
Published as a conference paper at ICLR 2024

SPURIOUS FEATURE DIVERSIFICATION IMPROVES
OUT-OF-DISTRIBUTION GENERALIZATION

Yong Lin∗† Lu Tan∗§ Yifan Hao∗† Ho Nam Wong† Hanze Dong†

Weizhong Zhang‡ Yujiu Yang§ Tong Zhang¶

† The Hong Kong University of Science and Technology, § Tsinghua University,
‡ Fudan University ¶ University of Illinois Urbana-Champaign.

ABSTRACT

Generalization to out-of-distribution (OOD) data is a critical challenge in machine
learning. Ensemble-based methods, like weight space ensembles that interpolate
model parameters, have been shown to achieve superior OOD performance. How-
ever, the underlying mechanism for their effectiveness remains unclear.
In this study, we closely examine WiSE-FT, a popular weight space ensemble
method that interpolates between a pre-trained and a fine-tuned model. We ob-
serve an unexpected “FalseFalseTrue” phenomenon, in which WiSE-FT success-
fully corrects many cases where each individual model makes incorrect predic-
tions, which contributes significantly to its OOD effectiveness. To gain further in-
sights, we conduct theoretical analysis in a multi-class setting with a large number
of spurious features. Our analysis predicts the above phenomenon and it further
shows that ensemble-based models reduce prediction errors in the OOD settings
by utilizing a more diverse set of spurious features. Contrary to the conventional
wisdom that focuses on learning invariant features for better OOD performance,
our findings suggest that incorporating a large number of diverse spurious fea-
tures weakens their individual contributions, leading to improved overall OOD
generalization performance. Additionally, our findings provide the first explana-
tion for the mysterious phenomenon of weight space ensembles outperforming
output space ensembles in OOD. Empirically we demonstrate the effectiveness of
utilizing diverse spurious features on a MultiColorMNIST dataset, and our exper-
imental results are consistent with the theoretical analysis.
Building upon the new theoretical insights into the efficacy of ensemble methods,
we further identify an issue of WiSE-FT caused by the overconfidence of fine-
tuned models in OOD situations. This overconfidence magnifies the fine-tuned
model’s incorrect prediction, leading to deteriorated OOD ensemble performance.
To remedy this problem, we propose a novel method called BAlaNced averaGing
(BANG) to mitigate the overconfidence problem, which significantly enhances the
OOD performance of WiSE-FT.

1 INTRODUCTION

Machine learning has seen significant advancements recently. However, the assumption that test-
ing samples follow the same distribution as training samples, known as the Identically Independent
Distributed (IID) assumption, can be violated in real-world applications. When a machine learn-
ing model encounters novel testing samples that it hasn’t seen during training, it faces the out-of-
distribution (OOD) generalization problem.

Ensemble-based models (ESM) have achieved significant success in addressing OOD problems in
recent years. Specifically, denote the input as x and the model as fθ with parameter θ. Given
two models fθ̄ and fθ̃, existing ESM works typically consider the output space ensemble (OSE)
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Figure 1: Illustration of FalseFalseTrue phenomenon. Consider to classify camels, cows, and dogs.
The invariant feature xv is the shape of the animal. There are 2 spurious features, i.e., 1) the
background xs,1, e.g., camels are always on the sand, cows are on grass and dogs are on the floor.
2) the fur of the animals xs,2, e.g., camels have brown fur, cows have dotted fur and dogs are
all in black in the training dataset. Suppose we fit two models, f̄ and f̃ , on the training dataset
independently. Assume that f̄ uses the invariant feature xv and xs,1, and f̃ uses xv and xs,2. f̄

and f̃ both correctly predict the label of a sample from the training distribution. Consider an OOD
testing sample of a dog with brown fur on the grass. f̄ puts a large logit for the cow class since
the background(grass) is spuriously correlated with cows, i.e., f̄(xv,xs,1) = [0.4, 0.6, 0]. f̃ puts a
large logit for the camel class since the texture(brown fur) is spuriously correlated with camels, i.e.,
f̃(xv,xs,2) = [0.4, 0, 0.6]. Both f̄ and f̃ make mistakes on this sample. However, the average
of them can make correct prediction, i.e., 1/2f̄(xv,xs,1) + 1/2f̃(xv,xs,2) = [0.4, 0.3, 0.3].

