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Exploring Deeper! Segment Anything Model with Depth
Perception for Camouflaged Object Detection

Anonymous Authors
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MedSAM Reversion
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Figure 1: Visual comparison between the results of our proposed DSAM and the MedSAM [25]. The left part reflects the role of Finer Module.
The missing part is re-mined by mask reversion operation and segmented with the help of depth features. The right part embodies the role of
Prompt-Deeper Module, which removes the segmented regions skillfully that show anomalies in the depth maps.

ABSTRACT
This paper introduces a new Segment Anything Model with Depth
Perception (DSAM) for CamouflagedObject Detection (COD). DSAM
exploits the zero-shot capability of SAM to realize precise segmenta-
tion in the RGB-D domain. It consists of the Prompt-Deeper Module
and the Finer Module. The Prompt-Deeper Module utilizes knowl-
edge distillation and the Bias Correction Module to achieve the
interaction between RGB features and depth features, especially
using depth features to correct erroneous parts in RGB features.
Then, the interacted features are combined with the box prompt in
SAM to create a prompt with depth perception. The Finer Module
explores the possibility of accurately segmenting highly camou-
flaged targets from a depth perspective. It uncovers depth cues in
areas missed by SAM through mask reversion, self-filtering, and
self-attention operations, compensating for its defects in the COD
domain. DSAM represents the first step towards the SAM-based
RGB-D COD model. It maximizes the utilization of depth features
while synergizing with RGB features to achieve multimodal com-
plementarity, thereby overcoming the segmentation limitations of
SAM and improving its accuracy in COD. Experimental results
on COD benchmarks demonstrate that DSAM achieves excellent
segmentation performance and reaches the state-of-the-art (SOTA)
on COD benchmarks with less consumption of training resources.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Computing methodologies → Object detection; Image seg-
mentation; Computer vision.

KEYWORDS
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1 INTRODUCTION
Segment Anything Model (SAM) [17] is a visual foundational model
with robust zero-shot capabilities and high versatility. It can seg-
ment a wide range of objects through various forms of interactive
prompts. However, for specific domains such as Camouflaged Ob-
ject Detection (COD), SAM does not perform well due to the de-
ceptive nature of objects in this domain, which differs significantly
from the SA-1B dataset used during training. Some studies have to
some extent overcome this issue and promoted the development
of SAM in the field of COD. Chen et al. [3] utilized adapter tech-
nology to provide SAM with relevant information for COD tasks,
enabling it to adapt to COD tasks. Ma et al. [25] took box prompts
as interactive prompts to fine-tune the mask decoder, achieving
progress in medical image domains and COD. However, SAM can-
not effectively segment highly disguised areas. One reason is that
current SAM-based COD work is limited to the RGB level, failing to
obtain semantic and structural information from highly disguised
components.

To solve this problem, this paper proposes a SAM-based RGB-D
COD model, the Segment Anything Model with Depth Perception
(DSAM) for Camouflaged Object Detection. Considering the large
depth disparity between the target and the background, DSAM
captures the semantic and structural features of the target from the
RGB-D perspective, compensating for the information loss caused
by heavy camouflage in the RGB domain. Meanwhile, DSAM fully
exploits the complementarity amongmultiple modalities to improve
segmentation performance. Specifically, two modules are proposed:

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the Prompt-Deeper Module (PDM) and the Finer Module (FM). Con-
sidering that depth maps may introduce some noise, some methods
are employed to suppress noise when designing the modules. By
using PVT, PDM initially extracts image features to derive student
embedding while using a frozen-parameter image encoder to ex-
tract depth maps features to generate teacher embedding. Through
knowledge distillation and the Bias Correction Module (BCM), the
student embeds depth information from the teacher and interacts
with its RGB information, achieving mutual information comple-
mentation between the two modalities. Additionally, distillation
is utilized to focus on learning the content of features instead of
changing the model size. Moreover, student embedding is combined
with the original box prompt to integrate depth information into
the prompt, and then a box-shaped interactive prompt with depth
perception capability emerges. Compared to directly integrating
depth information, our method greatly reduces the impact of noise
from depth maps , as illustrated in the right part of Fig. 1. This
transformation of the original box prompt into a depth-inclusive
box prompt improves the efficiency of interactive prompts.

Furthermore, there are instances of omissions in the SAM seg-
mentation prediction map, as demonstrated in the left part of Fig. 1.
To solve this problem, the FM employs mask reversion operations
to focus on the omitted parts of the SAM segmentation, and the
module adopts a two-stream to one-stream architecture. In the
two-stream structure, different strategies are employed for depth
embedding. Specifically, in stream 1, self-guided filtering [22] is
applied to focus on target edges through self-selection. In stream 2,
agent attention [9] is utilized to concentrate on target regions and
establish long-distance modeling. Then, through joint mining, the
two streams are combined, and further exploration is conducted
using agent attention in stream 2. Finally, PDM and FM are inge-
niously combined with SAM to propose DSAM. DSAM excavates
deep information and integrates a novel prompt endowed with
depth perception capabilities. It further segments overlooked por-
tions in SAM from the perspective of depth information, thereby
strategically enhancing SAM’s evaluation metrics in COD. Our
contributions are summarized as follows:

• DSAM, a variant of SAM with depth information tailored for
the COD domain is proposed. To the best of our knowledge,
DSAM is the first SAM-based RGB-D CODmodel. The model
explores the interaction between depth information and RGB
information in the COD domain under the SAM framework,
where this interaction serves a modal complementary role.

