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Appendix for Semi-Variance Reduction for Fair Federated
Learning

A PROOFS

Lemma 1. For any model parameter θ, the gradient of the global objective F (θ) defined in equa-
tion 3 can be expressed as

∇F (θ) =

n∑
i=1

wi(θ)∇fi(θ), wi(θ) =
1

n
+

2β(fi(θ)− f(θ))

n
, f(θ) =

∑
i fi(θ)

n
. (8)

Proof. From equation 3 and with pi =
1
n , we have:

n∇F (θ) =
∑
i

∇fi(θ) + 2β
∑
i

[(
fi(θ)− f(θ)

)(
∇fi(θ)−∇f(θ)

)]
=

∑
i

∇fi(θ) + 2β
∑
i

[(
fi(θ)− f(θ)

)
∇fi(θ)−

(
fi(θ)− f(θ)

)
∇f(θ)

]
=

∑
i

(
1 + 2β(fi(θ)− f(θ))

)
∇fi(θ)− 2β

∑
i

(
fi(θ)− f(θ)

)
∇f(θ)

=
∑
i

(
1 + 2β(fi(θ)− f(θ))

)
∇fi(θ) (15)

Hence,

∇F (θ) =
∑
i

1 + 2β(fi(θ)− f(θ))

n
∇fi(θ) (16)

Derivation of equation 6∑
i

fi + β
∑
i

∣∣∣∣fi(θ)− 1

n

∑
j

fj(θ)

∣∣∣∣2 =
∑
i

fi + β
∑
i

∣∣∣∣n− 1

n
fi(θ)−

1

n

∑
j ̸=i

fj(θ)

∣∣∣∣2

=
∑
i

fi +
β

n2

∑
i

∣∣∣∣∑
j ̸=i

(fi(θ)− fj(θ))

∣∣∣∣2

≤
∑
i

fi +
β

n2

∑
i

∑
j ̸=i

∣∣∣∣fi(θ)− fj(θ)

∣∣∣∣2

=
∑
i

fi +
2β

n2

∑
j ̸=i

∣∣∣∣fi(θ)− fj(θ)

∣∣∣∣2. (17)

Lemma 2. In each communication round between the clients and the server, let >C denote the set
of clients whose local loss function is greater than the average loss function f(θ). For any model
parameter θ, the gradient of the global objective F (θ) defined in equation 9 can be expressed as

∇F (θ) =

n∑
i=1

wi(θ)∇fi(θ), (11)

where:
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f(θ) =

∑
i fi(θ)

n
, wi(θ) =


1

n
+

2β(fi(θ)− f(θ))

n
−

2β
∑

j∈>C
(fj(θ)− f(θ))

n2
, if i ∈>C

1

n
−

2β
∑

j∈>C
(fj(θ)− f(θ))

n2
, if i /∈>C

(12)

Proof. From equation 9 and with pi =
1
n , we have:

n∇F (θ) =
∑
i

∇fi(θ) + 2β
∑
i∈>C

[(
fi(θ)− f(θ)

)(
∇fi(θ)−∇f(θ)

)]
=

∑
i

∇fi(θ) + 2β
∑
i∈>C

[(
fi(θ)− f(θ)

)
∇fi(θ)−

(
fi(θ)− f(θ)

)
∇f(θ)

]
=

∑
i/∈>C

∇fi(θ) +
∑
i∈>C

(
1 + 2β(fi(θ)− f(θ))

)
∇fi(θ)− 2β

∑
i∈>C

(
fi(θ)− f(θ)

)
∇f(θ)

(18)

The last term in the above equation can be written as:

− 2β
∑
i∈>C

(
fi(θ)− f(θ)

)
∇f(θ) (19)

= −
[2β
n

( ∑
i∈>C

fi(θ)
)
×
(∑

j

∇fj(θ)
)]

+
[2β
n

( ∑
i∈>C

f(θ)
)
×

(∑
j

∇fj(θ)
)]

= −
[2β
n

( ∑
i∈>C

fi(θ)− f(θ)
)
×

(∑
j

∇fj(θ)
)]

Hence,

n∇F (θ) =
∑
i∈>C

(
1 + 2β(fi(θ)− f(θ))− 2β

n

( ∑
j∈>C

fj(θ)− f(θ)
))

∇fi(θ) (20)

+
∑
i/∈>C

(
1− 2β

n

( ∑
j∈>C

fj(θ)− f(θ)
))

