
Published as a conference paper at ICLR 2024

DYNAMIC LAYER TYING FOR PARAMETER-EFFICIENT
TRANSFORMERS

Tamir David- Hay & Lior Wolf
Blavatnik School of Computer Science, Tel Aviv University
{davidhay,wolf}@mail.tau.ac.il

ABSTRACT

In the pursuit of reducing the number of trainable parameters in deep transformer
networks, we employ Reinforcement Learning to dynamically select layers during
training and tie them together. Every few iterations, the RL agent is asked whether
to train each layer i independently or to copy the weights of a previous layer j < i.
This facilitates weight sharing, reduces the number of trainable parameters, and
also serves as an effective regularization technique. Experimental evaluations val-
idate that our model modestly outperforms the baseline transformer model with
regard to perplexity and drastically reduces the number of trainable parameters.
In particular, the memory consumption during training is up to one order of mag-
nitude less than the conventional training method.

1 INTRODUCTION

The recent work on large language models is based mostly on the transformer architecture
of Vaswani et al. (2017). Such models have become increasingly larger and are trained for 100s
of thousands of GPU hours using high-end GPUs (Brown et al., 2020; Chowdhery et al., 2022; Rae
et al., 2021; Touvron et al., 2023).

However, it is clear that the Transformer architecture (like other deep architectures) is overparame-
terized. For example, pruning can be used to reduce the number of FLOPs of transformers during
inference time at least by half, with little effect on accuracy (Kurtic et al., 2022; Kwon et al., 2022),
attention heads can be removed post-training with little effect on performance (Michel et al., 2019;
Voita et al., 2019). The lottery ticket hypothesis holds for transformers (Frankle & Carbin, 2018;
Chen et al., 2020a;b; Prasanna et al., 2020; Movva & Zhao, 2020), and, perhaps most relevant to our
work, layers can be dropped altogether during inference Fan et al. (2019); Sajjad et al. (2020), and
attention scores can be reused Bhojanapalli et al. (2021).

Motivated by the potential to reuse transformer layers, we conducted a preliminary experiment in
which we started with a transformer of L layers and trained only L

2 layers by sharing the weights
between layers i and layer i+ L

2 for i < L
2 . The transformer trained this way achieved the same, or

somewhat better performance, as the conventional L layer transformer.

This encouraging preliminary finding raises a few questions. First, is there something special about
this pattern of repetition? Second, is a factor of two the best we can get? Taken to the extreme, it
would be desirable that every layer in the architecture either replicates one of the previous layers or,
if needed for the sake of accuracy, have a new set of weights.

Our method opts to find such a general pattern. Trying to train only once, we view the repetition
pattern a as a dynamic action that some driver network Q learns from reinforcement during the
training of the primary network T . Every few epochs, a new action vector a is obtained based on
the Q-function estimation given by Q.

The element ai ∈ [0, 1, . . . , i] for i = 1, . . . , L indicates from which layer to copy the weights to
layer i of T . If ai = i then the weights of this layer are being optimized independently of other
layers. If ai < i then the weights of layer ai are used as the weights of layer i. This is transductive:
if layer ai = j and aj = k, then both layers i and j share the same weights of layer k.

1

Published as a conference paper at ICLR 2024

After a few training iterations of the primary network T , the reward for the driver network Q is
computed by considering the loss obtained on a few training batches. Q is then updated, and a new
action vector a is recovered. Depending on the dynamics of the driver network, the changes in the
replication pattern can be rather rapid. Yet, as we show, the training process is stable.

Our results indicate that training this way leads to a replication of at least 75% of the transformer
layers while maintaining the same level of accuracy, or even slightly better, as the full L layer trans-
former. This is achieved with a relatively small Q network, which is only applied during training.

Our contributions are: (i) Presenting a novel method for dramatically reducing the number of param-
eters in a transformer architecture. (ii) Establishing the potential of Reinforcement Learning (RL) to
serve as a pivotal mechanism for dynamically optimizing the architectural configurations of trans-
formers during training. The impact of RL in this context is considerably more profound than its
conventional applications, such as adaptive learning rate tuning Xu et al. (2019). (iii) Demonstrating
the use of RL in Neural Architecture Search (NAS) in a single training pass, unlike all previous work
we are aware of, which follow Baker et al. (2017); Gao et al. (2019); Zoph & Le (2016) and collect
multiple training sessions. (iv) Showing that transformers can be trained effectively, despite rapid
changes in architecture during the training process.