• Two modules in DSAM are proposed, namely PDM and FM.
PDM achieves mutual complementation of two modalities by
interacting through deep features and RGB features, leading
to a novel prompt endowed with depth perception capabili-
ties. By mining the depth cues of the overlooked segments
in SAM segmentation, FM compensates for the original pre-
diction results of SAM, thereby improving accuracy.

• DSAM is compared with 17 existing methods on COD bench-
mark datasets. In scenarios with limited training resources,
DSAM outperforms existing state-of-the-art (SOTA) meth-
ods. Meanwhile, to comprehensively demonstrate the perfor-
mance of DSAM, it is compared with the RGB-D model with
source-free depth, and DSAM exhibits superior metrics.

2 RELATEDWORK
2.1 Camouflaged Object Detection
In nature, animals employ camouflage as a protective mechanism
to avoid predators [4]. Because of the highly sophisticated disguise
techniques, COD has always been a challenging downstream task.
With the advancement of deep neural networks, various break-
throughs have promoted the development of COD. Pang et al. [28]
employed a zoom strategy to explore mixed-scale semantics, mining
cues between candidate objects and background context. Inspired by
human attention mechanisms, Jia et al. [16] proposed an iterative re-
finement framework, involving three stages: segment, magnify, and
reiterate, which yields promising results. Some work designed net-
works based on patterns of animal hunting (SINetV2 [7], SLSR [24],
PFNet [27]). Yang et al. [37] combined a probabilistic representa-
tion model with transformers and utilized uncertainty to guide
transformer inference for disguised object detection. In addition
to the efforts made from the RGB perspective, some studies delved
into the relationship between image depth from the RGB-D per-
spective and transformed the RGB COD task into an RGB-D COD
task. Xiang et al. [36] first proposed the potential contribution of
depth to COD, but a dedicated RGB-D dataset was lacking. The
depth maps used in this method contained considerable noise, so
it only served as an auxiliary branch rather than being directly
integrated. In recent studies, Bi et al. [2] introduced a dynamic
allocation mechanism during the fusion process of depth maps,
and they employed a criterion termed as depth alignment index.
Liu et al. [23] proposed a multi-scale fusion approach to suppress
the interference of inaccurate depth maps on camouflage target
detection. In the aforementioned approaches based on RGB-D COD,
the direct fusion of depth maps is commonly used, which inevitably
introduces certain levels of noise. In this paper, knowledge distil-
lation is employed to learn depth information from depth maps,
and an indirect approach is utilized to interact RGB information
with depth information, aiming to reduce the noise introduced into
depth maps.

2.2 Camouflaged Object Detection based SAM
The proposal of SAM brings a highly versatile and strongly gener-
alizable visual foundational model to the field of computer vision.
However, when SAM is applied to specific downstream tasks such
as COD and medical image segmentation, the issue of low seg-
mentation accuracy cannot be ignored. This issue is due to the
significant domain gap between the dataset used for SAM train-
ing and the specific downstream domain dataset. Also, directly
applying SAM lacks semantic guidance in that domain. The litera-
ture [14] investigated SAM’s effectiveness in concealed scenarios
and concluded that SAM is inexperienced in such contexts. Tang et
al. [32] directly investigated COD and pointed out that SAM has
limited performance on the COD task. Recently, researchers are
attempting to fill this gap. In weakly-supervised concealed object
segmentation, He et al. [11] utilized sparse annotations provided
by SAM as cues for mask segmentation in model training. Chen et
al. [3] integrated domain-specific information into the model using
adapters. However, the aforementioned CODmodels based on SAM
mainly address information at the RGB level, which complicates
the segmentation of highly deceptive regions. In this paper, the
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Figure 2: Overview of our DSAM framework. It mainly includes three parts: SAM, the Prompt Deeper Module (PDM), and the Finer Module
(FM). PDM consists of the Bias Correction Module (BCM), the Prompt Fuse Module (PFM) and Discrete Wavelet Transform (DWT). Regarding
modules in SAM and PVT, the parameters in the module with snowflake are fixed, while the parameters in the module with spark can be
optimized by training. In order to enhance the comprehensibility of the figure, we annotate the sources of the inputs to FM with arrows. Purple
arrows indicate that 𝑃𝑟𝑒𝑑𝑆𝐴𝑀 originates from the output of SAM. Blue arrows represent depth embedding originating from the intermediate
embedding of the PDM.

formidable camouflage characteristics in the field of COD are ad-
dressed from the RGB-D perspective to avoid superb camouflage
techniques in the RGB domain. By exploiting depth information,
the development of SAM in the COD domain is further promoted.