∇fi(θ)

Therefore,

∇F (θ) =
∑
i∈>C

(1 + 2β(fi(θ)− f(θ))− 2β
n

(∑
j∈>C

fj(θ)− f(θ)
)

n

)
∇fi(θ) (21)

+
∑
i/∈>C

(1− 2β
n

(∑
j∈>C

fj(θ)− f(θ)
)

n

)
∇fi(θ)

Lemma 3. Assuming Pi(x, y) = Pi(x|y)Pi(y) = P (x|y)Pi(y) for i ∈ {1, . . . , n}, for any model
parameter θ, Semi-VRed global objective F (θ) defined in equation 9 can be expressed as

F (θ) =

C∑
j=1

P (j)ℓj(θ) +
β

n

n∑
i=1

( C∑
j=1

[Pi(j)− P (j)]ℓj(θ)
)2

+
, (13)

where P (j) =
∑n

i=1 Pi(j)

n is the marginal distribution of class j in the global dataset.
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Proof. From equation 9 and with pi =
1
n , we have:

f(θ) =

n∑
i=1

fi(θ)

n
=

1

n

n∑
i=1

[
E(x,y)∼pi(x,y)[ℓ(h(x, θ), y)]

]
=

1

n

n∑
i=1

[ C∑
j=1

pi(j)× E(x,y)∼p(x|y=j)[ℓ(h(x, θ), j)]
]

=
1

n

n∑
i=1

[ C∑
j=1

pi(j)ℓj(θ)]
]

=

C∑
j=1

[
(

∑n
i=1 pi(j)

n
)ℓj(θ)

]

=

C∑
j=1

p(j)ℓj(θ), (22)

where p(j) =
∑n

i=1 pi(j)

n is the ratio of data points with label j in the global dataset. Similarly, we
have:

fi(θ) =

C∑
j=1

pi(j)ℓj(θ). (23)

By plugging in the above equivalences for fi(θ) and f(θ) into equation 9, we get to equation 13.

Algorithm 2: FedAvg
1 Input: global epoch T , client number n, loss function fi, number of samples ni for client i,

number of total samples N , initial global model θ0, local step number Ki for client i, learning
rate η

2 for t = 0, 1 . . . T − 1 do
3 randomly select St ⊆ [n]

4 θ
(i)
t = θt for i ∈ St, N =

∑
i∈St

ni

5 for i in St do // in parallel

6 starting from θ
(i)
t , take Ki local SGD steps on fi, with learning rate η, to find θ

(i)
t+1

7 θt+1 =
∑

i∈St

ni

N θ
(i)
t+1

8 Output: global model θT

In algorithm 2, we have reported the FedAvg algorithm for easier reference. Due to the similarity
of VRed’s objective function to that of FedAvg, we build its convergence proof on top of the proof
for FedAvg in Zhang et al. (2022a). We borrow the following theorem on convergence of FedAvg
from the same work. We refer the reader to the work for the detailed proof.

Theorem 2 (FedAvg). Denote pi =
ni

N . Given Assumption 1, assume that the local learning rate
satisfies η ≤ 1

6LKi
for any i ∈ [n] and

η ≤ 1

L

√
1

24(e− 2)(
∑

i p
2
i )(

∑
i K

4
i )

. (24)

Running FedAvg for T global epochs we have:

min
0≤t≤T−1

E∥∇F (θt)∥2 ≤ 12

(11γ − 9)η

(
F0 − F ∗

T
+Ψσ

)
,
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with γ =
∑

i piKi for full participation and γ = mini Ki for partial participation, F0 = F (θ0),
F ∗ = minθ F (θ) the optimal value, and

Ψσ =
η

2

( n∑
i=1

p2i

)[ n∑
i=1

K2
i (σ

2
l,i + 2σ2

g) + 2(e− 2)η2L2
n∑

i=1

K3
i

(
σ2
l,i + 6Kiσ

2
g

) ]
.

Based on the above theorem for FedAvg, we now prove the convergence of our VRed algorithm.