2 RELATED WORK

Our method changes the architecture of the Transformer network and is, therefore, a Neural Ar-
chitecture Search (NAS) method. The promise of the field is to discover architectures that would
surpass human-designed ones in performance. While most recent contributions rely on techniques
such as Differentiable Architecture Search (Liu et al., 2018a), some of the earlier approaches relied
on RL. Zoph & Le (2017), employ a recurrent neural network (RNN) to generate architectural de-
scriptions of neural networks and train it with RL. Baker et al. (2017) employ Q-learning to search
for optimal CNN architectures. Cai et al. (2018) uses a controller, trained with the policy gradient
method, to search for architectures in a more computationally efficient manner. As mentioned, RL
NAS methods suggest a fixed architecture and train it from scratch, using the validation score as a
reward. The trained network is not changed dynamically during training as we do.

The use of RL for dynamically controlling the training of a deep neural network has focused on
learning rate optimization. Controlling the learning rate is often done with a fixed schedule, such as
a step decay or a cosine decay, which determines the step size for each iteration of the optimization
process (Ruder, 2016). Xu et al. (2019) employ proximal policy optimization (PPO) (Schulman
et al., 2017) trained across multiple sessions (not a single session as in our method). (Subramanian
et al., 2023) also employ PPO, and use a state vector that includes the training loss of the last epoch,
the epoch index, and the number of remaining epochs.

Considerable effort has been dedicated to making transformers more efficient by reducing the
quadratic complexity of the self-attention mechanism, e.g., (Child et al., 2019; Ma et al., 2021).
With respect to parameter efficiency, network pruning methods (Molchanov et al., 2016; Hassibi
et al., 1993; Frankle & Carbin, 2018; Liu et al., 2018b) including the transformer pruning methods
mentioned above (Kurtic et al., 2022; Kwon et al., 2022) reduce the size of the network by remov-
ing or shrinking matrices from the network. Such methods often require further re-training, while
our method is applied during training, maintaining the training time per epoch and reducing the
peak memory consumption. The recent Wanda method (Sun et al., 2023) performs straightforward
magnitude-based pruning (Han et al., 2015; Gale et al., 2019; Zhu & Gupta, 2018; Liu et al., 2018b)
on the trained transformer. Despite its simplicity, it is shown to outperform other pruning alterna-
tives. In comparison to our method, the sparsity demonstrated is up to 50% of the weights, while our
method is shown to reduce 75% to 87% of the parameters. Our approach, which focuses on reuse,
and pruning, which attempts to “reduce”, are not mutually exclusive and can be combined.

Other methods that reuse computations or parameters within transformers include the Reuse Trans-
former (Bhojanapalli et al., 2021) which, unlike our method, uses a specific and fixed pattern of
reusing elements and only reuses attention heads. Overall less than 10% of the parameters are
shared. Similarly to the Reuse Transformer, the Subformer (Reid et al., 2021) shares the parameters
of the middle layers, however, much more extensively, reaching up to 50% reduction in the num-
ber of parameters. This requires the addition of auxiliary network elements, which we do not do.

2

Published as a conference paper at ICLR 2024

Algorithm 1 Q-learning driven dynamic layer tying
Require: L the number of layers, K the number of training steps of T , k the number of training

steps between the update and evaluation of Q, γ the discount factor, and ϵ initial exploration
probability

1: Initialize the primary model T and the Q-network Q
2: Freeze layers 1 to L− 1 in T , such that only layer 0 trains at initialization.
3: Initialize s = a = 0 ▷ An all zero vector
4: for step = 0 to K − 1 do
5: Sample a mini-batch B from the dataset
6: Perform a training step with T on B
7: if mod(step,k) == 0 then ▷ Every k steps
8: Obtain an action vector a = π(s)
9: Compute s′ based on a ▷ Eq. 1

10: for i = 0 to L− 1 do
11: if s′i ̸= si then
12: if s′i == i then
13: Untie layer i of T ▷ Copy its weights and update it independently of layer si
14: else
15: Replicate all weights of layer s′i of T to layer i of T
16: Tie the weights of layer i to layer s′i
17: end if
18: end if
19: end for
20: Sample a mini-batch B from the data-set
21: rstep = Compute negative PPL score based on T on B
22: rpredicated = Q(s,a) ▷ Eq. 3
23: r = rstep + γ ∗maxa Q(s′)a
24: L = MSE(rpredicted, r)
25: update Q using L
26: s = s′

27: ϵ = max{ϵ ∗ 0.95, 0.1}
28: end if
29: end for

Takase & Kiyono (2021) explore three different fixed patterns of sharing parameters, reusing 50%
to 66% of the layers. The differences in performance between the patterns are small, and our last
ablation (ablation vii) is similar to the Cycle pattern. Xiao et al. (2019) share attention weights (and
not the parameters for computing these), based on the attention similarity. The number of reduced
parameters is not reported but the average speedup is 1.3 (23% reduction).