which outputs fθ̄(x) + fθ̃(x) and the weight space ensemble (WSE) which outputs f(θ̄+θ̃)/2(x).
WSE is also called weight averaging in literature. Wortsman et al. (2022); Wortsman et al.; Rame
et al. (2022) show that ESM can significantly improve the OOD performance and WSE outperforms
OSE. Many works, e.g., Cha et al. (2021); Rame et al. (2022); Arpit et al. (2022); Rame et al.;
Wortsman et al.; Tian et al. (2023); Kumar et al. (2022), adopt WSE to repeatedly improve the
SOTA performance on many OOD benchmarks such as DomainBed (Gulrajani & Lopez-Paz, 2020)
and ImageNet variants (Wortsman et al., 2022). See Appendix B.1 for more related works.

Consider two types of features for OOD: (1) invariant features that consistently predict the label
across distributions, and (2) spurious features that have unstable correlations with the label. Exist-
ing OOD theories (Arjovsky et al., 2019; Rosenfeld et al., 2020; Wald et al., 2022; Ahuja et al.,
2020; Zhou et al., 2022b) show that an ERM-trained model relying on spurious features can fail in
worst-case. ESM, which combines multiple ERM-trained models, may still heavily depend on such
features and potentially fail in worst-case scenarios as well. There have been some previous attempts
to explain the effectiveness of model ensemble, but they do not offer satisfactory explanations on the
overall OOD improvement of ESM. Furthermore, the difference between weight and output space
ensemble remains under-explored (a thorough discussion on related works in Appendix B.2).

An intriguing phenomenon. To understand the benefits of ESM, we examine the WiSE-FT (Worts-
man et al., 2022), which interpolates between a pre-trained and fine-tuned model. When evaluating
OOD datasets, we divided them into four groups based on the correctness of predictions made by the
individual models. Surprisingly, we found a “FalseFalseTrue” phenomenon: WiSE-FT can correct
predictions on samples where both individual models make incorrect predictions. Further, we show
that two individual models learn different feature sets, and WiSE-FT utilizes more diverse features.
Based on these observations, we then motivate our theory by a toy example (shown in Figure 1).
Suppose we have two models, f̄ and f̃ , for a 3-class classification task. For a sample from the first
class, f̄ produces logits of (0.4, 0.6, 0), and f̃ produces logits of (0.4, 0, 0.6). The ensemble model’s
prediction would be (0.4, 0.3, 0.3). This phenomenon can happen when f̄ and f̃ learn different sub-
sets of spurious features, represented as S̄ and S̃, respectively. Recall that the spurious correlations
change in OOD. In the example, f̄ generates a high logit (0.6) for the second class influenced by S̄,
while f̃ produces a high logit (0.6) for the third class influenced by S̃ (details in Section 2).

A new perspective on OOD generalization. In Section 3, we extend a popular theoretical setting
(Rosenfeld et al., 2020; Wald et al., 2022) to a 3-class classification with multiple spurious features.
Our theoretical results predicts the aforementioned phenomenon. We show that ESM incorporates
more diverse spurious features, which weakens the contributions of individual spurious feature and
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further leads to improved overall OOD performance. We also shed light on the difference between
the weight and output space ensemble. Recall that there has been a significant effort in OOD com-
munity to learn invariant features and discard spurious features (Arjovsky et al., 2019). However,
these approaches have not shown satisfactory performance when applied to real-world datasets (Gul-
rajani & Lopez-Paz, 2020), which may be due to the fact that invariant learning requires numerous
domains (Rosenfeld et al., 2020), strong regularization (Zhou et al., 2022b), and faces additional dif-
ficulties induced by non-linearity (Rosenfeld et al., 2020), overparameterization (Lin et al., 2022a),
and optimization challenges (Chen et al., 2023c). In contrast, our findings offer a new perspective
that spurious features diversification actually improves OOD performance, which can be easily
implemented as shown in ensemble-based models and has achieved remarkable empirical success.
To further verify our findings, we introduce MultiColorMNIST in Section 3.4, a novel variant of CM-
NIST (Arjovsky et al., 2019), with multiple spurious features. Through empirical analysis, we show
that individual models trained on MultiColorMNIST utilize different spurious features, and their en-
semble achieves superior OOD performance by leveraging this diversity. Notably, while several
methods promote feature diversity to enhance empirical performance, none of them have explored
the spurious features diversification from a perspective similar to ours (details in Appendix B.2).