Theorem 1 (VRed). Denote L̃ = (L + βML + 2βL2
0) and pi =

ni

N . Given Assumptions 1 and 2,
assume that the local learning rate satisfies η ≤ 1

6L̃Ki
for any i ∈ [n] and:

η ≤ 1

L

√
1

24(e− 2)(
∑

i p
2
i )(

∑
i K

4
i )

(14)

By running Algorithm 1 for T global epochs we have:

min
0≤t≤T−1

E∥∇F (θt)∥2 ≤ 12

(11γ − 9)η

(
F0 − F ∗

T
+ Ψ̃σ

)
,

with γ =
∑

i piKi for full participation and γ = mini Ki for partial participation, F0 = F (θ0),
F ∗ = minθ F (θ) the optimal value, and

Ψ̃σ =
η

2

( n∑
i=1

p2i

)[ n∑
i=1

K2
i (σ̃

2
l,i + 2σ̃2

g) + 2(e− 2)η2L2
n∑

i=1

K3
i

(
σ̃2
l,i + 6Kiσ̃

2
g

) ]
,

where σ̃2
l,i =

(
2(2βµ + 1)2σ2

l,i + 8β2M2L2
0

)
and σ̃g =

(
(2βµ + 1)σg + 2βML0

)
and µ =

Σipifi(θ0).

Proof. We first rewrite a simplified version of the VRed objective function (equation 3) in the fol-
lowing.

F (θ) =
∑
i

piGi(θ) =
∑
i

pi
(
fi(θ) + β (fi(θ)− µ)

2 )
, (25)

where Gi(θ) = fi(θ) + β (fi(θ)− µ)
2, and also, µ = Σipifi is fixed during clients local com-

putations. In the beginning of each communication round, we update µ for the next round of local
computations. In other words:

µt+1 =

n∑
i=1

pifi(θt+1). (26)

With these notations, it suffices to find the constants in Assumption 1 for Gi(θ).

Smoothness We have:
∇2Gi(θ) = ∇2fi(θ) + 2β((fi(θ)− µ)∇2fi(θ) +∇fi(θ)∇fi(θ)

⊤)

⪯ L+ 2β(
M

2
∇2fi(θ) +∇fi(θ)∇fi(θ)

⊤)

⪯ (L+ βML+ 2βL2
0)I , (27)

where in the last line we used Assumption 2 and the following:

∥∇fi(θ)∇fi(θ)
⊤∥sp = sup

∥u∥=1

sup
∥v∥=1

⟨∇fi(θ)∇fi(θ)
⊤u; v⟩

= sup
∥u∥=1

sup
∥v∥=1

(∇fi(θ)
⊤u)⊤∇fi(θ)

⊤v = ∥∇fi(θ)∥2 ≤ L2
0, (28)

where in the second line we used Cauchy–Schwarz inequality and Assumption 2. Hence, from
eq. (27), we conclude that Gi(θ) is Lipschitz smooth:

∥∇Gi(θ)−∇Gi(θ
′)∥ ≤ (L+ βML+ 2βL2

0)∥θ − θ′∥. (29)
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Variance constants For the global variance between clients gradients, we have:

∥∇Gi(θ)−∇Gj(θ)∥
=

∥∥(∇fi(θ) + 2β(fi(θ)− µ)∇fi(θ)
)
−

(
∇fj(θ) + 2β(fj(θ)− µ)∇fj(θ)

)∥∥
≤ ∥∇fi(θ)−∇fj(θ)∥+ 2β∥(fi(θ)− µ)∇fi(θ)− (fj(θ)− µ)∇fj(θ)∥
≤ ∥∇fi(θ)−∇fj(θ)∥+ 2β∥fi(θ)∇fi(θ)− fj(θ)∇fj(θ)∥+ 2βµ∥∇fi(θ)−∇fj(θ)∥
≤ (2βµ+ 1)∥∇fi(θ)−∇fj(θ)∥+ 2β∥fi(θ)∇fi(θ)− fj(θ)∇fj(θ)∥
≤ (2βµ+ 1)∥∇fi(θ)−∇fj(θ)∥+ 2βfi(θ)∥∇fi(θ)∥+ 2βfj(θ)∥∇fj(θ)∥
≤ (2βµ+ 1)σg + 2βfi(θ)∥∇fi(θ)∥+ 2βfj(θ)∥∇fj(θ)∥
≤ (2βµ+ 1)σg + βM∥∇fi(θ)∥+ βM∥∇fj(θ)∥
≤ (2βµ+ 1)σg + 2βML0, (30)

where in line seven we used Assumption 1, and in lines eight and nine, we used Assumption 2.
Therefore, we have:

