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Motivation

Manifold learning aims to construct meaning-

ful low-dimensional representations of under-

lying data manifolds. Ideally, a representa-

tion should preserve both topological struc-

ture (components, loops, voids) and geomet-

ric properties (distances, curvature). However,

common manifold-learning methods such as

t-SNE and UMAP often distort global struc-

ture, while standard autoencoders provide no

guarantees on topology or geometry. Topo-

logically regularized autoencoders aim to pre-

serve the data topology, but what happens to

the latent geometry in these models?

Datasets & Models

Six synthetic datasets: circles, spheres, and

tori, deformed and embedded in R10.

Each with a low-deformation version confined

to a small subspace and a high-deformation

version that bends across more ambient

dimensions.

Known ground-truth topology and curvature.

Two models: AEs and Gaussian VAEs with

euclidean latent spaces and topological

regularization.

Latent dimension d + 1, for d the intrinsic

dimension of the data manifold.

Intervention and Training

We use the persistent-homology-based topo-

logical regularization loss Lt from [1]. It aims to

match the lengths of topology-relevant edges,

i.e. edges from the persistence pairings that give

birth or death to topological features on a mini-

batch scale.

LAE = αLrecon + γLt,

LVAE = αLrecon + βLKL + γLt

We explore α ∈ {0, 1}, β ∈ {0, 0.08, 1}, γ ∈
{0, 1, 100}. The parameter dimt defines the high-

est feature dimension considered (0: compo-

nents, 1: loops, 2: voids).

Curvature Estimation

Weestimatemean extrinsic curvature by fitting a

local quadric to each point’s k-nearest neighbors.

The curvature is extracted from the quadric’s

Hessian. We compare input vs. latent curvature

using MSE and SMAPE.
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Objective

In an empirical study, we investigate the im-

pact of topological regularization in autoen-

coders (AEs) and Variational Autoencoders

(VAEs) on topological and geometrical align-

ment between data and latent representation,

focusing on extrinsic curvature.

Take-AwayMessage

Key findings in AEs. The use of the persis-

tent homology-based topological regulariza-

tion can lead to improved geometrical align-

ment of data and latent representation in au-

toencoders.

Key findings in VAEs. Topological regulariza-

tion can only partially mitigate the disruption

of the latent geometry caused by the KL term.

Results: Autoencoders

Without topological regularization, AEs roughly preserve topology but distort geometry in the latent

space. Adding topological regularization substantially improves curvature alignment between data

and latent representations across datasets. Geometry can improve even when training uses only the

topological loss, with no reconstruction term. The effect depends strongly on the chosen topological

feature dimension dimt in a non-monotonic way.

Figure: Impact of topological regularization on the latent geometry of an AE trained on the Spherehigh dataset. The upper row shows the curvature of the input data and the
learned representation as heatmap. The lower row shows the latent curvature plotted over the ground truth angles. Color indicates curvature. Scales vary across plots.

Results: Variational Autoencoders

The KL term pushes the latent space toward a Gaussian blob, disrupting topology and geometry.

Topological regularization mitigates this effect for small KL weights β. Removing the KL term makes

VAEs behave like AEs.

Figure: Impact of the KL term and topological regularization on the latent geometry of a VAE trained on the Circlelow dataset. Color indicates curvature.

Discussion

Topological regularization improves geometric

alignment in AEs, even without

reconstruction.

Controlling topology-relevant distances

already induces useful geometric structure.

This suggests potential for models without

decoder.

The KL term makes VAEs unsuitable for this

approach.

FutureWork

Quantify topological alignment rather than

relying solely on visual inspection.

Benchmark against other manifold-learning

methods.
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