Parameter Efficient Fine-Tuning (PEFT) often target specific layers or modules, e.g., only the top
layers (Gheini et al., 2021), only the bias parameters (Zaken et al., 2021), or selecting based on scores
(Sung et al., 2021; Vucetic et al., 2022). Additive PEFT methods introduce additional trainable
parameters that can be added to the attention and feed-forward layers of transformers (Houlsby
et al., 2019). LoRA (Hu et al., 2022) adds low-rank matrices to the weight matrices. PEFT methods
substantially reduce the number of trainable parameters, but are applicable for finetuing (after the
full model has been trained), while our method is for training from scratch. See Sec. 5 for future
work on finetuning.

3 METHOD

We aim to train a transformer T with L layers from scratch. All elements of a transformer layer,
including the key, query, and value projections, and the linear layers are considered as a single set
of training parameters. The set of parameters for layer i can be either independent from all layers
j < i, or tied to the set of parameters of some layer j < i.

The state vector s ∈ NL indicates, at each location i = 0, 1, . . . , L − 1, the layer with the lowest
index that has the same tied weights. Therefore, ∀i ∈ [0, . . . , L − 1] : 0 ≤ si ≤ i. If si = i

3

Published as a conference paper at ICLR 2024

it indicates that layer i does not have its parameters tied with any of the previous layers. By this
definition, it always holds that s0 = 0.

The action space is similar, except that the action vector a ∈ NL can point to any previous layer that
has its weights tied with layer i, not necessarily the one with the lowest index j ≤ i.

To obtain s from a, one can employ the following recursion

si =

{
i ai == i

sai
Otherwise

(1)

The Q-function of a Markov Decision Process represents the expected cumulative future reward
for taking a particular action a a in a particular state s, while following a certain policy π (Sutton
& Barto, 2018). Similarly to previous work that employs deep Q-learning(Mnih et al., 2013), we
employ an ϵ−greedy policy obtained interpolating between a random policy and one obtained by
maximizing, at a given state, the Q-function over the available actions.

π(s) =

{
argmaxa Q(s,a) at probability 1− ϵ

a uniformly sampled a at probability ϵ
, (2)

where Q is the network we learn in order to approximate the Q-function. Its implementation takes s
as input and returns a vector of Q-values for each index i, indicating the Q-value obtained for each
action j = 0, 1, . . . , i.

Q(s,a) :=
∑
i

Q(s)[i,ai] , (3)

where indexing occurs first for the vector of Q-values per each index i and then for an element in this
vector. Therefore, the input and output domains of the approximated Q-function are Q : RL−1 →
R

(L+2)(L−1)
2 . This reflects the fact that s0 is fixed and that for every layer i = 1, 2, . . . , L − 1 the

network Q needs to assign values to i + 1 different actions. The optimal action-value function Q∗

obeys an important identity known as the Bellman equation

Q∗(s, a) = Es′ [r + γmax
a′

Q∗(s′, a′)|s, a] , (4)

We run the policy π based on Q to obtain a new action a after every k training steps of the primary
network T . k is relatively small and such actions are taken frequently. At initialization, only layer
i = 0 is trained; all other layers are fixed at their initial values. Then, after k training steps, and
every k training steps afterwards, we perform the following set of actions: (i) obtain a new action
a = π(s), (ii) extract the new state s′ based on a, as in Eq. 1, (iii) replicate the weights of each
layer i to be the same as si and tie these weights, (iv) compute a reward for T based on the negative
perplexity score as computed on a random training batch, (v) update Q based on the expected reward
vs. the computed one, using the Bellman equation, (vi) reduce the exploration factor ϵ by a fixed
factor of 0.95, but always keeping it above a constant of 0.1, and, finally, (vi) run k more training
steps for T and repeat.

The method is depicted in Alg. 1 and a line-by-line description is provided in Appendix A. A few
implementation details are worth noting. First, in line 2, the replication pattern of the first k steps
(where k << K) is determined to be such that layer 0 trains and the other layers are kept fixed at
their initialization values. Then, every k steps we obtain a new action a, using the ϵ−greedy policy
in Eq. 2, see lines 7-8. Second, we note that a layer that changes state can, based on the condition
in line 12, either (i) shift from being untied or tied to one layer to being tied to a new layer, or (ii)
shift to being trained independently. In the first type of shift, a new set of weights would be copied,
which may change the transformer much more quickly than through gradient steps. In the second
type of shift, the weights are not changed immediately. However, they begin to drift between layers
that were previously tied. Third, the exact schedule for modifying the value of ϵ is given in line 27.