∥∇Gi(θ)−∇Gj(θ)∥2 ≤
(
(2βµ+ 1)σg + 2βML0

)2

. (31)

For the local variance term, we define φ(t) = t+β(t−µ)2. Similar to the derivation of equation 30,
we have:

∥∇Gi(θ)−∇(φ ◦ ℓS)(θ)∥
=

∥∥(∇fi(θ) + 2β(fi(θ)− µ)∇fi(θ)
)
−

(
∇ℓS(θ) + 2β(ℓS(θ)− µ)∇ℓS(θ)

)∥∥
≤ (2βµ+ 1)∥∇fi(θ)−∇ℓS(θ)∥+ 2βfi(θ)∥∇fi(θ)∥+ 2βℓS(θ)∥∇ℓS(θ)∥
≤ (2βµ+ 1)∥∇fi(θ)−∇ℓS(θ)∥+ 2βML0, (32)

where in line four, we used Assumption 2. By taking the square on both sides and the expectation
over S ∼ Bb

i , we get:

ES∼Bb
i
∥∇Gi(θ)−∇(φ ◦ ℓS)(θ)∥2 ≤ ES∼Bb

i

(
(2βµ+ 1)∥∇fi(θ)−∇ℓS(θ)∥+ 2βML0

)2

≤ ES∼Bb
i

(
2(2βµ+ 1)2∥∇fi(θ)−∇ℓS(θ)∥2 + 8β2M2L2

0

)
=

(
2(2βµ+ 1)2σ2

l,i + 8β2M2L2
0

)
. (33)

In the third line, we used (a+ b)2 ≤ 2(a2 + b2). We also used Assumption 1 in the same line.

B EXAMPLES

We borrow the following example on class imbalance in FL from Shen et al. (2022) to provide a
better understanding of lemma 3. The following example shows an extreme class imbalance, which
Semi-VRed can handle efficiently.
Example 1. Let u be the uniform distribution over the existing C classes. Also, let δc be the Dirac
distribution of class c. Now, without loss of generality, lets assume that C = 2 (binary classification
problem). For the n existing clients, we have:

pi(y) =

{
αu+ (1− α)δ1 if i = 1

αu+ (1− α)δ2 if i ∈ {2, . . . , n} (34)
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Accordingly, we have:

pi(1) =

1− α

2
if i = 1

α

2
if i ∈ {2, . . . , n}

(35)

pi(2) =


α

2
if i = 1

1− α

2
if i ∈ {2, . . . , n}

(36)

Therefore,

fi(θ) =

(1− α

2
)ℓ1(θ) +

α

2
ℓ2(θ) if i = 1

α

2
ℓ1(θ) + (1− α

2
)ℓ2(θ) if i ∈ {2, . . . , n}

(37)

Hence,

f(θ) =
(α
2
+

1− α

n

)
ℓ1(θ) +

(α
2
+

(1− α)(n− 1)

n

)
ℓ2(θ) (38)

Clearly, we can see that if α ≈ 0 and n is large, then ℓ1(θ), which is the loss over the minority data
will have a small weight, which leads to ℓ1(θ) being larger than ℓ2(θ) and poor performance on the
minority class 1. Now, if we rewrite the Semi-VRed objective function (equation 9), we have:

F (θ) =
(α
2
+
1− α

n

)
ℓ1(θ)+

(α
2
+
(1− α)(n− 1)

n

)
ℓ2(θ)+

β(n− 1)2(1− α)2

n3

(
ℓ1(θ)−ℓ2(θ)

)2

(39)

For α ≈ 0:

F (θ) ≈ ℓ2(θ) +
β

n

(
ℓ1(θ)− ℓ2(θ)

)2

, (40)

which improves ℓ2(θ), thanks to its regularization term. Hence, the performance of client 1 and
consequently, fairness in the system will improve.

C EXPERIMENTAL SETUP

In this section, we provide more experimental details that are deferred from the main paper. For each
experiment, we report the average result obtained from three runs with different random seeds. For
our experiments, we used an internal GPU server with six NVIDIA Tesla P100. The experiments
last about 4 weeks in total.

C.1 DATASETS AND MODELS

In this subsection, we describe the datasets we use in our experiments. For all the datasets we use a
batch size of 64.