3 METHODOLOGY
3.1 Overall Architecture
Fig. 2 illustrates the overall architecture of the proposed DSAM.
The entire model consists of three components: SAM, PDM, and
FM, where the latter two are pivotal. Overall, two improvements
are made to SAM: the box prompt is upgraded to a box prompt
with depth perception capability, and the prediction maps of SAM
segmentation are refined. First, the image is fed into SAM. In SAM,
this study employs a strategy wherein the parameters of the image
encoder and prompt encoder are kept static, while those of the mask
decoder undergo fine-tuning [25]. This strategy retains the pow-
erful feature extraction capability of SAM, reduces computational
complexity, and adapts to downstream tasks. Then, the box prompt
is refined to obtain a box prompt enriched with depth perception
by PDM through information interaction between RGB and depth.
Compared to existing fusion-based methods, less noise is generated
during the depth acquisition via PDM, resulting in enhanced utiliza-
tion of depth information. Then, SAM generates prediction maps by
using the new box prompt. To further enhance the accuracy of SAM
in COD, our strategy targets the often neglected segments within
SAM segmentation. To re-segment these regions, FM is designed to
complement the segmentation of the predicted image by extracting

deep features from the overlooked segments. By adequately inte-
grating and exploiting the depth information and RGB information
through PDM and FM, the segmentation accuracy of SAM in COD
is further enhanced.

3.2 Prompt Deeper Module
PDM is designed to explore the reasonable interaction between RGB
features and depth features while suppressing noise in the depth
map. In PDM, images (𝐼 ) are processed using PVT [34] (𝑇𝑖𝑚𝑎𝑔𝑒 ) and
Bias Correction Module (BCM) to extract features for obtaining
student embedding (𝐸𝑚𝑠 ), while depth maps (𝐷) are processed a
frozen-parameter image encoder (𝑇𝑑𝑒𝑝𝑡ℎ) to extract features for
obtaining teacher embedding (𝐸𝑚𝑡 ). The adoption of PVT for ob-
taining student embedding, instead of relying on a frozen image
encoder, serves dual purposes: it provides the student embedding a
broader scope for learning adjustments and PVT demonstrates supe-
rior feature extraction capabilities compared to image encoder [34].
After passing through knowledge distillation and BCM, student
embedding learns depth information from teacher embedding and
interacts with RGB information to achieve complementary effects.
Knowledge distillation is usually used to distill information from
large models, but our purpose in using it is to perform learning
between different features. Beyond this, the depth maps are not
obtained through depth sensors, so they inevitably contain noise.
If they are directly fused, the adverse noise effects introduced by
the depth map outweigh the beneficial depth information. There-
fore, this study does not adopt direct fusion but instead employs a
completely new approach: using knowledge distillation with depth
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embedding serving as the teacher and image embedding as the stu-
dent. The student learns depth features from the teacher through
knowledge distillation. This to some extent reduces the noise intro-
duced by directly fusing deep features. The process of knowledge
distillation and BCM is expressed as follows:

𝐸𝑚𝑡 = 𝑇𝑑𝑒𝑝𝑡ℎ (𝐷), (1)

𝐸𝑚𝑖 = 𝑇𝑖𝑚𝑎𝑔𝑒 (𝐼 ), (2)

𝐸𝑚𝑠 = 𝐷𝑜𝑤𝑛 (𝐶𝑃 (𝑃 (𝐸𝑚𝑖 ))) , (3)

𝐿𝑜𝑠𝑠𝐾𝐷 = 𝐿𝐶𝑊𝐷 (𝐸𝑚𝑡 , 𝐸𝑚𝑠 ), (4)
where 𝑃 represents the projection with a constant number of chan-
nels.𝐶𝑃 denotes channel projection, which involves the operations
of enlarging and shrinking the number of channels by dilated con-
volution. 𝐷𝑜𝑤𝑛 denotes the projection with decreasing number
of channels. 𝐿𝐶𝑊𝐷 represents channel-wise knowledge distilla-
tion [29]. The residual and sampling operations are omitted from
the above formulas for brevity. The frameworks of BCM and PFM
are shown in Fig. 3. Afterwards, the student embedding extracts
high-frequency information corresponding to edge details through
DWT [10], followed by fusion using the PFM and box prompt, lead-
ing to a new box prompt enriched with depth information. The
following are the formulas of integration:

𝐻𝐹 = 𝐷𝑊𝑇
(
𝑐𝑎𝑡 (𝐸𝑚𝑖 , 𝐸𝑚𝑠 )

)
(5)

𝑃𝑟𝑜𝑚𝑡𝑝𝑑𝑒𝑝𝑡ℎ = 𝑃𝐹𝑀 (𝐸𝑚𝑏 , 𝐻𝐹 ) = 𝐷𝐶
(
𝑐𝑎𝑡

(
𝐷𝐶𝑠 (𝐸𝑚𝑏 ), 𝐻𝐹

) )
(6)

where 𝑐𝑎𝑡 (·) denotes the join operation by channel dimension, 𝐸𝑚𝑏
represents the prompt embedding obtained from box prompt after
prompt embedding, 𝐻𝐹 denotes the part of high frequency, 𝐷𝐶 rep-
resents dilated convolution and 𝐷𝐶𝑠 represents being composed of
convolution. This leads to the formation of a box prompt embedded
with depth information.