An improved method. Our theoretical results indicate that the scaling of f̄ and f̃ should be similar
to maintain the improvement of the model ensemble. If f̃ is much more confident than f̄ , resulting in
a larger scaling for f̃ , the ensemble model can become biased towards f̃ . Unfortunately, the scaling
issue arises in WiSE-FT, which combines a pre-trained model and a fine-tuned model in the weight
space. Empirical evidence shows that the pre-trained model is well calibrated, whereas the fine-tuned
model is highly over-confident on OOD datasets, indicating a larger scaling compared to the pre-
trained model. Based on these findings, we propose BAlaNced averaGing (BANG), which combines
the pre-trained model with a model fine-tuned by over-confidence preventing methods like Label
Smoothing and MixUp. We demonstrate that BANG improves vanilla WiSE-FT by approximately
1.9pp in average OOD performance across five ImageNet variants.

To summarize, the following are the main contributions of the paper:
• By examining WiSE-FT, a popular method of ensemble-based models (EBM) that com-

bines the pre-trained and fine-tuned model in the weight space, we discover an unexpected
‘FalseFalseTrue’ phenomenon that WiSE-FT can correct a large fraction of OOD samples
on which both individual models make wrong predictions. We further show that two indi-
vidual models use different sets of features and WiSE-FT utilizes more diverse features.

• Through theoretical analysis on a multi-class classification problem with multiple spurious
features, we provide a natural explanation for the observed phenomenon and show EBM
can improve OOD performance through spurious features diversification. Additionally, our
findings provide the first-ever explanation for the mysterious phenomenon of weight space
ensembles outperforming output space ensembles in OOD scenarios.

• Contrary to the traditional belief that emphasizes the exclusive learning of invariant features
for OOD, our findings suggest that incorporating diverse spurious features weakens their
individual contributions, leading to improved overall OOD generalization performance.
Through experiments on our MultiColorMNIST dataset, which contains multiple spurious
features, we provide concrete evidence for the effectiveness of diverse spurious features.

• Based on our theoretical and empirical findings, we show that WiSE-FT can suffer from
the over-confidence problem of the fine-tuned model, which skews the ensemble and dete-
riorates the OOD performance. We further propose a novel method BANG to remedy this
problem, and it significantly improves the OOD performance.

2 UNDERSTANDING ENSEMBLE-BASED MODELS VIA EXAMINING WISE-FT

The FalseFalseTrue phenomenon. In this section, we closely examine WiSE-FT (Wortsman et al.,
2022) to obtain intuition on why EBM can improve OOD performance. Specifically, (Wortsman
et al., 2022) ensemble pre-trained CLIP and the model fine-tuned on ImageNet in the weight space.
In Appendix C.1, we divide each dataset (ImageNet as ID dataset and five ImageNet variants 1

1They are ImageNet-V2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2021a), ImageNet-
A (Hendrycks et al., 2021b), ImageNet Sketch (Wang et al., 2019) and ObjectNet (Barbu et al., 2019). We
refer to them as IN-V2, IN-R, IN-A, IN-S, and ObjNet for short. More details in Appendix E
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Figure 2: (Left) FalseFalseTrue ratio; (Right) GradCAM feature visualization.

as OOD datasets) into 8 groups by whether the pre-trained, fine-tuned and averaged models make
correct predictions. We surprisingly find that WiSE-FT can correct a substantial part of samples
on which both the pre-trained and fine-tuned models make mistakes. Specifically, we calculate the
number of “FalseFalseTrue” samples, i.e., samples on which WiSE-FT is correct while both the pre-
trained and fine-tuned models are incorrect. We then calculate the FalseFalseTrue ratio by dividing
FalseFalseTrue number over the dataset size. Figure 2(Left) shows FalseFalseTrue ratio on each
OOD dataset and compares it with “overall improvement”, which is the accuracy improvement of
WiSE-FT over the best of pre-trained and fine-tuned model. We can see that there are substantial
parts of FalseFalseTrue samples in each dataset. Refer to Appendix C.1 for more details. It is
interesting that the FalseFalseTrue ratio is even higher than the overall improvement in IN-R and
IN-A, we provide in-depth analysis and explanation in Appendix C.1 and E.6.

