. The primary objective710
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Table 7: The orders of magnitude improvement compared to other approaches in Figure 2. ‘NA’ means that no
results were obtained after running out 106 seconds (about 11.6 days).

Dataset Our encrypted RFs Original RFs AnonyRFs DiffPrivRFs PPD-ERTs PivotRFs MulPRFs HEldpRFs

wdbc 1 10−3× 10−3× 10−3× 2× 10× 25× 400×
cancer 1 10−3× 10−3× 10−3× 1.5× 10× 20× 300×
breast 1 10−3× 10−3× 10−3× 2× 13× 30× 103×

german 1 10−3× 10−3× 10−3× 2× 18× 40× 3000×
diabetes 1 10−3× 10−3× 10−3× 2× 15× 25× 850×

adver 1 10−3× 10−3× 10−3× NA 475× NA NA

bibtex 1 10−3× 10−3× 10−3× NA 328× NA NA

phpB0 1 10−3× 10−3× 10−3× NA NA NA NA

pendigits 1 10−4× 10−4× 10−4× 2× 25× NA NA

phish 1 10−3× 10−3× 10−3× 1× 139× 848× NA

ailerons 1 10−4× 10−4× 10−4× 1× 31× 40× NA

house 1 10−4× 10−4× 10−4× 1× 31× 38× NA

a9a 1 10−3× 10−3× 10−3× 1× 453× 762× NA

amazon 1 10−4× 10−4× 10−4× 1× 51× 31× NA

bank 1 10−4× 10−4× 10−4× 1.5× 149× 220× NA

adult 1 10−3× 10−3× 10−3× 2× 211× 276× NA

mnist 1 10−4× 10−4× 10−4× NA NA NA NA

miniboone 1 10−4× 10−4× 10−4× 2× 35× NA NA

runwalk 1 10−4× 10−4× 10−4× 2× 35× NA NA

covtype 1 10−3× 10−3× 10−3× 1× NA NA NA

Figure 5: Comparisons of the prediction phase’s running time (in seconds) for different methods. Notice that
the y-axis is in log-scale.

of this experiment is to safeguard as many bits of the plaintexts as possible. The security analysis is711

conducted by plotting the results on a color map, while the x-axis represents the individual bits from712

1 to 7, while the y-axis indicates the rank of the 200 sampled datasets.713

The color gradient, ranging from white to red, represents the degree of security, where a lower714

security degree is associated with white, and the highest security degree is represented by red. To715

ensure consistency in our results, we have scaled the security degree values to the range of [0,1]. For716

instance, a security degree of 0 with color white indicates that there is no security, while a security717

degree of 1 with color red suggests the highest level of security.718

As expected, the HE scheme presents the highest security, yet with heavy computational costs,719

for example, no results are obtained for datasets of size exceeding 3000 even after running out 106720

seconds. It is also observe that our scheme presents higher security than the other three schemes, since721

those schemes simply present perturbations, compression or preserve the entire order information722

regardless of learning ingredients. In comparison, our scheme could make a good balance between723

security and computational cost. Through this experiment, we aim tow provide a more comprehensive724

understanding of the security of our method and identify areas for further improvement.725
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Table 8: The orders of magnitude improvement compared to other approaches in Figure 5. ‘NA’ means that no
results were obtained after running out 106 seconds (about 11.6 days).

Dataset Our encrypted RFs Original RFs AnonyRFs DiffPrivRFs PPD-ERTs PivotRFs MulPRFs HEldpRFs

wdbc 1 3× 3× 3× 38× 1, 220× 93× 4, 000×
cancer 1 28× 29× 25× 360× 11, 052× 851× 41, 911×
breast 1 25× 31× 27× 308× 11, 631× 776× 44, 736×

german 1 4× 5× 4× 115× 2, 615× 421× 9, 615×
diabetes 1 42× 35× 41× 411× 18, 142× 1, 642× 64, 285×