CIFAR-10/100 (Krizhevsky et al., 2009) are two image classification datasets vastly used in the
literature as benchmark datasets. Each of these datasests contains 50000 sample images with 10/100
balanced classes for CIFAR-10 and CIFAR-100, respectively. We use Dirichlet allocation (Wang
et al., 2019) to distribute the data among 50 clients with label shift: we split the set of samples from
class k (Sk) to n subsets (Sk = Sk,1 ∪ Sk,2 ∪ . . . ∪ Sk,n), where n is the number of clients and
Sk,j corresponds to the client j. We do the split based on Dirichlet distribution with parameter 0.05
(Dir(0.05)). When the split is done for all classes, we gather the samples corresponding to each
client from different classes: assuming there are C classes in total S1,j ∪ S2,j ∪ . . . ∪ SC,j is the
data allocated to the client j. Having allocated the data of each client, we split them into train and
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test set for each client. The train-test split ratio is 50-50 and 60-40 for CIFAR-10 and CIFAR-100,
respectively.

CINIC-10 (Darlow et al., 2018) is another benchmark vision dataset that we use in our experiments.
There are a total of 270,000 sample images, which we distribute with label shift between 50 clients
based on Dir(0.5) distribution Wang et al. (2019). We then randomly split the data of each client
into train and test sets with split ratio 50-50.

StackOverflow (The Tensorflow Federated Authors, 2019) is a language dataset consisting of
Shakespeare dialogues for the task of next word prediction. There is a natural heterogeneous par-
tition of the dataset and we treat each speaking role as a client. We filter out the clients (speaking
roles) with less than 10,000 samples from the original dataset and randomly select 20 clients from
the remaining. Finally, we split the data of each client into train and test sets with a ratio of 50-50.

Table 2 provides a summary of the datasets we used and the models used for each of them.

Table 2: Details of the experiments and the datasets. ResNet-18: residual neural network (He et al.,
2016). GN: Group Normalization (Wu & He, 2018); RNN: Recurrent Neural Network; LSTM: Long
Short-Term Memory layer; FC: fully connected layer.

Dataset Train samples Test samples Partition method clients Model

CIFAR-10 24959 25041 Dir(0.05) 50 ResNet-18 + GN
CIFAR-100 39445 10555 Dir(0.05) 50 ResNet-18 + GN
CINIC-10 134713 134966 Dir(0.5) 50 ResNet-18 + GN

StackOverflow 109671 109621 realistic partition 20 RNN (1 LSTM + 2 FC)

C.2 ALGORITHMS AND THEIR HYPERPARAMETERS

We use most recent fair FL algorithms existing in the literature as our baseline algorithms, including:
FedAvg (McMahan et al., 2017), q-FFL (Li et al., 2020c), AFL (Mohri et al., 2019), PropFair
(Zhang et al., 2022a), TERM (Li et al., 2020a), GiFair (Yue et al., 2021). For each pair of dataset
and algorithm, we find the best learning rate based on a grid search. In the following, we have
reported the learning rate grid we use for each dataset:

• CIFAR-10: {1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2};
• CIFAR-100: {1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2};
• CINIC-10: {1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2};
• StackOverflow: {1e-2, 5e-2, 1e-1, 5e-1, 1}.

The best learning rate used for each (dataset, algorithm) pair is reported in Table 4.

We now explain the algorithms we use and how we tune their hyperparameters. We adapt TERM
with only client-level fairness (α > 0) and no sample-level fairness (τ = 0). We tune the hyperpa-
rameter α for each dataset based on a grid search in the grid {0.01, 0.1, 0.5, 1}. We have reported
the best value of α for each dataset in Table 5. For AFL, there are two hyperparameters: γw and γλ.
We tune the learning rate γw from the corresponding grid and choose the default value γλ = 0.1.
For q-FFL, we use the q-FedAvg algorithm (Li et al., 2020c). We also tune the hyperparameter q
from the grid {0.01, 0.1, 1}. We find that for all the used datasets, q = 0.1 has the best peformance
(as reported in Table 5). We also tried larger values out of the grid and they often lead to divergence
of the q-FFL algorithm. We adopt the Global GiFair model (Yue et al., 2021), which results in a
single global model. In order to have client-level fairness, we treat each client as a group of size
1. For tuning the regularization weight of GiFair (λ), we follow (Yue et al., 2021). As stated in the
paper, there is an upper-bound for λ (see §3 in the paper). For our experiments, the upper-bound is
λ ≤ mini{ wi

n−1}, where wi is the ratio of total samples allocated to the client i and n is the number
of clients. We try four different values in the interval and choose the best one. When the number
of clients is large, this upper-bound is small, and for all of our datasets, this upper-bound was the
best value, as reported in Table 5. We tune M for the PropFair algorithm based on a grid search in
{2, 3, 4, 5}. Finally, for our VRed and Semi-VRed algorithms, we tune the regularization weight β
based on grid search on the grid {0.01, 0.05, 0.1, 0.2, 0.5, 1}. Larger values of β often resulted in
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Table 3: Details of the existing fairfl algorithms. fi is the loss function of the client i.

