
GraphKAN: Graph Kolmogorov Arnold Network for Small Molecule-Protein Interaction Predictions

A. Dataset Description
Dataset is processed, prepared and collected through the
use of DNA-encoded chemical library (DEL) technology,
specifically tailored to evaluate the binding affinity of small
molecules to 3 protein targets. DELs are used to create large
libraries of small molecules with unique DNA barcodes for
each molecule. Small molecules in the DEL are combined
using a combinatorial approach, allowing the creation of
a vast number of unique molecules from a limited set of
building blocks. In our case, 3 types of building blocks,
combining them can generate a large number of different
molecules. The DELs are pooled together, meaning multi-
ple small molecules are tested simultaneously rather than
individually. These pools are exposed to the protein targets
in solution. The proteins of interest are rinsed to remove
non-binding molecules, and the remaining bound molecules
are identified through DNA sequencing. The 3 protein tar-
gets are used: EPHX2 (sEH), BRD4, and ALB (HSA). Each
target has been chosen due to its relevance in various medi-
cal conditions and its history of being screened using DEL
approaches.

The chemical structure of each small molecule is represented
using the Simplified Molecular-Input Line-Entry System
(SMILES), a standardized string notation that encodes the
molecule’s structure. The dataset includes SMILES repre-
sentations for the fully assembled molecule as well as its
constituent building blocks. Each molecule’s ability to bind
to a protein target is labeled with a binary classification
indicating whether it binds (1) or does not bind (0). This
binding data is derived from the experimental results of the
DEL screening process. The complete dataset is split into
training and test sets. The training set includes molecules
with known binding outcomes, while the test set is used to
evaluate the predictive models (future work). The training
data includes around 98 million examples per protein target,
while the validation set has around 200,000 examples per
protein, and the test set has about 360,000 examples per
protein. The dataset is highly imbalanced, with only about
0.5% of the examples classified as binders. This reflects
the real-world scenario where only a tiny fraction of tested
molecules exhibit binding affinity to the target proteins.

A.1. Chemical Representations

One goal of this research is to explore various ways of rep-
resenting molecules. Small molecules can be represented
using SMILES, graphs, 3D structures, and other methods.
This study provides molecules in SMILES format, which en-
codes the molecular graph, including atoms, bonds, connec-
tivity, and stereochemistry as a linear sequence of characters.
SMILES is widely used in ML applications for chemistry
due to its standardized and machine-readable format.

A.2. Experimental Details

DEL technology allows the efficient testing of a vast number
of small molecules by attaching unique DNA barcodes to
each molecule. This approach enables the pooling of many
molecules in a single tube, where they are exposed to the pro-
tein target of interest. After rinsing away non-binders, the
remaining binders are identified through DNA sequencing.
DELs are created using a combinatorial approach, signif-
icantly expanding the library of small molecules from a
limited number of building blocks.

The dataset for this study includes examples represented
by binary classifications indicating whether a given small
molecule binds to one of three protein targets. The data
were collected using DEL technology and are provided in
both CSV and Parquet formats. The dataset includes the
following features:

• id: A unique identifier for the molecule-binding target
pair.

• buildingblock1 smiles, buildingblock2 smiles, build-
ingblock3 smiles: The structures of the three building
blocks in SMILES format.

• molecule smiles: The structure of the fully assembled
molecule in SMILES format.

• protein name: The name of the protein target.

• binds: A binary class label indicating whether the
molecule binds to the protein (not available for the
test set).

A.3. Data Composition

The training dataset consists of roughly 98 million examples
per protein, with 200,000 validation examples per protein
and 360,000 test molecules per protein. The test set contains
building blocks that do not appear in the training set to test
the generalizability of the models. These datasets are highly
imbalanced, with approximately 0.5% of examples classi-
fied as binders. The data collection involved three rounds of
selection in triplicate to identify binders experimentally.

A.4. Protein Targets

Three protein targets were screened in this study:

• EPHX2 (sEH): Soluble epoxide hydrolase, a poten-
tial drug target for high blood pressure and diabetes
progression.

• BRD4: Bromodomain 4, involved in cancer progres-
sion and targeted by drugs inhibiting its activities.
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• ALB (HSA): Human serum albumin, the most common
protein in blood, playing a role in drug absorption and
transport.