adver 1 3× 4× 10× NA 3, 821× NA NA

bibtex 1 1× 1× 1× NA 1, 528× NA NA

phpB0 1 4× 4× 4× NA NA NA NA

pendigits 1 6× 6× 10× 2384× 18, 947× NA NA

phish 1 5× 8× 6× 1, 966× 1, 7619× 2, 604× NA

ailerons 1 6× 9× 8× 1, 581× 30, 200× 3, 600× NA

house 1 6× 9× 8× 1, 581× 30, 400× 3, 600× NA

a9a 1 6× 10× 8× 5, 482× 27, 000× 3, 250× NA

amazon 1 10× 12× 12× 2, 208× 54, 500× 7, 500×NA NA

bank 1 14× 18× 20× 5, 637× 75, 500× 10, 000× NA

adult 1 4× 5× 4× 1, 967× 22, 054× 2, 876× NA

mnist 1 2× 3× 2× NA NA NA NA

miniboone 1 6× 9× 9× 1, 800× 75, 000× NA NA

runwalk 1 12× 18× 26× 2, 413× 84, 000× NA NA

covtype 1 7× 10× 8× 2, 943× NA NA NA

E Proof of Bitwise Leakage726

In this section, we present an extensive and rigorous security analysis for various methods utilized727

in our study. Specifically, we provide a comprehensive evaluation of the security properties of our728

Gini-impurity preserving methods, full homomorphic encryption, anonymization technique, and729

differential privacy methods. The security analysis is conducted in feature space of datasets with the730

bitwise leakage matrix proposed by [83]. Our methodology involves utilizing the bitwise leakage731

profile of plaintexts obtained from both the revealed rank and the adversary’s auxiliary knowledge.732

By integrating these two sources of information, we are able to provide a more robust and accurate733

evaluation of the security properties of the aforementioned methods. The resulting analysis provides734

valuable insights into the strengths and weaknesses of each method, and enables us to make informed735

decisions regarding their selection and deployment in real-world scenarios.736

In this context, by assuming the input domain to be discrete and finite, we are considering a well-737

defined set of inputs with a predetermined size. The input domain is denoted by X = [0, 2m−1],738

which means that the input size is m bits, and the domain ranges from 0 to 2m−1. We also assume739

that the true input distribution is represented by D, which captures the probability distribution of740

inputs in the input domain. Moreover, the dataset X = {x1, . . . , xn} contains n data points, with741

each point sampled independently and identically from the true input distribution D.742

The adversary A possesses two types of knowledge to achieve its goal of recovering plaintexts:743

• auxiliary knowledge about a distribution D′ over the input domain X [84], which provides744

additional information to the adversary.745

• ciphertexts C corresponding to X , which represents the snapshot of the encrypted data store,746

as described in Fuller et al. [85].747

The adversary’s objective is to recover as many bits of the plaintexts as possible. To represent the748

plaintexts in X , we use X(i) to denote the plaintext with rank i in X , and X(i, j) to represent the749

j-th bit of X(i), with i ∈ [n], j ∈ [m]. The adversary’s guess for X(i, j) through the auxiliary750

knowledge distribution D′ is represented by b(i, j) as follows:751

b(i, j) = arg max
b∈{0,1}

PrD′ (X(i, j) = b) =

{
0 for ED′ [X(i, j)] ≤ 1/2
1 for ED′ [X(i, j)] > 1/2 ,
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Figure 6: Comparisons of the security degree for the feature space through the bitwise leakage matrix.

for i ∈ [n] and j ∈ [m]. The adversary aims to maximize the number of correct guesses for X(i, j)752

using the auxiliary knowledge D′. Then we denote by L a n×m matrix with753

L(i, j) = Pr
(
X(i, j) = b(i, j)|D,D′) ,

for i ∈ [n] and j ∈ [m], and the fact shows that (the detailed can be found in [83])754

PrD (X(i, j) = b) =
∑
s∈Sj

b

PrD (X(i) = s) ,

where i ∈ [n], j ∈ [m], b ∈ {0, 1}, and sj denotes the j-th bit of s and Sj
b = {s|s ∈ X and sj = b}.755

Then, we have756

L(i, j) = Pr (X(i, j) = b(i, j)|D,D′) =
∑
s∈Sj

b

PrD (X(i) = s) .

The variable L denotes the probability that an adversary can accurately determine the j-th bit of757

the plaintext with a given rank i. This metric can be considered as a measure of the information758

security of the ciphertexts C, in the sense that a lower value of L signifies a higher degree of security.759

Specifically, the bitwise information security of C can be quantified as 1-L, as demonstrated in760

Section 5 of the security analysis. The use of this metric allows for a rigorous and quantitative761

evaluation of the security properties of the encryption scheme under consideration.762

The analysis of the bitwise leakage matrix L is of paramount importance in evaluating the security763

level of Gini-impurity-preserving encryption. In this regard, we present a comprehensive study of764