FL algorithm Objective Reference
FedAvg

∑
i fi McMahan et al. (2017)

AFL maxi fi Mohri et al. (2019)
q-FFL

∑
i f

q+1
i Li et al. (2020c)

TERM
∑

i e
αfi Li et al. (2020a)

PropFair −
∑

i log(M − fi) Zhang et al. (2022a)

GiFair
∑

i fi + λ
∑

i ̸=j |fi − fj | Yue et al. (2021)

VRed
∑

i fi + β
∑

i

(
fi(θ)− 1

n

∑
j fj(θ)

)2

this work

Semi-VRed
∑

i fi + β
∑

i

(
fi(θ)− 1

n

∑
j fj(θ)

)2

+
this work

Table 4: The best learning rates used for training each algorithm on different datasets.

Datasets FedAvg q-FFL AFL TERM PropFair GiFair VRed Semi-VRed

CIFAR-10 5e-3 5e-3 5e-3 1e-2 1e-2 5e-3 5e-3 5e-3
CIFAR-100 2e-3 2e-3 5e-3 1e-2 1e-2 5e-3 5e-3 5e-3
CINIC-10 1e-2 5e-3 1e-2 1e-2 2e-2 2e-2 5e-3 5e-3

StackOverflow 2e-1 5e-2 5e-2 2e-1 5e-1 2e-1 5e-1 5e-1

the divergence of the algorithms. We have reported the best value of all of the hyperparameters for
each dataset in Table 5.

Table 5: The best values of hyperparameters used for different datasets, chosen based on grid search.

Algorithm CIFAR-10 CIFAR-100 CINIC-10 StackOverflow

q-FFL q 1e-1 1e-1 1e-1 1e-1

TERM α 1e-2 5e-1 5e-1 5e-1

GiFair λ 6e-5 2.6e-4 5e-5 2.4e-3

PropFairM 3 3 5 4

VRed β 5e-1 1e-1 2e-1 1e-1

Semi-VRed β 5e-1 1e-2 2e-1 2e-1

C.3 DETAILED RESULTS

In Table 6, we report detailed results obtained from the algorithms we study in this work. We use a
default batch size of 64 for all the experiments. The statistics we report include: 1. the average test
accuracy across clients (overall average performance) 2. the standard deviation of test accuracies
across clients 3. the lowest (worst) test accuracy among clients 4. the lowest 10% test accuracies 5.
the lowest 20% test accuracies 6. the highest 10% test accuracies. For each experiment, we report
the average result obtained from three runs with different random seeds. As can be observed, our
proposed algorithms VRed and Semi-VRed consistently beat almost all the baseline algorithms
across different datasets in terms of various fairness metrics. Also, Semi-VRed can improve the
overall average performance (mean test accuracy) for three of the datsets as well.

Following Figure 1, we have compared our proposed algorithms with the baseline algorithms in
terms of their worst 20% test accuracies as well and the visualized results are shown in Figure 2.
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Figure 2: Worst 20% test accuracies for different algorithms. top left: CIFAR-10, top right: CIFAR-
100, bottom left: CINIC-10, bottom right: StackOverflow. Due to divergence, results for AFL on
CIFAR-10 and StackOverFlow are not shown. All subfigures share the same legends and axis labels.
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Table 6: Comparison among federated learning algorithms on CIFAR-10, CIFAR-100, CINIC-10
and StackOverflow datasets with test accuracies (%) from clients. All algorithms are fine-tuned.
Mean: the average test accuracy across all clients; Std: standard deviation of clients test accuracies;
Worst: the worst test accuracy among clients; Worst (10/20%): the worst 10/20% test accuracies of
clients; Best (10%): the best 10% test accuracies of clients.