4 EXPERIMENTS

In our experiments, two architectures were used: (i) GPT-2 with 48 decoder blocks, each with 16
attention heads. The hidden dimension for each block was set to 1600, and (ii) BERT, which consists

4

Published as a conference paper at ICLR 2024

Table 1: Metric scores for the GPT-2 architecture
Training set

Metric Method Wiki-2 Wiki-103 Lambada 1-billion

Perplexity Conventional training 53.57 22.32 94.96 88.35
Our method 49.37 22.35 93.84 72.35

Number of trainable parameters Conventional training 1.6B 1.6B 1.6B 1.6B
Our method mean over training 171M 151M 166M 218M
Our method at end of training 264M 142M 326M 203M

Number of independent layers Conventional training 48 48 48 48
Our method mean over training 4.395 2.309 3.547 4.486
Our method at end of training 7 6 9 10

Training time per epoch (seconds) Conventional training 148.5 3609.5 26376.5 15440
Our method 165 4010.5 29307.2 17155.5

Table 2: Metric scores for the BERT architecture
Training set

Metric Method Wiki-2 Wiki-103 Lambada 1-billion

Perplexity Conventional training 70.15 154.2 202.70 >1000
Our method 69.27 132.6 156.30 215.50

Number of trainable parameters Conventional training 376M 376M 376M 376M
Our method mean over training 52M 52M 52M 57M
Our method at end of training 46M 46M 67M 60M

Number of independent layers Conventional training 12 12 12 12
Our method mean over training 2.36 2.83 1.88 2.45
Our method at end of training 3 5 3 3

Training time per epoch (seconds) Conventional training 51.2 1244.6 5324.1 9095.3
Our method 26.5 644.5 2757.1 4704.4

of 12 decoder blocks with a hidden size of 768 and 12 attention heads at each layer. In all of our
experiments, Q is an MLP with one hidden layer with 128 units and the ReLU activation function.

We ran all experiments for K = 300 epochs, a batch size of 16, and k = 15 with a separate validation
set used to select the best model. The hyper-parameters used were: the transformer learning rate is
set to 0.0001 and Q’s learning rate was set to 0.001, γ = 0.99, the initial exploration probability
is set to ϵ = 1.0 (explore), and as depicted in Alg. 1, the ϵ-decay factor: 0.95, and the minimal ϵ
value is set to 0.1. Our experiments ran on 2-4 A100 GPUs for the GPT-2 based architecture and
1-4 A6000/A5000 GPUs for the BERT architecture.

Datasets In this study, we employ four widely used datasets to evaluate the performance of our
method for language modeling tasks. All datasets were pre-processed by converting the text into
tokens using GPT-2’s tokenizer, which has a vocabulary of 50, 257 tokens. WikiText-2 (Wiki2) is a
large language modeling corpus that consists of over 2 million tokens. It is derived from a snapshot
of verified Good and Featured articles on Wikipedia. The dataset is widely used for training language
models and serves as a standard benchmark for evaluating various NLP algorithms. WikiText-103
(Wiki103) is an extension of the WikiText-2 dataset, containing more than 100 million tokens. It is
also sourced from Wikipedia articles and is considered to be one of the most comprehensive datasets
for training large-scale language models. LAMBADA is designed to test the capabilities of language
models in predicting the final word of a sentence, given all the preceding words in that sentence.
The dataset contains approximately 10,000 examples, each a sequence of sentences extracted from
books. The task is challenging as it often requires understanding the broader context provided by
the preceding sentences. The 1 Billion Words dataset is a corpus of text containing approximately
1 billion tokens, sourced from news articles. It provides a diverse range of vocabulary and sentence
structures, making it ideal for training robust language models.

5

Published as a conference paper at ICLR 2024

(a) (b)

Figure 1: The replication map for the GPT-2 architecture post-training for (a) Wiki-2, (b) Wiki-103.
The lowest-index layer in each group of layers that share weights is connected to itself.

Results In Table 1, we present a comprehensive evaluation of our proposed method against con-
ventional training on the GPT-2 architecture across multiple datasets: Wiki-2, Wiki-103, Lambada,
and 1-billion. Our method consistently outperforms the baseline in terms of perplexity, with the
most significant gains observed in the 1-billion words dataset, where we reduce the perplexity from
88.35 to 72.35. Additionally, our method exhibits a significant reduction in the number of trainable
parameters, with a mean over training as low as 151M for Wiki-103, and not much higher on the
other datasets, compared to the baseline’s 1.6B. Although the conventional method outperformed
our method on Wiki-103, the gap is marginal.