L, where we examine its various properties and characteristics. Specifically, we investigate the765

correlation between the elements of L and the plaintext, ciphertext, and secret keys. Furthermore,766

we explore the impact of different encryption parameters on the structure and behavior of L. Our767

analysis reveals that the leakage pattern of L is highly dependent on the specific encryption scheme768

used, and hence, it is crucial to carefully design and select the appropriate encryption scheme to769

minimize the risk of information leakage.770

Here we provide analysis for the bitwise leakage matrix L of our Gini-impurity-preserving encryption771

as follows.772

Theorem 6. If plaintexts X are encrypted by our Gini-impurity-preserving encryption, for all773

i ∈ [n], j ∈ [m], we have774

L(i, j) = Pi,j

∑
s∈Sj

b

PrD (X(i) = s) + negl. ,
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where ‘negl.’ denotes the negligible number and775

Pi,j =
∑

m∈[i,n−k+i]

I(B(X(m), j) = X(i, j))

n− k + 1
,

and B(x, j) denotes the j-th bit’s value of x.776

Proof. Let C(i) denotes the ciphertext with rank i and corresponding to the dataset Ii, for i ∈ [k]777

(defined by Eqn. (4)). For our Gini-impurity-preserving encryption, multiple plaintexts can be778

transferred into one ciphertext as Eqn. (5). Therefore, the i-th ciphertext C(i) will corresponding to779

multiple plaintexts. Then the adversary has to guess the true plaintext X(i) of ciphertext C(i). Since780

the adversary only knows that there are i − 1 ciphertexts smaller than C(i), and k − i ciphertexts781

larger than C(i), the adversary will guess the plaintext X(i) from782

{X(m)|m ∈ [i, n− k + i]}

with the same probability. In this way, the probability of adversary correctly guessing X(i, j) is783

Pi,j =
∑

m∈[i,n−k+i]

I(B(X(m), j) = X(i, j))

n− k + 1
,

where X(m) denotes the m-th plaintext in X (rank m) for m ∈ [n], and B(x, j) denotes the j-th784

bit’s value of x, and b(i, j) denotes the adversary’s guess for X(i, j) through the auxiliary knowledge785

D′ as follows:786

b(i, j) = arg max
b∈{0,1}

PrD′ (X(i, j) = b) =

{
0 for ED′ [X(i, j)] ≤ 1/2
1 for ED′ [X(i, j)] > 1/2 .

Thus the probability for the adversary correctly identifies the j-th bit of the plaintext with rank i is787

L(i, j) = Pi,j PrD (X(i, j) = b(i, j)) + negl. = Pi,j

∑
s∈Sj

b

PrD (X(i) = s) + negl. ,

where ‘negl.’ denotes the negligible number, i ∈ [n], j ∈ [m], b ∈ {0, 1}, and sj denotes the j-th bit788

of s and Sj
b = {s|s ∈ X and sj = b}. Then we will use the computation of PrD (X(i) = s) in Roy789

et al. [83] to formalize the bitwise leakage matrix L.790

Lemma 7. Let D denotes an input distribution and X = {x1, . . . , xn} denotes a dataset of size n791

with each data point sampled i.i.d. from D, then we have792

PrD (X(i) = x′) =

n∑
j=n−i+1

(
n

j

)
(PrD (x < x′))

n−j
(PrD (x = x′))

j for PrD (x > x′) = 0 ,

and793

PrD (X(i) = x′) =

n∑
j=i

(
n

j

)
(PrD (x = x′))

j
(PrD (x > x′))

n−j for PrD (x < x′) = 0 ,

and otherwise794

PrD (X(i) = x′) =

n∑
j=1

min{i,n−j+1}∑
k=max{1,i−j+1}

(
n

k − 1, j, n− k − j + 1)

)
∆k−1,j,n−k−j+1 .

where795

∆k−1,j,n−k−j+1 = (PrD (x < x′))
k−1 · (PrD (x = x′))

j · (PrD (x > x′))
n−k−j+1

We calculate the bitwise leakage matrix L with Theorem 6 and Lemma 7 and complete the proof.796

We then provide similar analysis for bitwise leakage matrix L for ϵ-local differential privacy.797

26



Theorem 8. If plaintexts X are processed by ϵ-local differential privacy, then for all i ∈ [n], j ∈ [m],798

we have:799

L(i, j) =
Pr (X(i, j) = b(i, j)) + Pr (X(i, j) = X ′(i, j))

2
+ negl.