3.3 Finer Module
SAM generates prediction by using a box prompt with depth infor-
mation. Furthermore, FM is proposed to delve into deep information
and segment the parts ignored by SAM to enhance the original pre-
diction results. Our focal is on the overlooked portions of SAM, and
there are two reasons behind this: firstly, owing to SAM’s proficient
zero-shot capability, it can adequately segment camouflaged targets.
By excluding these adequately segmented regions, our network can
concentrate more on exploring neglected areas, yielding a higher
efficiency; secondly, our network can reduce the size of the target
area with alleviated adverse effects of noise of depth maps. By ap-
plying the mask reversion operation [7], which involves reversing
the original prediction map generated by SAM (𝑃𝑟𝑒𝑑𝑆𝐴𝑀 ), the issue
of omitted regions can be addressed. FM employs a two-stream to
one-stream architecture. The depth embedding is divided into eight
segments along the channel dimension, and the inverted predic-
tion map within it is nested, thereby creating a feature with both
depth information and occluded positions. To comprehensively
explore depth information, both input channels are composed of
nested depth embedding, with each channel emphasizing different
measures. This process can be expressed as follows:

𝑅1 = Γ(𝐸𝑚𝑡 , 𝑝𝑟𝑒𝑑𝑆𝐴𝑀 ) (7)

𝑅2 = Γ(𝐸𝑚𝑡 , 𝑝𝑟𝑒𝑑𝑆𝐴𝑀 ) (8)
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Figure 3: Structure diagram of Bias Correction Module and Prompt
Fuse Module.𝐶𝑃 represents channel projection, including𝑈𝑝 𝑐𝑜𝑛𝑣
and 𝑑𝑜𝑤𝑛 𝑐𝑜𝑛𝑣.𝑈𝑝 𝑐𝑜𝑛𝑣 refers to convolution that increase the num-
ber of channels, while 𝑑𝑜𝑤𝑛 𝑐𝑜𝑛𝑣 refers to convolution that decrease
the number of channels. 𝐷𝐶𝑠 denotes the composition of convolu-
tion.

where Γ represents the operation of mask reversion and nesting the
inverted prediction map. 𝑅1 and 𝑅2 denote the original features in
stream 1 and stream 2, respectively. Then, the features are fed into
a dual-stream structure. In stream 1, 𝑅1 is processed by the guided
filter procedure (GFP) [22], and it is filtered to maintain the accuracy
of the target edges. To comprehensively explore deep information,
agent attention [9] (agent) is directly applied in stream 2 for long-
range modeling. Finally, the dual-stream structure is concatenated
into a single stream, followed by another round of agent attention
to extract useful information for an optimized prediction map.

𝑃𝑟𝑒𝑑𝐹𝑀 = 𝐽𝑀

(
𝐵𝐶

(
𝐺𝐹𝑃 (𝑅1)

)
+ 𝑎𝑔𝑒𝑛𝑡

(
𝐵𝐶 (𝑅2)

) )
, (9)

where 𝐽𝑀 denotes joint mining, including BC and agent attention.
To integrate the re-segmented maps of FM with the original maps
generated by SAM, a proportional summation approach is employed.
Then, the final predictive map of DSAM is obtained. The formula
is as follows:

𝑃𝑟𝑒𝑑𝑓 𝑖𝑛𝑎𝑙 = (1 − 𝛼)𝑃𝑟𝑒𝑑𝐹𝑀 + 𝛼𝑃𝑟𝑒𝑑𝑆𝐴𝑀 , (10)

where 𝛼 is a hyper-parameter to balance the original prediction
map of SAM and the prediction map of FM (see more details in
Sec. 4.4).

3.4 Framework Optimization
In this section, the composition of the entire network’s loss function
is introduced. While retaining SAM’s original loss function, this
study incorporates the distillation loss function from the PDMmod-
ule (𝐿𝑜𝑠𝑠𝐾𝐷 ), and the channel-wise knowledge distillation loss [29]
is utilized as the loss function for PDM. The channel-wise distilla-
tion loss utilizes softly aligned activation of corresponding channels,
fully leveraging the knowledge within each channel. SAM employs
the DiceCELoss (𝐿𝑜𝑠𝑠𝑆𝐴𝑀 ) as its loss function, which computes
the weighted sum of both the dice loss and cross-entropy loss. To
simultaneously optimize the corresponding parts of the network
for the two loss functions, this study adopts the approach of adding
these two functions together in appropriate proportions, forming
the loss function for DSAM. The specific formula is given below:

𝐿𝑜𝑠𝑠 = 𝛽𝐿𝑜𝑠𝑠𝑆𝐴𝑀 + (1 − 𝛽)𝐿𝑜𝑠𝑠𝐾𝐷 , (11)

where 𝛽 is a hyper-parameter to balance the original loss of SAM
and the distillation loss of PDM (see more details in Sec. 4.4).
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Figure 4: Comparison of our DSAM and other methods in COD. Our approach enables a more comprehensive segmentation of camouflaged
targets (row four and eight), while also exhibiting precise attention to detail (row one and three). DSAM achieves relatively satisfactory
segmentation results in multi-objective scenarios as well (row nine to eleven). Better to zoom in.

4 EXPERIMENTS
4.1 Dataset
Experiments are conducted on three widely recognized datasets,
namely CAMO [18], COD10K [7], and NC4K [24]. CAMO com-
prises 1250 images, divided randomly into a training dataset of 1000
images and a testing dataset of 250 images. COD10K contains 5066
images, with 3040 assigned to the training dataset and 2026 to the
testing dataset. NC4K contains a total of 4121 images. NC4K serves
as the testing dataset for experiments to evaluate the generalization
capability of DSAM. Following Fan et al. [7], our study adopts a
dataset that is composed of the training datasets of COD10K and
CAMO, which include 3040 images and 1000 images, respectively.
The remaining images of COD10K and CAMO, and the entire NC4K
dataset are used as the test dataset.