Table 2 showcases the results for the BERT architecture, presenting similar trends. Our method
outperforms the conventional training across all datasets. Notably, in the 1-billion dataset, the per-
plexity is reduced drastically, from over 1000 in conventional training to 215.50 in our method.
The number of trainable parameters also sees a substantial decrease, with a mean during training of
52M-57M, compared to the conventional 376M. In both architectures, we can observe that the mean
number of independent layers (or, equivalently, the number of groups of identical layers) is rather
low during training and is somewhat higher in the final model. Especially in BERT, we can observe
that even for large datasets the number of independent layers is small. In our ablation study below
we check whether one can simply train much less layers.

With respect to training time, the results are mixed. While in Tab. 2 it is demonstrated that our
method somewhat slows down the training time, Tab. 1 presents a reduction of almost 50% in run-
time. We believe, but have not yet verified, that this is due to the difference in hardware between the
two experiments (GPT-2 runs on A100, the BERT runs on A6000/A5000).

The status at the end of the training is shown in Fig. 1. A line is drawn between every layer index
i and the layer it replicates si. A layer i for which the state vector satisfies si = i is connected to
itself. As shown, there are seven such layers for Wiki-2 and six for Wiki-103, matching the statistics
report in Tab. 2. The dominance of layer zero is clear, see Sec. 5 for a discussion of this property
and its implications.

Training dynamics The training process takes place under the guidance of a policy that is trained
from scratch. This policy can change the layer topology drastically and it is, therefore, interesting to
explore the training dynamics. First, it is not clear whether any changes are made at all to the topol-
ogy throughout the training process. It could be the case that after a certain period of exploration,
the policy is to keep the state fixed from one step to the next. As Fig. 2 demonstrates, this is not
the case. We distinguish two types of state-change events, as detailed in Sec. 3. In the first, which
we called “tied events”, a layer i replicates a layer it did not replicate previously. In the second
type, termed “untied events”, a layer i obtains a new state of s = i and is trained independently of

6

Published as a conference paper at ICLR 2024

Figure 2: The number of change state events per type for training GPT-2 on Wiki-2

Figure 3: The number of steps in which each decoder block was trainable

Table 3: Memory consumption during training (GPT-2; batch size of 16; sequence length of 256).
Statistics Conventional training Our method

Peak memory 12,566.66 MB 4,514.31 MB
Average memory consumption 10,223.08 MB 3,395.16 MB

previous layers, which had replicated another layer j < i. Evidently, both types of events continue
to occur throughout the training process and their frequency does not diminish.

The memory consumption during training is a result of the training dynamics. Tab. 3 depicts the
peak and average memory consumption during the training of GPT-2. Our memory consumption is
lower by 65% in peak consumption and 68% on average. This difference is obtained without any
attempt to optimize memory usage during training or to release unused memory, and does not reflect
in full the drop in the size of the model.

One may wonder if all layers have the same chance of being untied. We note that since the explo-
ration factor ϵ is at least 0.1 throughout training, with the exception of layer 0, all layers are expected
to be tied to other layers at one point or another. As can be seen in Fig. 3, this is indeed the case.

It can also be observed that the lower layers are more likely to have an untied status of si == i
(other layers with index j > i may still have sj = i and train together in a tied way). This makes
sense due to the increasing number of replication options that higher layers have. However, we note
from Fig. 1(b) that the layers with si == i can be relatively evenly distributed at the end of training.

Ablation study Ablation experiments were conducted on the Wiki-2 dataset with the GPT-2 ar-
chitecture. Since much of the ablations focus on validating that the success of the method does not
arise from avoiding overfitting by reducing the network capacity, we also run ablations on the small
Shakespeare dataset. This dataset has parts of Shakespeare’s plays, sonnets, and other writings. It is
small, with 250K tokens and the ablation uses a 12-layer GPT-2 like model.

7

Published as a conference paper at ICLR 2024

Table 4: Perplexity scores for the ablation study for the Wiki-2 and the Shakespeare datasets.
Architecture Wiki-2 Shakespeare

(i) Vanilla transformer L = #independent layers in ours 54.64 167.3
(ii) Training all epochs with the final architecture 59.35 185.3
(iii) Applying the recorded dynamic on permuted indices 65.21 172.2
(iv) Applying the recorded dynamics on the indices without Q 50.05 161.3
(v) Fully dynamic without weight tying 235.8 202.9
(vi) All layers are trainable at initialization 50.18 159.3
(vii) “Cycle”: Connecting layer i to layer L

2 + i 51.93 176.6
(viii) “Cycle Rev”: Connecting layer i to layer L− i 52.83 180.0
(ix) “Sequence”: Connecting pairs of consecutive layers 54.01 173.9

Our full method 49.37 161.1

Since the model obtained with our method has about a sixth of the number of parameters in the
original model, we need to explore whether the full model capacity is required at all. To validate
this, we designed a few ablations: (i) a transformer in which the number of layers L is the number
of independent layers obtained by our method, and (ii) training from scratch a static transformer
architecture that has the same weight-tying structure as our method’s final architecture.