These targets were chosen by the organizers to provide a
diverse set of challenges and to evaluate the potential of
ML models to generalize across different types of protein
interactions.

A.5. Data Splitting and Scoring

The dataset was split using multiple techniques to ensure
a comprehensive evaluation of model performance. Re-
served building blocks ensured that certain molecules only
appeared in the test set, while random and scaffold-based
separations were also employed. The scoring metric calcu-
lates the average precision across different groups to ensure
a balanced evaluation.

By leveraging BELKA, this study aims to advance ML
approaches in small molecule chemistry, facilitating more
efficient drug discovery and potentially leading to new life-
saving medicines.

B. Evaluation Metric Description
The dataset was split using various techniques to ensure di-
versity and avoid overfitting to specific types of molecules,
which included keeping reserved building blocks for the
test set and ensuring they did not appear in the training
set. Specific Murcko scaffolds were made exclusive to the
test set, then additionally sampled random molecules. A
property chemical library was included solely in the test
set. A single AP value as the metric inadvertently empha-
sized understanding base rates. The differences in base
rates and difficulty levels across splits and proteins led to an
imbalanced evaluation. To ensure fair and balanced evalua-
tion, the proposed metric calculates AP for each protein and
each split group individually and then averages these scores.
The method ensures a balanced evaluation across different
groups, avoiding bias towards any particular split or pro-
tein. This study aims to identify molecule representations
and model architectures using GraphKAN that provide a
formidable generalization across different chemical spaces
and conditions. Including a new library in the test set en-
sures the models are tested on out-of-distribution molecules,
promoting the development of models that generalize well.
AP was calculated across 9 groups (shared and non-shared
building blocks plus a new library for 3 proteins) and av-
eraged, with 2/3 of the final score coming from molecules
outside the training distribution.

The step-by-step procedure of the evaluation follows,

Initialized the lists of unique protein names and split groups,
protein names (Np) and split groups (Sg). Both of

them consist of unique protein names from the solution
data frame. Loop through each combination of protein
name and split group: For each protein namei ϵ Np and
split groupj ϵ Sg:

Selected the subset of rows where the protein name and split
group match:

selectij = k | solution[k, ′N ′
p] = protein namei

and solution[k, ′S′
g] = split groupj

(2)

Check if the subset is not empty if |selectij | > 0:

scoreij = average precision score(

solution[k, target] | k ϵ selectij ,

submission[k] |k ϵ selectij)

(3)

Compute the mean of the collected scores:

mean score =
1

|score|
∑

score ϵ scores

score (4)

So, the overall evaluation equation can be written as,

mean score =
1

|score|

|Np|∑
i=1

|Sg|∑
j=1

(1|selectij |>0) . scoreij

(5)

Here 1|selectij |>0 is an indicator function that is 1 if the
subset selectij is not empty and 0 otherwise.

C. Related Works
1. DeepChem: An Open-Source Toolbox for Deep Learning
in Drug Discovery (Ramsundar et al., 2019)

An open-source toolkit that provides a suite of DL algo-
rithms tailored for drug discovery and materials science.
The authors demonstrate tasks such as molecular property
prediction, molecular generation, and protein-ligand bind-
ing affinity prediction. The toolkit integrates several SOTA
DL models and emphasizes the importance of model Inter-
pretability and robustness in drug discovery applications.

Provides a comprehensive deep learning toolbox for chemin-
formatics. Demonstrates the effectiveness of deep learning
in predicting molecular properties and binding affinities.
Emphasizes the importance of reproducibility and open sci-
ence in drug discovery research.

The models may require significant computational resources,
making them less accessible for smaller labs. DL models
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can be difficult to interpret, posing challenges in under-
standing how predictions are made. Performance is highly
dependent on the quality and quantity of training data.

2. Predicting Drug-Target Interactions Using Restricted
Boltzmann Machines (Wang et al., 2014)

In this study, the authors employ Restricted Boltzmann Ma-
chines (RBMs) to predict drug-target interactions (DTIs).
The model is trained on known DTIs and then used to iden-
tify potential new interactions. The paper demonstrates that
RBMs can effectively capture the complex relationships
between drugs and their targets, outperforming traditional
methods such as similarity-based approaches.