4.2 Experimental Setup
Implementation Details. DSAM is implemented using PyTorch,
and the Adam optimizer with a learning rate of 1𝑒−5 is utilized. To
achieve optimal performance, the model is trained in 100 epochs,
and the process is completed in ∼ 7.5 hours with a batch size of 8. In
particular, an NVIDIA 3080TI GPU device with 12 GB videomemory
is utilized, which has relatively modest requirements compared to

other methods. All the input images are scaled to 1024 × 1024
pixels through bilinear interpolation. Additionally, the input image
data are truncated and normalized to make the pixel values fall in
the appropriate range while maintaining the relative distribution
relationship of the data.

Evaluation Metrics. Six evaluation metrics are adopted, which
are widely used and recognized in the field of COD, including
structure measure (𝑆𝛼 ) [5], weighted F-measure(𝐹𝜔

𝛽
) [26], mean

F-measure [1], mean enhanced-alignment measure (𝐸𝑚
𝜙
) [6], max

enhanced-alignment measure (𝐸𝑥
𝜙
) and mean absolute error (𝑀).

Specifically, the structure measure measures the structural similar-
ity between the predicted results and the actual segmented regions.
The F-measure is the harmonic mean of precision and recall. The
enhanced-alignment measure evaluates the prediction result by
comparing the alignment relationship between the predicted value
and the actual value. The mean absolute error (MAE) is the average
absolute difference between predicted values and true values.

4.3 Comparisons
Here, COMPrompter is compared with SAM [17] and other ex-
isting COD algorithms, such as SINet [8], SLSR [24], 𝐶2FNet [30],
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2020
[8]

2021
[24]

2021
[30]

2021
[20]

2021
[37]

2021
[27]

2021
[38]

2022
[42]

2022
[21]

2022
[31]

2022
[28]

2022
[7]

2023
[16]

2023
[13]

2023
[12]

2023
[17]

2023
[25] -

CAMO

𝑆𝛼 ↑ 0.751 0.787 0.796 0.800 0.784 0.782 0.775 0.794 0.802 0.812 0.820 0.820 0.815 0.839 0.856 0.684 0.820 0.832
𝐹𝜔
𝛽

↑ 0.606 0.696 0.719 0.728 0.684 0.695 0.673 0.717 0.723 0.749 0.752 0.743 0.753 0.769 0.799 0.606 0.780 0.794
𝐹𝑚
𝛽

↑ 0.675 0.744 0.762 0.772 0.735 0.746 0.726 0.763 0.766 0.789 0.794 0.782 0.795 0.806 0.830 0.680 0.814 0.821
𝐸𝑚
𝜙

↑ 0.771 0.838 0.854 0.859 0.822 0.842 0.812 0.851 0.852 0.870 0.878 0.882 0.874 0.901 0.899 0.687 0.902 0.913
𝐸𝑥
𝜙
↑ 0.831 0.854 0.864 0.873 0.851 0.855 0.842 0.867 0.865 0.882 0.892 0.895 0.884 0.915 0.928 0.689 0.913 0.920

𝑀 ↓ 0.100 0.080 0.080 0.073 0.086 0.085 0.088 0.079 0.080 0.073 0.066 0.070 0.071 0.057 0.050 0.132 0.065 0.061

COD10K

𝑆𝛼 ↑ 0.771 0.804 0.813 0.809 0.817 0.800 0.814 0.818 0.827 0.831 0.838 0.815 0.833 0.822 0.851 0.783 0.841 0.846
𝐹𝜔
𝛽

↑ 0.551 0.673 0.686 0.684 0.666 0.660 0.666 0.699 0.707 0.722 0.729 0.680 0.724 0.693 0.735 0.701 0.751 0.760
𝐹𝑚
𝛽

↑ 0.634 0.715 0.723 0.721 0.712 0.701 0.711 0.738 0.741 0.753 0.776 0.718 0.757 0.728 0.769 0.756 0.782 0.789
𝐸𝑚
𝜙

↑ 0.806 0.880 0.890 0.884 0.853 0.877 0.852 0.891 0.894 0.901 0.888 0.887 0.899 0.896 0.895 0.798 0.917 0.921
𝐸𝑥
𝜙
↑ 0.868 0.892 0.900 0.891 0.890 0.890 0.890 0.901 0.905 0.911 0.911 0.906 0.906 0.911 0.930 0.800 0.926 0.931

𝑀 ↓ 0.051 0.037 0.036 0.035 0.036 0.040 0.035 0.034 0.033 0.033 0.029 0.037 0.034 0.033 0.026 0.049 0.033 0.033

NC4K

𝑆𝛼 ↑ 0.808 0.840 0.838 0.842 0.839 0.829 0.833 0.841 0.853 0.851 0.853 0.847 0.841 0.857 0.879 0.767 0.866 0.871
𝐹𝜔
𝛽

↑ 0.723 0.766 0.762 0.771 0.747 0.745 0.740 0.771 0.785 0.788 0.784 0.770 0.781 0.784 0.816 0.696 0.821 0.826
𝐹𝑚
𝛽

↑ 0.769 0.804 0.795 0.806 0.787 0.784 0.782 0.808 0.818 0.820 0.818 0.805 0.820 0.814 0.843 0.752 0.845 0.847
𝐸𝑚
𝜙

↑ 0.871 0.895 0.897 0.898 0.875 0.888 0.867 0.897 0.903 0.907 0.896 0.903 0.896 0.911 0.915 0.776 0.927 0.932
𝐸𝑥
𝜙
↑ 0.883 0.907 0.904 0.907 0.899 0.898 0.893 0.907 0.913 0.916 0.912 0.914 0.907 0.922 0.937 0.778 0.937 0.940

𝑀 ↓ 0.058 0.048 0.049 0.047 0.052 0.053 0.052 0.048 0.045 0.044 0.043 0.048 0.046 0.042 0.035 0.078 0.041 0.040

Table 1: Quantitative results of RGB COD model on three different datasets of CAMO, COD10K, and NC4K with six metrics. The scores in bold
are best. ↑ indicates the higher the score the better and ↓ indicates the lower the score the better.