As can be seen in Tab. 4, both these transformers are far behind our full method’s results and also
behind the conventional training results. The second ablation implies that our method is not suitable
for finding “lottery tickets”, i.e., pruned architectures for training from scratch (Frankle & Carbin,
2018; Chen et al., 2020a;b; Prasanna et al., 2020; Movva & Zhao, 2020).

Another related ablation (iii) checks whether the dynamic status changes can be made arbitrarily,
by recording the state vector s during the course of training, and applying a permuted version of
it π(s) when changing the status of a layer to copy another layer or to be tied, where π is a fixed
permutation operator that is applied element-wise.

The results of this ablation demonstrate that the layer identity is important and that a significant
degradation occurs in the model’s performance when the same dynamics are applied to a different
set of layers. As a sanity check, we also (iv) run the recorded set of states on another training session
(without performing Q-learning). As can be seen, this obtains results that are similar but slightly
worse than those of the full unablated method.

The necessity of weight tying is demonstrated by ablation (v), in which weight replication occurs as
in the full method, but weight tying does not take place. This leads to very unstable training and a
very high perplexity score.

We also explore (vi) the effect of freezing all layers except for layer 0 at initialization by freeing
all layers to train (removing line 2 of Alg. 1. This somewhat outperforms the full method on the
shakespeare dataset but is less successful on Wiki-2. We conclude that freezing at initialization may
not be crucial (more experiments are needed). However, it has a sizable advantage in the peak GPU
memory consumption.

We also provide results for (vii) using half the layers and tying every layer i = 1, 2, . . . , L/2 to layer
L/2+ i. This cuts the number of trained layers by a much smaller fraction than our own method and
is given as a reference since it was outlined as motivation in Sec. 1. As mentioned, this improves
perplexity over the conventional training, but not nearly as much as our full method.

As mentioned in Sec. 2, ablation (vii) is the Cyclic pattern of (Takase & Kiyono, 2021). The two
other patterns there are provided for completeness as ablations (viii) and (ix). As can be seen, these
patterns, which reuse only 50% of the layers, are not as effective as our method.

5 DISCUSSION AND LIMITATION

Replacing the weights of an entire layer with those of another is a drastic change to the network.
Yet, as shown in Fig. 2 (blue graph), such changes occur throughout training. This ability to perform
this change without causing a temporal setback to the training process is not trivial, since even
functionally equivalent layers can be expressed in multiple ways, by permuting the attention heads or
the outputs of the feed-forward network. However, permutation to the feed-forward network would

8

Published as a conference paper at ICLR 2024

(a) (b)

Figure 4: (a) Pearson corre-
lations between the weights
of the feed-forward networks
of the untied layers (Wiki-
2; GPT-2 architecture). The
colorbar range is [0.93,1]
(b) As a reference, the cor-
relations between the same
layers in the conventionally
trained GPT-2 model. The
value range is [0,1].

drastically modify the token embedding the next layer observes, and would cause the network’s
performance to degrade unless the other layers co-adapt.

We attribute the fact that no such setbacks occur to the way the training process initializes. Layer
0 trains in a way that cannot be too specific, due to the randomly initialized filters downstream,
which require time to co-adapt. Then, layer 0 is replicated and multiple copies of it are trained
simultaneously. Other layers are also copied and their copies begin to train. However, given that
layer zero is a valid replication source for all layers, and given that the exploration constant ϵ is
initialized at a high value, layer zero is dominant. This domination, as can be seen in Fig. 1, is
maintained until the end of training.

We posit that all layers are exposed directly or through a replication chain to the information of
layer 0, and that it spreads a specific order of attention heads and embeddings that are maintained
across layers. Having this global alignment is crucial for smooth training despite large blocks of
weights being copied during the process. Support for this hypothesis can be seen in Fig. 4(a),
which depicts the Pearson correlations between the weights of the feed-forward networks of the
independent transformer layers trained with our method. The minimal correlation is 0.93. For
reference, the correlation between the same layers in the conventional training (some of the 48
untied layers) is shown in panel (b). The inter-layer correlations are close to zero, as expected by
the arbitrary permutation argument.