Introduces RBMs as a powerful tool for DTI predic-
tion. Demonstrates superior performance over traditional
similarity-based methods. Provides insights into the poten-
tial of deep learning techniques in understanding drug-target
relationships.

RBMs require careful tuning of hyperparameters, which
can be time-consuming. They may not scale well with vast
datasets. The model’s performance can degrade with noisy
or incomplete data.

3. Machine Learning on DNA-Encoded Libraries: A New
Paradigm for Hit Finding (McCloskey et al., 2020)

This paper explores the use of machine learning to analyze
data from DELs, a technology that allows for the simulta-
neous screening of billions of compounds against a target
protein. The authors develop machine learning models to
predict the binding affinities of compounds in DELs, show-
ing that these models can accurately identify promising drug
candidates from vast chemical spaces.

Utilizes machine learning to process and analyze DEL data.
Demonstrates the ability to predict binding affinities with
high accuracy. Highlights the potential of combining DEL
technology with ML to accelerate drug discovery.

The approach relies heavily on the quality and comprehen-
siveness of the DEL data. ML models may struggle with
generalizing novel chemical spaces not represented in the
training data. Interpretability of the models remains a chal-
lenge, especially for complex biological interactions.

4. Generative Models for Molecular Discovery: Recent
Advances and Challenges (Elton et al., 2019)

This review paper surveys recent advancements in using
generative models for molecular discovery. It discusses
various generative techniques, including VAEs, GANs, and
RL, in the context of drug discovery. The authors highlight
successful applications, such as generating novel drug-like
molecules and optimizing molecular properties.

Provides a comprehensive review of generative models in

drug discovery. Highlights successful applications and case
studies. Discusses the challenges and future directions for
generative model research in drug discovery.

Generative models often require large datasets for training,
which may not always be available. These models can be
computationally intensive and require significant resources.
Ensuring the chemical validity and synthesizability of gen-
erated molecules remains a challenge.

5. Deep Learning for Drug Discovery and Biomarker De-
velopment (Vamathevan et al., 2019)

This paper reviews the application of deep learning tech-
niques in drug discovery and biomarker development. It
covers various deep learning models, such as CNNs and
RNNs, and their applications in predicting drug efficacy,
toxicity, and mechanism of action. The review also dis-
cusses the integration of multi-omics data and the potential
of deep learning to uncover new biomarkers for disease.

Reviews the application of deep learning in drug discovery
and biomarker development. Discusses the integration of
multi-omics data for comprehensive analysis. Highlights
the potential of deep learning to improve drug efficacy and
safety predictions.

DL models can be data-hungry, requiring large, annotated
datasets for training. Interpretation of model predictions
remains a challenge, particularly in understanding biological
relevance. Integrating and harmonizing multi-omics data
can be complex and resource-intensive.

D. Motivation for Using GraphKAN
The motivation for using GraphKAN or KAN in general
in protein-ligand bioaffinity predictions stems from their
theoretical robustness, enhanced expressivity, and improved
feature transformation capabilities (Table 2). While there
are potential disadvantages, such as increased computational
complexity and risk of overfitting, the overall benefits make
KANs a promising approach for this domain. Proper imple-
mentation and regularization can address these challenges,
leading to more accurate and reliable bioaffinity predictions.

E. Commercial Potential of GraphKAN
Firstly, GraphKAN itself represents an innovative approach
in drug discovery. By utilizing GraphKAN, the research
enhances the feature transformation capabilities of GNN
through the integration of learnable activation functions.
This novel method is designed to improve the prediction
of binding affinities between small molecules and protein
targets, a critical aspect of drug discovery. Although the
model has not yet achieved state-of-the-art performance,
its potential for refinement suggests it could significantly
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Advantages Potential Disadvantages

1. Theoretical Foundation: KANs are grounded in
the Kolmogorov-Arnold representation theorem,
which states that any multivariate continuous function
can be represented as a finite sum of continuous
functions of one variable. This theoretical
underpinning provides a robust framework for
learning complex, non-linear relationships, making
KANs highly suitable for tasks involving intricate
data structures, such as protein-ligand interactions.

1. Computational Complexity: The integration of
KANs increases the computational complexity of the
model. The Fourier transformations and the learning
of multiple coefficients add to the computational
overhead, potentially leading to longer training times
and higher resource consumption. This trade-off
between accuracy and computational efficiency must
be carefully managed.