Dataset Algorithm Mean Std Worst Worst (10%) Worst (20%) Best (10%)

FedAvg, Ditto 43.45±0.60 14.33±0.62 9.35±3.13 18.86±0.99 23.77±0.70 68.97±0.81

C
IF

A
R

-1
0 q-FFL 45.46±0.74 14.31±2.03 18.71±3.36 21.23±3.06 25.95±3.51 72.31±2.88

AFL - - - - - -
GiFair 45.05±0.64 12.93±0.44 16.79±3.55 22.65±2.03 26.52±0.76 65.62±2.59

TERM 45.61±1.03 12.24±0.56 13.80±5.25 24.89±1.37 29.34±0.61 68.65±1.27

PropFair 36.95±0.21 15.16±1.33 1.14±1.62 12.49±0.28 16.66±1.31 66.04±4.24

VRed 44.43±0.88 13.05±1.32 18.61 ±3.12 24.28 ±2.22 27.46±1.56 69.31±3.48

Semi-VRed 45.47±0.10 12.58±0.23 19.04±6.73 27.08±1.76 30.34±1.05 72.50±0.88

FedAvg, Ditto 20.20±0.31 6.50±0.21 10.36±0.69 11.07±0.54 12.49±0.51 33.88±0.09

C
IF

A
R

-1
00

q-FFL 20.25±0.11 6.30±0.27 9.66±0.33 11.09±0.67 12.52±0.46 33.96±0.90

AFL 18.98±0.71 4.91±0.37 9.81±0.69 11.31±0.18 12.72±0.21 28.68±1.71

GiFair 19.81±0.32 5.74±0.16 9.35±0.34 11.19±0.24 12.59±0.49 32.30±0.32

TERM 18.00±0.41 6.05±0.18 8.86±0.50 10.02±0.44 11.04±0.51 31.58±0.98

PropFair 14.97±0.68 6.44±0.34 5.40±1.28 7.00±1.11 8.06±1.07 28.89±0.91

VRed 20.42±0.36 6.08±0.05 9.43±1.01 11.21±0.74 12.81±0.85 33.59±1.11

Semi-VRed 20.85±0.39 6.26±0.18 9.12±1.47 11.86±0.74 13.46±0.63 34.57±1.20

FedAvg, Ditto 86.26±0.03 15.20±0.07 50.48±0.29 56.87±0.36 62.78±0.16 100.0±0.00

C
IN

IC
-1

0 q-FFL 86.63±0.06 14.88±0.08 51.57±0.82 57.77±0.36 63.62±0.18 100.0±0.01

AFL 86.45±0.12 15.10±0.11 51.57±0.45 57.58±0.29 63.04±0.28 100.0±0.00

GiFair 86.28±0.11 15.20±0.13 49.66±1.21 56.97±0.29 62.74±0.36 100.0±0.00

TERM 86.34±0.04 15.12±0.01 49.90±0.42 57.21±0.11 62.98±0.04 100.0±0.00

PropFair 86.01±0.17 15.34±0.19 49.97±1.23 56.53±0.65 62.27±0.55 99.99±0.01

VRed 85.79±0.35 15.02±0.06 51.57±0.50 57.66±0.30 62.75±0.36 99.98±0.01

Semi-VRed 85.83±0.33 14.95±0.07 51.59±0.98 58.00±0.21 62.70±0.14 99.96±0.01

FedAvg, Ditto 40.34±0.06 6.98±0.03 25.64±0.11 27.12±0.06 30.35±0.03 49.70±0.07

St
ac

kO
ve

rfl
ow q-FFL 37.79±0.80 7.38±0.09 22.54±1.03 24.12±1.00 27.14±0.92 47.06±0.66

AFL - - - - - -
TERM 40.34±0.05 6.96±0.06 25.56±0.21 27.12±0.20 30.41±0.12 49.76±0.10

GiFair 40.34±0.04 6.97±0.03 25.71±0.13 27.10±0.11 30.34±0.08 49.71±0.09

PropFair 41.76±0.01 6.80±0.05 27.30±0.21 28.75±0.19 32.14±0.10 50.76±0.08

VRed 42.90±0.05 6.64±0.01 29.08±0.09 30.39±0.05 33.55±0.05 51.66±0.03

Semi-VRed 42.90±0.03 6.60±0.01 29.10±0.06 30.34±0.09 35.55±0.05 51.70±0.04
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