Our research is focused on training transformer models from the ground up, contrasting with the
extensive body of work that primarily concentrates on the fine-tuning of pre-trained transformers.
(Devlin et al., 2018; Liu et al., 2019; Dodge et al., 2020; Raffel et al., 2020; Brown et al., 2020; He
et al., 2021). It is unclear whether a method that starts with one trainable layer and then gradually
explores options to untie some layers can be applied in such a case, especially since, as shown in
Sec. 4, the number of independent layers remains small throughout training. An alternative that
makes sense, but which is left for future work, is to apply the dynamic weight tying to the low-
rank updates (LoRA) of Hu et al. (2021). One can also try to apply RL methods that employ
backtracking (Dary et al., 2022), or use alternative search strategies, such as CAB (Zhang, 1998) or
MCTS (Chaslot et al., 2008), changing one state index at a time.

The evaluation of our work is limited to transformers in the language domain. However, transformers
are ubiquitous. A preliminary computer vision experiment reinforcing our conclusions can be found
in Appendix B. Finally, transformers are often finetuned on downstream tasks. Preliminatry results
on the GLUE set of benchmarks Wang et al. (2018) are presented in Appendix C, demonstrating that
the tied models can be effectively trained for downstream tasks.

6 CONCLUSIONS

We present a method that is, as far as we can ascertain, the most dynamic form of Neural Architec-
ture Search presented. During the training process itself, a deep Q-learning network drives a layer
replication process, which ends up with over 90% of the parameters being in layers that completely
replicate an earlier layer. This order of magnitude reduction in the number of parameters is achieved
without sacrificing the perplexity score and, in some cases, also leads to an improvement in this
metric. These surprising findings are further explored by visualizing the dynamics of the training
process and the crucial components of the method are demonstrated in an ablation study.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported by a grant from the Tel Aviv University Center for AI and Data Science
(TAD).

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. ICLR, 2017.

Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Frederick
Liu, Yin-Wen Chang, and Sanjiv Kumar. Leveraging redundancy in attention with reuse trans-
formers. arXiv preprint arXiv:2110.06821, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Han Cai, Ligeng Zhu, and Song Han. Efficient neural architecture search via parameter sharing.
ICLR, 2018.

Guillaume M Jb Chaslot, Mark HM Winands, H Jaap van den Herik, Jos WHM Uiterwijk, and
Bruno Bouzy. Progressive strategies for monte-carlo tree search. New Mathematics and Natural
Computation, 4(03):343–357, 2008.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained BERT networks. arXiv preprint
arXiv:2007.12223, 2020a.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu. Earlybert:
Efficient bert training via early-bird lottery tickets. arXiv preprint arXiv:2101.00063, 2020b.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Franck Dary, Maxime Petit, and Alexis Nasr. Dependency parsing with backtracking using deep
reinforcement learning. Transactions of the Association for Computational Linguistics, 10:888–
903, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

10

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Published as a conference paper at ICLR 2024

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
search with reinforcement learning. arXiv preprint arXiv:1904.09981, 2019.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. Cross-attention is all you need: Adapting pre-
trained transformers for machine translation. arXiv preprint arXiv:2104.08771, 2021.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning
for large language models. arXiv preprint arXiv:2203.07259, 2022.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. Advances in Neural Information
Processing Systems, 35:24101–24116, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018b.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke Zettle-
moyer. Luna: Linear unified nested attention. Advances in Neural Information Processing Sys-
tems, 34:2441–2453, 2021.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Published as a conference paper at ICLR 2024

Rajiv Movva and Jason Zhao. Dissecting lottery ticket transformers: Structural and behavioral
study of sparse neural machine translation. In Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for NLP, pp. 193–203, 2020.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. When BERT plays the lottery, all tickets are
winning. arXiv preprint arXiv:2005.00561, 2020.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo. Subformer: Exploring weight sharing for
parameter efficiency in generative transformers. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 4081–4090, 2021.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. arXiv preprint arXiv:2004.03844, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shreyas Subramanian, Vignesh Ganapathiraman, and Aly El Gamal. Learned learning rate sched-
ules for deep neural network training using reinforcement learning, 2023. URL https:
//openreview.net/forum?id=0Zhwu1VaOs.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J Clark, Brett H Meyer, and
Warren J Gross. Efficient fine-tuning of bert models on the edge. In 2022 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1838–1842. IEEE, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention weights for
fast transformer. arXiv preprint arXiv:1906.11024, 2019.