2. Enhanced Expressivity: The key advantage of
KANs lies in their ability to learn more expressive
activation functions compared to traditional NN
architectures. KANs can adaptively capture complex
patterns in the input data by incorporating learnable
Fourier coefficients. This is particularly beneficial for
protein-ligand bioaffinity predictions, where the
interactions are inherently complex and multi-faceted.

2. Overfitting Risks: Given the high expressivity of
KANs, there is a potential risk of overfitting,
especially when dealing with small datasets. The
model might learn noise in the training data rather
than the underlying patterns, adversely affecting its
generalization to unseen data. Regularization
techniques and careful model validation are necessary
to mitigate this risk.

3. Improved Feature Transformation:
Incorporating KANs into a GNN enhances the feature
transformation process. The Fourier transformation
within the KAN layer allows the model to better
capture periodicities and other intricate patterns in the
molecular data. This improved feature transformation
leads to more accurate and robust predictions of
bioaffinity.

3. Complexity in Implementation: The
implementation of KANs requires a more complex
architecture compared to standard neural networks.
This added complexity might pose challenges
regarding model design, debugging, and maintenance.
Ensuring that the benefits outweigh the
implementation challenges is critical.

4. Flexibility and Adaptability: KANs provide
flexibility in learning activation functions tailored to
the specific data and task at hand. This adaptability is
crucial in the context of protein-ligand bio affinity
predictions, where different types of interactions (e.g.,
hydrophobic, hydrogen bonding, van der Waals
forces) need to be accurately modeled.

4. Hyperparameter Sensitivity: KANs require
careful tuning of hyperparameters such as the number
of layers, the number of Fourier coefficients, and the
learning rates, as far as we have discovered from the
literature. As a novel system for NNs, more trial and
error is needed to understand this architecture’s
behavior on different data sets. This process can be
time-consuming and computationally intensive,
posing a challenge in achieving the best model
performance.

Table 2. The motivation for using KANs in protein-ligand bioaffinity predictions lies in their theoretical robustness, enhanced expressivity,
and improved feature transformation. Despite potential disadvantages like increased computational complexity and overfitting risk,
KANs offer significant benefits. Proper implementation and regularization can mitigate these challenges, ensuring accurate and reliable
predictions.
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improve the efficiency and accuracy of molecular interaction
predictions.

Secondly, the commercial viability of this research is evident
in its potential to reduce costs and time associated with tra-
ditional drug discovery methods. Conventional approaches
often involve extensive physical synthesis and testing, which
are both time-consuming and expensive. Computational
models like GraphKAN can dramatically cut down on these
costs and time requirements by predicting binding affini-
ties more efficiently. Moreover, the research leverages the
Big Encoded Library for Chemical Assessment (BELKA)
dataset, which includes 133 million small molecules tested
against three protein targets. This extensive dataset pro-
vides a robust foundation for developing accurate predictive
models, making the technology commercially appealing for
pharmaceutical companies.

The market potential of this research is substantial. The
protein targets studied—EPHX2, BRD4, and ALB—are
associated with diseases such as high blood pressure, dia-
betes, and cancer. Accurately predicting interactions with
these proteins can lead to the development of new thera-
peutic agents, opening up significant market opportunities.
Additionally, the adaptability of the GraphKAN model to
other protein targets and molecular datasets suggests that
this technology could be broadly applied across various
drug discovery projects, further increasing its commercial
potential.

Furthermore, the open-source nature of the project and the
encouragement of collaboration enhance its commercial
appeal. By making the source code available on GitHub,
the researchers facilitate further development and refine-
ment of the technology, which can accelerate its adoption
in commercial applications. Future work aims to analyze
larger datasets and refine the model, ensuring continuous
improvement and increasing the technology’s attractiveness
to potential commercial partners.

In conclusion, the research on GraphKAN presents a promis-
ing new direction in computational drug discovery. Its poten-
tial to enhance prediction accuracy and efficiency, combined
with its applicability to various therapeutic targets, makes
it commercially exciting. The open-source approach and
ongoing efforts to refine and scale the model further en-
hance its appeal to the pharmaceutical industry and other
stakeholders in drug development.