Illustration on when FalseFalseTrue occurs. In this part, we try to understand the FalseFalseTrue
phenomenon. We first consider the output space ensemble to be similar to the weight space ensem-
ble in this part and will present an analysis of their difference in Section 3. Suppose we want to
distinguish from camels, cows, and dogs. There is one invariant feature xv (the shape of the animal)
and two spurious features (the background xs,1 and the fur of the animal xs,2). Camels are typically
found on sand, cows on grass, and dogs on the floor. Camels have brown fur, cows have dotted fur,
and dogs are all black in the training dataset. See Fig. 1 for illustration. Suppose we fit two different
models, f̄ and f̃ on the training dataset. Further assume f̄ uses the feature xv and xs,1, and f̃ uses
xv and xs,2

2. Both f̄ and f̃ correctly predict samples from the training distribution. Whereas,
for a sample from the testing distribution, e.g., a dog with brown fur (xs,2) on the grass (xs,1): f̄
puts a large logit for the cow class since the background, grass, is spuriously correlated with cow,
i.e., f̄(xv,xs,1) = [0.4, 0.6, 0]; f̃ puts a large logit for the camel class since the texture, brown fur,
is spuriously correlated with camel, i.e., f̃(xv,xs,2) = [0.4, 0, 0.6]. Both f̄ and f̃ make different
mistakes under distributional shifts due to using different spurious features. However, the ensemble
of them can make a correct prediction, i.e., 1/2f1(xv,xs,1) + 1/2f1(xv,xs,2) = [0.4, 0.3, 0.3].

Feature visualization. The reasoning above assumes that individual models utilize different fea-
tures. GradCam (Selvaraju et al., 2016) visualization of the features used by the pre-trained (zero-
shot), fine-tuned, and WiSE-FT in Figure 2(Right) confirms this assumption. The visualization
shows that the pre-trained and fine-tuned models rely on different features, while WiSE-FT utilizes
more diverse features. Additionally, (Allen-Zhu & Li, 2020) provides empirical evidence support-
ing the use of diverse features by different DNNs with the same architecture trained on the same
datasets (with different initialization). They also provide formal theoretical proof for 2-layer DNNs.
We include some of (Allen-Zhu & Li, 2020)’s empirical results in Appendix C.2. Additionally, there
is more evidence suggesting that DNNs favor sparse feature representations and discard redundant
features (Papyan et al., 2020; Andriushchenko et al., 2023).

3 ANALYSIS ON SPURIOUS FEATURE DIVERSIFICATION

3.1 THEORETICAL SETTINGS

Notation. For simplicity of presentation, we consider a 3-class classification problem, i.e., y ∈
{e1, e2, e3}, where ei denotes the 3-dimensional unit vector with ith element equaling 1, e.g.,
e2 = [0, 1, 0]⊤. In Appendix F.2, we extend the setting to K-class classification. a(k) means

2For simplicity of illustration, we assume that f̄ and f̃ learn the same invariant feature. However, this is not
necessary for EBM to outperform both individual models, as demonstrated in Section 3
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Figure 3: (a) µs,j ∈ Rd×3 represents a spurious feature, e.g., the background. Each column of µs,j

is an attribute of the spurious feature, e.g., µs,j(1), µs,j(2) and µs,j(3) are the floor, grass, and
sand, respectively. (b) Qs,j ∈ {0, 1}3×3 represents the relationship between labels and spurious
features. In the ID distribution, Qs,j equals I , indicating that each spurious feature is perfectly
correlated with the corresponding class. (c) In the OOD distribution, spurious correlation can fail,
e.g., Qs,j(1) equals e2 with probability p/3, indicating the background of the dog is the grass.

the kth element of vector a, A(k) means the kth column of matrix A. We use IK to represent a
K×K identity matrix, e.g., I3 = [e1, e2, e3]. We omit the subscript of I when no confusion arises.