12

https://openreview.net/forum?id=0Zhwu1VaOs
https://openreview.net/forum?id=0Zhwu1VaOs

Published as a conference paper at ICLR 2024

Zhen Xu, Andrew M Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate schedule.
arXiv preprint arXiv:1909.09712, 2019.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Weixiong Zhang. Complete anytime beam search. In AAAI/IAAI, pp. 425–430, 1998.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net,
2018.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2016.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

13

https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

Published as a conference paper at ICLR 2024

Table 5: The results of applying our method to ViT on CIFAR-10

Metric ViT Our

Accuracy 0.999 0.995
trainable params (mean) 630M 80M
trainable params (end of training) 630M 139M
trainable layers (mean) 32 5.5
trainable layers (end of training) 32 7

A A LINE-BY-LINE EXPLANATION OF THE METHOD.

The method is depicted in Alg. 1. In line 2, the replication pattern of the first k steps is determined
to be such that layer 0 trains and the other layers are kept fixed at their initialization values. The
closest-matching action vector a and stage vector s are set to be the all-zero vector, see line 3.

The method then iterates over the data set and performs a regular training step on T , see lines 5-6.

Every k steps (where k << K) we obtain a new action a, using the ϵ−greedy policy in Eq. 2, see
lines 7-8. In line 9, we compute the state s′ based on the obtained action a according to Eq. 1.
This state is acted upon by replicating and tying the weights in lines 12,13. The condition in line 11
ensures that this happens only when this exact replication did not occur in the previous state s.

We note that a layer that changes state can, based on the condition in line 12, either (i) shift from be-
ing untied or tied to one layer to being tied to a new layer, or (ii) shift to being trained independently.
In the first type of shift, a new set of weights would be copied, which may change the transformer
much more quickly than through gradient steps. In the second type of shift, the weights are not
changed immediately. However, they begin to drift between layers that were previously tied.

In lines 20-21 a random mini-batch is used to estimate the perplexity (PPL) score of T . The reward
r is set in a similar fashion to the reward of DQN (Mnih et al. (2013)) as the sum of the evaluation
score and the discounted prediction of the next state Q(s′) (lines 22, 23). We do so by using Bellman
(Eq. 4) as an iterative update: Qi+1(s, a) = r + γmaxa′ Qi+1(s

′, a′).

The MSE loss is then used to update network Q in lines 24, 25. As mentioned, after every training
step of the Q-network, the value of ϵ is modified to balance exploration vs. exploitation, see line 27.

B PRELIMINARY COMPUTER VISION EXPERIMENTS.

Since transformers are ubiquitous, evaluating our method only for transformers in the language
domain constitutes a limitation. As a preliminary computer vision experiment, we have ap-
plied our method to the Vision Transformer (ViT) (Dosovitskiy et al., 2021) on the CIFAR-10
dataset (Krizhevsky et al., 2009).

The results are reported in Table 5. As can be seen, similarly to the NLP experiments, with an
insignificant drop in accuracy, our model has only 22% of the original model’s parameters and only
7 out of 32 layers are independent at the end of training.

C PRELIMINARY DOWNSTREAM TASKS EXPERIMENTS.

In the domain of NLP, transformers are often trained for a causal language modeling task on a large
corpus and are then fine-tuned on a smaller dataset for a specific task such as sentiment analysis,
questions answering, or named entity recognition.

As a preliminary downstream task experiment, we have taken our GPT-2 based model which was
trained using our method the 1-billion word dataset and trained it on multiple GLUE tasks Wang
et al. (2018). During training on the new tasks, the tied layers were kept as in the final state of the
model and the language modeling head was replaced with a new trainable head suited for each task.

14

Published as a conference paper at ICLR 2024

Table 6: The results of finetuning the GPT-2 model trained on the 1-billion word dataset on multiple
classification benchmarks. The number of trainable parameters and number of independent layers
are at the end of training on the 1-billion word dataset and the subsequent finetuning, in which the
tying of the layers is fixed.

Metric Conventional Our

SST-2 (Accuracy) 0.811 0.799
Cola (Accuracy) 0.691 0.691
QNLI (Accuracy) 0.608 0.599
MRPC (Accuracy) 0.697 0.697
RTE (Accuracy) 0.527 0.541

trainable params 1.5B 235M
trainable layers 48 5

As the vanilla baseline, we also trained a conventional GPT-2 model on the 1-billion word dataset
and then finetuned all layers.

The results are reported in Table 6. As can be seen, our method leads to a minimal drop in the given
metrics compared to the conventional method, while having only 12% of the trainable parameters
and only 5 out of 48 layers are untied.

15

	Introduction
	Related Work
	Method
	Experiments
	Discussion and Limitation
	Conclusions
	A line-by-line explanation of the method.
	Preliminary computer vision experiments.
	Preliminary Downstream Tasks Experiments.