Dataset Metric CDINet DCF CMINet SPNet DCMF SPSN PopNet Ours

2021
[39]

2021
[15]

2021
[40]

2021
[41]

2022
[33]

2022
[19]

2023
[35] -

CAMO

𝐹𝑚𝑥
𝛽

↑ 0.638 0.724 0.798 0.807 0.737 0.782 0.821 0.834
𝑆𝛼 ↑ 0.732 0.749 0.782 0.783 0.728 0.773 0.806 0.832
𝐸𝑥
𝜙
↑ 0.766 0.834 0.827 0.831 0.757 0.829 0.869 0.920

𝑀 ↓ 0.100 0.089 0.087 0.083 0.115 0.084 0.073 0.061

COD10K

𝐹𝑚𝑥
𝛽

↑ 0.610 0.685 0.768 0.776 0.679 0.727 0.789 0.807
𝑆𝛼 ↑ 0.778 0.766 0.811 0.808 0.748 0.789 0.827 0.846
𝐸𝑥
𝜙
↑ 0.821 0.864 0.868 0.869 0.776 0.854 0.897 0.931

𝑀 ↓ 0.044 0.040 0.039 0.037 0.063 0.042 0.031 0.033

NC4K

𝐹𝑚𝑥
𝛽

↑ 0.697 0.765 0.832 0.828 0.782 0.803 0.852 0.862
𝑆𝛼 ↑ 0.793 0.791 0.839 0.825 0.794 0.813 0.852 0.871
𝐸𝑥
𝜙
↑ 0.830 0.878 0.888 0.874 0.820 0.867 0.908 0.940

𝑀 ↓ 0.067 0.061 0.053 0.054 0.077 0.059 0.043 0.040

Table 2:Quantitative results of RGB-DCODmodel on three different
datasets of CAMO, COD10K, and NC4Kwith four metrics. The scores
in bold are best. ↑ indicates the higher the score the better, ↓ indicates
the lower the score the better. 𝐹𝑚𝑥

𝛽
denotes max F-measure [1].

UJSC [20], UGTR [37], PFNet [27], R-MGL [38], BSANet [42], OCENet [21],
BGNet [31], ZoomNet [28], SINetV2 [7], SegMaR [16], DGNet [13],
FSPNet [12], MedSAM [25], as shown in Tab. 1. Although MedSAM
operates in the field of medical image processing, its approach is
to enhance SAM universally instead of tailoring a network specifi-
cally for medicine. When applied to the COD task, the algorithm
significantly enhances performance metrics. Therefore, MedSAM

is taken as one of the comparison algorithms. To comprehensively
demonstrate the performance of DSAM, it is also compared with
existing RGB-D SOD methods, such as PopNet [35], SPSN [19],
DCMF [33], SPNet [41], CMINet [40], DCF [15], and CDINet [39],
as shown in Tab. 2. The predictions of the competitors are either
disclosed by the authors or generated by models retrained using
open-source code.

Quantitative Result. Tab. 1 summarizes the quantitative re-
sults of our proposed method compared to 17 competitors across
COD benchmark datasets under six evaluation metrics. The results
indicate that DSAM has certain advantages. DSAM significantly
outperforms DGNet in five metrics on COD10K and NC4K. For
example, on COD10K, DSAM achieves improvements of 6.7% and
6.1% in 𝐹𝜔

𝛽
and 𝐹𝑚

𝛽
, respectively. On NC4K, our network achieves

improvements of 4.2% and 3.3% in 𝐹𝜔
𝛽
and 𝐹𝑚

𝛽
, respectively. Com-

pared to the recent FSPNet, DSAM achieves improvements in four
metrics on COD10K and NC4K. Among these, the 𝐹𝑚

𝛽
and 𝐸𝑚

𝜙
met-

rics of DSAM exceed those of FSPNet by 2%, 2.6%, 0.4%, and 1.7%,
respectively. Additionally, to evaluate the competitiveness of DSAM
in RGB-D models, it is compared with other RGB-D SOD models
with source-free depth on the COD dataset. The data for the RGB-D
SOD model with source-free depth originates from PopNet [35]. As
depicted in Tab. 2, DSAM outperforms the listed methods in the
fundamental metrics. In terms of average values, the positive indica-
tors of DSAM are improved by 3% on CAMO, 2.3% on COD10K, and
2% on NC4K. Regarding the maximum values, the most significant
improvement is observed in indicator 𝐸𝑥

𝜙
, with an increase of 5.1%,

3.4%, and 3.2% across the three metrics, respectively.
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Ablation study