Suppose we have dv invariant features {xv,i}dv
i=1 and ds spurious features {xs,j}ds

j=1 where
xv,i,xs,j ∈ Rd and the whole feature x ∈ Rd×(ds+dv) is the concatenation of them, i.e.,

x = Concat
(
{xv,i}dv

i=1 ∪ {xs,j}ds
j=1

)
= [xv,1, . . . ,xv,dv ,xs,1, . . . ,xs,ds ]. Consider that each

model f is composed of a featurizer Φ ∈ {0, 1}dv+ds and a classifier w ∈ Rd×3. Φ first
selects feature by xΦ. For example, suppose x = [x1,x2,x3] and Φ = [1, 1, 0]⊤, then
xΦ = x1 + x2. Then the classifier w ∈ Rd×3 is fit based on the features selected by Φ as
w = argminv∈Rd×3 Rid(v,Φ) = argminv∈Rd×3 E(x,y)∼Did

[ℓ(v⊤(xΦ),y)], where ℓ is the cross-
entropy loss function and Did is the ID distribution. (Remark: Refer to Appendix D.1 for detailed
discussions on the setting.)

Following (Rosenfeld et al., 2020; Wald et al., 2022), we consider that each xv,i and xs,j are gen-
erated from the label y with the latent invariant features µv,i and spurious features µs,i, where
µv,i,µs,j ∈ Rd×3. The full data generation process is:
Definition 1 (Data Generation Process). The whole data generation process is as follows:

y ∼ Unif {e1, e2, e3} ,x = Concat
(
{xv,i}dv

i=1 ∪ {xs,j}ds
j=1

)
,

Pθ(xv,i | y) = N
(
µv,iQv,iy, σ

2Id
)
,Pθ(xs,j | y) = N

(
µs,jQs,jy, σ

2Id
)
,∀i, j. (1)

where Qv,i,Qs,j ∈ {0, 1}3×3. Further, Qv,i = I3 = [e1, e2, e3] always hold. In the ID distribution
Did, Qs,j = I3; and in OOD Dood, the kth column of Q, i.e., Qs,j(k), is as follows for k = 1, 2, 3:

Qs,j(k) =

{
ek, with probability 1− p

Unif{e1, e2, e3}, with probability p.

The intuition of the data generation process. We consider the example in Figure 1. Figure 3 shows
the intuition of µs,j and Qs,j . Suppose the spurious feature µs,j is the background in Figure 1.
Here µs,j = [µs,j(1),µs,j(2),µs,j(3)] ∈ Rd×3 and each column µs,j(k) for k = 1, 2, 3 represents
a specific attribute that is associated with class k in the training set. In other words, µs,j(1),µs,j(2),
and µs,j(3) represent 3 attributes of background, namely, floor, grass, and sand, which are correlated
with dog, cow, and camel, respectively. Consider a dog image (i.e., y = e1 = [1, 0, 0] ). We have
µs,jQy|y=e1

= µs,jQs,j(1) and 3 further

(a) In the ID distribution Did, Qs,j(1) = e1 and µs,jQs,jy|y=e1
= µs,je1 = µs,j(1). Then

xs,j = N (µs,j(1), σI), indicating that in Did the background of the dog (i.e., y = e1) is
the floor (i.e., µs,j(1)).

(b) In the OOD distribution Dood, Qs,j(1) = e1 with probability 1 − p and Qs,j(1) ∼
Unif{e1, e2, e3} with probability p. Then we have the following:

µs,jQs,jy|y=e1 =

{
µs,j(1), with probability 1− p

Unif{µs,j(1),µs,j(2),µs,j(3)}, with probability p,

3Specifically, Qy|y=e1 = Q[1, 0, 0]⊤ = Qs,j(1), where Qs,j(1) is the first column of Qs,j .
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indicating that in the OOD distribution the background of the dog (i.e., y = e1) is the
floor (i.e., µs,j(1)) with probability 1 − p and is randomly drawn from floor, grass, and
sand (i.e., µs,j(1), µs,j(2), and µs,j(3)) with p. In other words, p is the probability that
spurious correlation no-longer holds and a larger p indicates larger distributional shift.

Remark. Our data generation process extends the setting of (Wald et al., 2022; Rosenfeld et al.,
2020) to a 3-class classification problem with multiple features. This extension aligns with the
intuition behind popular multi-class datasets used in empirical studies on OOD generalization, such
as FullColorMNIST, ColoredObject, and CifarMNIST (Zhang et al., 2021; Lin et al., 2022a; Zhou
et al., 2022b;a; Ahmed et al., 2021). Take ColoredObject for example, correlations between classes
and background colors exist in the training dataset but fail with a certain probability in OOD.