where ‘negl.’ denotes the negligible number and800

b(i, j) = arg max
b∈{0,1}

PrD′ (X(i, j) = b) =

{
0 if ED′ [X(i, j)] ≤ 1/2 ,
1 if ED′ [X(i, j)] > 1/2 ,

and X ′(i, j) denotes the j-th bit of the ϵ-local differential privacy disturbed data with rank i in X ′.801

Proof. It is important to note that the ϵ-differential privacy method is not a form of data encryption.802

Instead, it employs a statistical technique that adds random noise to the data in order to protect803

the privacy of individuals in the dataset. Specifically, we are concerned with ϵ-local differential804

privacy, which involves adding noise to each individual value. This approach means that an adversary805

attempting to infer the original plaintext X(i) must rely on the ϵ-differential privacy altered data806

X ′(i) and the auxiliary knowledge distribution D′.807

In the case of the j-th bit of plaintext X(i), the adversary will attempt to guess the i-th plaintext’s808

j-th bit X̃(i, j) through a process of deduction based on the available information as follows:809

X̃(i, j) =


1 for b(i, j) = 1 and X ′(i, j) = 1 ,

0 for b(i, j) = 0 and X ′(i, j) = 0 ,

randomly select from{0, 1} otherwise .

Hence, we can calculate the bitwise leakage based on the probability Pr
(
X(i, j) = X̃(i, j)

)
, and810

we have811

Pr
(
X(i, j) = X̃(i, j)

)
=

Pr (X(i, j) = b(i, j)) + Pr (X(i, j) = X ′(i, j))

2
,

thus we complete the proof. It is worth emphasizing that differential privacy is a well-established812

framework for protecting the privacy of sensitive data, and its use is supported by a significant body813

of theoretical and empirical researches.814

In order to gain a deeper understanding of the security of the k-anonymous algorithm, we will conduct815

an analysis of the bitwise leakage matrix L. This matrix represents the amount of information leakage816

that occurs when the original data X is compressed into m partitions K1,K2, · · · ,Km by the k-817

anonymous algorithm as follows:818

K1 = {X(1), X(2), · · · , X(k1)}
K2 = {X(k1 + 1), X(k1 + 2), · · · , X(k2)}

· · ·
Km = {X(km−1 + 1), X(km−1 + 2), · · · , X(n)} .

This process effectively obscures the identities of the individuals in the data set, making it more819

difficult for an attacker to re-identify them. However, it is important to assess the level of information820

leakage that occurs during this process. The bitwise leakage matrix L is used to quantify the amount821

of information that can be inferred about an individual from the partitions they belong to. By822

analyzing this matrix, we can determine the level of privacy that is maintained by the k-anonymous823

algorithm and identify any potential vulnerabilities that could be exploited by an attacker. Then we824

give the bitwise leakage matrix L analysis for k-anonymous algorithm as follows.825

Theorem 9. If plaintexts X are processed by k-anonymous algorithm, then for all i ∈ [n], j ∈ [m],826

we have827

L(i, j) = Pr (X(i, j) = b(i, j)) + negl. ,
where ‘negl.’ denotes the negligible number, X(i, j) denotes the j-th bit of X(i) and X(i) ∈ Kt and828

b(i, j) = arg max
b∈{0,1}

{
∑
x∈Kt

I[B(x, j) = b] PrD′ (x)} ,

and B(x, j) denotes the j-th bit’s value of x under the binary representation.829
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Proof. The concept of k-anonymity is a privacy-preserving technique that aims to protect the identity830

of individuals in a dataset. It works by grouping together individuals with similar attributes and831

pooling their data in a larger group, thus making it difficult for an adversary to identify any specific832

individual in the group. The k-anonymity model ensures that each group has at least k individuals833

with the same attribute values, which further enhances the security of the data.834

When the original data X(i) is pooled in the group Kt, the adversary attempts to guess the j-th bit of835

the i-th plaintext using the auxiliary knowledge distribution D′ and Kt. To achieve this, the adversary836

guesses b(i, j), which is the value corresponding to the maximum probability of the j-th bit in group837

Kt as follows:838

b(i, j) = arg max
b∈{0,1}

{∑
x∈Kt

I[B(x, j) = b] PrD′(x)

}
.

Hence, the bitwise leakage can then be calculated based on the guess b(i, j). Overall, k-anonymity is839

an effective technique for preserving the privacy of individuals in a dataset. By grouping individuals840

with similar attributes, it pools their data in a larger group, making it difficult for an adversary to841

identify any specific individual in the group. This technique has many applications in fields such as842

healthcare, finance, and marketing, where sensitive information must be protected.843
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