Model CAMO COD10K NC4K

𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀

M1 0.684 0.606 0.680 0.687 0.689 0.132 0.783 0.701 0.756 0.798 0.800 0.049 0.767 0.696 0.752 0.776 0.778 0.078
M2 0.827 0.787 0.817 0.908 0.916 0.062 0.847 0.761 0.790 0.921 0.931 0.033 0.870 0.825 0.846 0.930 0.939 0.040
M3 0.826 0.784 0.813 0.906 0.914 0.063 0.847 0.761 0.789 0.922 0.931 0.033 0.871 0.826 0.846 0.932 0.940 0.039
M4 0.832 0.794 0.821 0.913 0.920 0.061 0.846 0.760 0.789 0.921 0.931 0.033 0.871 0.826 0.847 0.932 0.940 0.040

Layer analysis study in FM

Setting CAMO COD10K NC4K

𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀

2 − 𝑙𝑎𝑦𝑒𝑟𝑠 0.824 0.783 0.813 0.906 0.914 0.064 0.846 0.760 0.789 0.922 0.932 0.032 0.870 0.827 0.849 0.931 0.939 0.040
4 − 𝑙𝑎𝑦𝑒𝑟𝑠 0.829 0.789 0.818 0.906 0.915 0.063 0.847 0.762 0.791 0.921 0.931 0.033 0.869 0.825 0.847 0.929 0.938 0.041
8 − 𝑙𝑎𝑦𝑒𝑟𝑠 0.832 0.794 0.821 0.913 0.920 0.061 0.846 0.760 0.789 0.921 0.931 0.033 0.871 0.826 0.847 0.932 0.940 0.040
16 − 𝑙𝑎𝑦𝑒𝑟𝑠 0.830 0.791 0.821 0.909 0.917 0.064 0.845 0.761 0.791 0.921 0.931 0.033 0.869 0.826 0.850 0.929 0.938 0.041

Input analysis study in FM

Setting CAMO COD10K NC4K

𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀

𝐼 + 𝐼 0.832 0.794 0.822 0.911 0.919 0.061 0.844 0.755 0.783 0.920 0.930 0.034 0.868 0.822 0.843 0.930 0.938 0.041
𝐼 +𝐷 0.834 0.795 0.821 0.912 0.920 0.061 0.846 0.758 0.785 0.919 0.929 0.033 0.870 0.824 0.844 0.931 0.939 0.041
𝐷 +𝐷 0.832 0.794 0.821 0.913 0.920 0.061 0.846 0.760 0.789 0.921 0.931 0.033 0.871 0.826 0.847 0.932 0.940 0.040

Table 3: Ablation study for each module of the proposed DSAM on COD datasets, layer analysis study in FM and input analysis study in FM.
SAM (M1): This model is SAM for segment everything mode. We evaluate the mask with the best segmentation quality in this mode as the
final result of segmentation. SAM + PDM (M2) : providing PDM based on M1. SAM + FM (M3): providing FM based on M1. SAM + PDM + FM
(M4): providing PDM and PM based on M1. 𝐼 + 𝐼 denotes image embedding and image embedding. 𝐼 +𝐷 denotes image embedding and depth
embedding. 𝐷 +𝐷 denotes depth embedding and depth embedding.

Qualitative Result. Fig. 4 illustrates the comparison of the
proposed method with some representative competitors in various
types of scenarios. These comparative maps are derived from three
different test datasets. The performance of our DSAM is analyzed
in four aspects: target size, edge complexity, ease of missing parts,
and multiple targets. For both large targets (the third row) and
small targets (the first row), DSAM manages to balance contour
and detail effectively. For targets with high edge complexity (the
eleventh row), our network can still achieve clear segmentation of
the edges. Also, DSAM can correctly segment easily overlooked or
highly camouflaged parts (the sixth row). In the case of multiple
targets (the ninth and tenth rows), other networks might exhibit
either omission or excessive segmentation. However, our model
can accurately identify disguised targets and perform appropriate
segmentation.

4.4 Ablation Study
Ablation experiments are conducted to assess the effectiveness of
PDM and FM. PDM and FM are sequentially added to SAM, and the
training setup is maintained. Four models are designed to evaluate
the efficacy of these modules. The comparison results across CAMO,
COD10K, and NC4K datasets are presented in Tab. 3. Each module
demonstrates a constructive impact on the experimental results,
and our proposed DSAM attains SOTA performance.

Effectiveness of PDM. The efficiency of FDM can be demon-
strated through a comparison between M1 and M2. Transitioning
from M1 to M2 on CAMO, the top three metrics show great im-
provements: an increase of 18.1% in 𝐹𝜔

𝛽
, 22.1% in 𝐸𝑚

𝜙
, and 22.7%

in 𝐸𝑥
𝜙
. On COD10K, apart from MAE, the average improvement

in positive evaluation criteria reaches 8.24%. On NC4K, the least
performing positive metric ( 𝐹𝑚

𝛽
) exhibits an improvement of 9.4%.

From the above data, it can be concluded that PDM enhances the
performance of SAM-based models in the COD domain.

Effectiveness of FM. The efficiency of FM can be demonstrated
by comparing M1 and M3. From M1 to M3, on the CAMO dataset,
the average improvement in positive evaluation criteria is 17.94%.
On COD10K, the negative indicator, MAE, decreases by 1.6%. On
NC4K, the most improved forward indicator (𝐸𝑥

𝜙
) increases by 16.2%.

