On the Impact of Topological Regularization on
Geometrical and Topological Alignment in Autoencoders:
An Empirical Study

Samuel Graepler!  Diaaeldin Taha> Nico Scherf®  Anna Wienhard? R VATIEAATICS I THE SClENCES &‘
UNIVERSITAT I Faculty of Mathematics and Computer Science, Leipzig University, Leipzig, Germany
LEIPZIG 2 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany MfgﬁM'j\h@ﬂ;ﬁfﬂfﬂﬂTSEENcgs
¥ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Motivation

Manifold learning aims to construct meaning-
ful low-dimensional representations of under-
lving data manifolds. |deally, a representa-
tion should preserve both topological struc-
ture (components, loops, voids) and geomet-
ric properties (distances, curvature). However,
common manifold-learning methods such as
t-SNE and UMAP often distort global struc-
ture, while standard autoencoders provide no
guarantees on topology or geometry. Topo-
logically regularized autoencoders aim to pre-
serve the data topology, but what happens to
the latent geometry in these models?

Datasets & Models

- Six synthetic datasets: circles, spheres, and
tori, deformed and embedded in R1Y.

- Each with a low-deformation version confined
to a small subspace and a high-deformation
version that bends across more ambient
dimensions.

- Known ground-truth topology and curvature.

- Two models: AEs and Gaussian VAEs with
euclidean latent spaces and topological
regularization.

- Latent dimension d + 1, for d the intrinsic
dimension of the data manifold.

Intervention and Training

We use the persistent-homology-based topo-
logical regularization loss £, from [1]. It aims to
match the lengths of topology-relevant edges,
l.e. edges from the persistence pairings that give
birth or death to topological features on a mini-
batch scale.

Objective

Take-Away Message

In an empirical study, we investigate the im-
pact of topological regularization in autoen-
coders (AEs) and Variational Autoencoders
(VAEs) on topological and geometrical align-
ment between data and latent representation,
focusing on extrinsic curvature.

Key findings in AEs. The use of the persis-
tent homology-based topological regulariza-
tion can lead to improved geometrical align-
ment of data and latent representation in au-
toencoders.

Key findings in VAEs. Topological regulariza-
tion can only partially mitigate the disruption
of the latent geometry caused by the KL term.

Results: Autoencoders

Without topological regularization, AEs roughly

preserve topology but distort geometry in the latent

space. Adding topological regularization substantially improves curvature alignment between data
and latent representations across datasets. Geometry can improve even when training uses only the
topological loss, with no reconstruction term. The effect depends strongly on the chosen topological
feature dimension dim; in a non-monotonic way.
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Figure: Impact of topological regularization on the latent geometry of an AE trained on the Spherey,;,,, dataset. The upper row shows the curvature of the input data and the
learned representation as heatmap. The lower row shows the latent curvature plotted over the ground truth angles. Color indicates curvature. Scales vary across plots.

Results: Variational Autoencoders

The KL term pushes the latent space toward a Gaussian blob, disrupting topology and geometry.
Topological regularization mitigates this effect for small KL weights 8. Removing the KL term makes

VAEs behave like AEs.
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We explore a@ € {0,1}, 8 € {0,0.08,1}, v €
{0,1,100}. The parameter dim; defines the high-
est feature dimension considered (O: compo-
nents, 1: loops, 2: voids).

Curvature Estimation

We estimate mean extrinsic curvature by fitting a
local quadric to each point’s k-nearest neighbors.
The curvature is extracted from the quadric’s
Hessian. We compare input vs. latent curvature

using MSE and SMAPE.
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Figure: Impact of the KL term and topological regularization on the latent geometry of a VAE trained on the Circley,,, dataset. Color indicates curvature.

Discussion

- Topological regularization improves geometric

alignment in AEs, even without
reconstruction.

- Controlling topology-relevant distances
already induces useful geometric structure.

- This suggests potential for models without
decoder.

- The KL term makes VAEs unsuitable for this
approach.

Future Work

- Quantify topological alignment rather than
relying solely on visual inspection.

- Benchmark against other manifold-learning
methods.
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