From the above data, it can be concluded that FM significantly
improves performance.

To delve deeper, the rationality of the internal structural design
of FM is experimentally analyzed. Firstly, this study analyzes the
rationale behind utilizing depth embedding as inputs in FM. The
input embedding combination of FM is modified while keeping
the other network designs unchanged. The specific experimental
data are presented in the sub-table (input analysis study in FM) in
Tab. 3. To gain a clearer understanding of the relationship between
evaluation metrics and the type of input embedding combination,
the table is visualized in Fig. 5. Each subplot in the figure demon-
strates that the combination of dual-depth embedding is optimal, so
this design is adopted. Then, this study analyzes the rationality of
dividing the teacher embedding into 8 segments by channel during
the mask reversion operation. While keeping the other network
designs of DSAM unchanged, the partitioning layers of the mask
reversion operation are changed to 2 layers, 4 layers, 8 layers, and
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Scale analysis of prediction maps study in FM

Ratio CAMO COD10K NC4K

𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀

3 : 7 0.823 0.782 0.813 0.905 0.914 0.066 0.846 0.763 0.792 0.923 0.933 0.033 0.870 0.827 0.849 0.931 0.940 0.040
2 : 8 0.828 0.788 0.817 0.904 0.912 0.063 0.845 0.758 0.787 0.920 0.929 0.033 0.869 0.825 0.847 0.930 0.939 0.041
1 : 9 0.832 0.794 0.821 0.913 0.920 0.061 0.846 0.760 0.789 0.921 0.931 0.033 0.871 0.826 0.847 0.932 0.940 0.040
0.5 : 9.5 0.832 0.795 0.823 0.911 0.919 0.061 0.846 0.758 0.786 0.920 0.930 0.033 0.869 0.823 0.844 0.930 0.938 0.041

Loss ratio analysis

Ratio CAMO COD10K NC4K

𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀 𝑆𝛼 𝐹𝜔
𝛽

𝐹𝑚
𝛽

𝐸𝑚
𝜙

𝐸𝑥
𝜙

𝑀

3 : 7 0.831 0.796 0.829 0.908 0.918 0.062 0.847 0.763 0.794 0.922 0.932 0.032 0.869 0.826 0.850 0.929 0.939 0.041
2 : 8 0.831 0.791 0.820 0.908 0.916 0.061 0.847 0.760 0.788 0.924 0.934 0.033 0.870 0.824 0.845 0.931 0.939 0.041
1 : 9 0.832 0.794 0.821 0.913 0.920 0.061 0.846 0.760 0.789 0.921 0.931 0.033 0.871 0.826 0.847 0.932 0.940 0.040
0.5 : 9.5 0.832 0.792 0.819 0.911 0.918 0.062 0.843 0.754 0.783 0.918 0.927 0.034 0.866 0.819 0.842 0.927 0.935 0.043

Table 4: Hyper-parameter sensitivity analysis. In the Scale analysis table, the ratio is set to 𝑃𝑟𝑒𝑑𝐹𝑀 : 𝑃𝑟𝑒𝑑𝑆𝐴𝑀 . In the Loss ratio table, the ratio
is set to 𝐿𝑜𝑠𝑠𝑃𝐷𝑀 :𝐿𝑜𝑠𝑠𝑆𝐴𝑀
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Figure 5: Ablation experiments on the input to the FM. ↑ indicates
the higher the score the better and ↓ indicates the lower the score the
better. 𝐼 stands for image embedding acting as student embedding,
and 𝐷 stands for depth embedding acting as teacher embedding.

16 layers, respectively. The specific experimental data is shown in
the sub-table (layer analysis study in FM) in Tab. 3 and visualized in
Fig. 6. In Fig. 6, when the number of layers is 8, the average positive
evaluation criterion is highest, and the negative evaluation crite-
rion is lowest, demonstrating that 8 layers represent the optimal
solution.

Setting of Hyper-parameters. Two ablation experiments are
conducted to investigate the proportion between the maps pre-
dicted by FM and those predicted by the original SAM, as well as
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Figure 6: Ablation experiments on the layer number to the FM.
𝐴𝑣𝑔_𝑥 represents the average score of positive indicators when the
number of layers is 𝑥 .𝑀𝑎𝑒_𝑥 represents the𝑀𝑎𝑒 when the number
of layers is 𝑥 .

the corresponding relationship between the original loss function
of SAM and the distillation loss function of PDM. The specific ex-
perimental data are shown in Tab. 4. From the sub-tables (scale
analysis of prediction maps in FM, and loss ratio analysis), it can
be observed that, in both cases, the data decline towards both sides
from the third group, indicating that 1 : 9 is the optimal ratio.

5 CONCLUSION
This paper proposes DSAM, a novel network architecture inte-
grating SAM into COD by fully leveraging the complementarity
among multiple modalities. In DSAM, PDM and FM are proposed
to explore and utilize depth information, providing a novel way
for exploiting the interaction between RGB and depth data. The
state-of-the-art performance of DSAM is demonstrated over 17
cutting-edge methods across multiple datasets. However, DSAM
exhibits internal over-segmentation of the target, wherein target
edges are accurately segmented but internal regions suffer from
erroneous voids. Our future research will attempt to overcome this
challenge through the integration of diffusion methodologies.
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