Definition 2 (Individual models). Denote the whole invariant feature set as V := {xv,i}dv
i=1 and

spurious feature set S := {xs,j}ds
j=1. Consider f̄ = (Φ̄, w̄) and f̃ = (Φ̃, w̃). Suppose Φ̄ learns

V̄ ⊂ V and S̄ ⊂ S, and Φ̃ learns Ṽ ⊂ V and S̃ ⊂ S. Denote |Ṽ| = ñv , |S̃| = ñs, |V̄| = n̄v , |S̄| =
n̄s, |Ṽ ∩ V̄| = nvo, and |S̃ ∩ S̄| = nso. Specifically, we have xΦ̄ =

∑
xv∈V̄ xv +

∑
xs∈S̄ xs, w̄ =

argminv∈Rd×3 Rid(v, Φ̄), and xΦ̃ =
∑

xv∈Ṽ xv +
∑

xs∈S̃ xs, w̃ = argminv∈Rd×3 Rid(v, Φ̃).
Definition 3 (Output space ensemble (OSE)). Given the two individual models defined in Definition
2, the prediction of the the output space ensemble is fose(x) = 1

2 (w̄
⊤(xΦ̄) + w̃⊤(xΦ̃)).

The predicted class of the sample (x,y) is the class with the maximum logit. Specifically, denote
the logit as l̂ = f(x). The predicted class is k̂ = argmaxh∈{1,2,3} l̂(h) where l̂(h) of the hth
dimension of the logit l̂. The model makes correct prediction if I(ek̂ = y) holds where I is the
indicator function. The accuracy is A(f) = Ex,y[I(ek̂ = y)]. We denote the OOD accuracy as
Aood(f) = EQs

[
Ex,y[I(ek̂ = y)|Qs]

]
, where we use Qs as a short hand for Qs,1, . . . ,Qs,ds

. We
discuss the metric in Appendix D.4. We defer the analysis of ID accuracy to Appendix D.5 since we
consider infinite samples and the ID accuracy of all considered models are all close to 1.
Assumption 1 (Small Noise). Denote n′

v and n′
s as the the maximum number of invariant features

and spurious features that a model can learn, respectively. We need the overall noise to be small
to satisfy FK( 1

σ(n′
v+n′

s)
) ≥ 1 − ϵ, in which F is the cumulative distribution function of standard

Gaussian random variable, and K refers to the class number (here we analyze the case K = 3).

Remark. Since we impose random noise on each feature, e.g., xv,i = µv,i + z where z ∼
N (0, σ2Id) where Id is a d-dimensional identity matrix and d ≫ dv + ds, it is natural to assume
the overall noise is controlled, e.g., we have ϵ ≤ 10−6 when K = 10, σ = 1/100, n′

v + n′
s = 20.

Assumption 2 (Orthogonal features (Wald et al., 2022; Allen-Zhu & Li, 2020)). (1) ∥µv,i(k)∥2 = 1
and ∥µs,j(k)∥2 = 1 for i = 1, · · · , dv , j = 1, · · · , ds, k = 1, 2, 3. (2) vi(k) ⊥ vi′(k

′) for any
(i, k) ̸= (i′, k′), k, k′ = 1, 2, 3, vi,vi′ ∈ {µv,1, · · · ,µv,dv ,µs,1, . . . ,µs,ds}.

3.2 THEORETICAL RESULTS

We first show the intuition on the simple Example 1 and then extend to the general setting in Def. 3:
Example 1 (Illustrative examples). Consider that there are totally 4 invariant features {xv,i}4i=1

and 6 spurious features {xs,j}6j=1, and two individual models (w̄, Φ̄) and (w̃, Φ̃) learn non-
overlapped features as xΦ̄ =

∑
i=1,2 xv,i+

∑
j=1,2,3 xs,j , and xΦ̃ =

∑
i=3,4 xv,i+

∑
j=4,5,6 xs,j .

Proposition 1 (Illustrative examples). Consider Example 1, suppose Assumption 1 and 2 hold, and
there are infinite ID and OOD samples. Omitting small terms containing ϵ, we have Aood(f̄) =

Aood(f̃) = 1− 1
9p

3, and Aood(fose) = 1− 2p5

81 − 17p6

729 .

We can see that OSE improves OOD by Aood(fose)−max{Aood(f̄),Aood(f̃)} > 1/81p3.

Intuition of the proof (Full proof in Appendix F.1). Let’s consider the samples of first class y =

e1 = [1, 0, 0]. Model (w̄, Φ̄) has xΦ̄|y=e1
=

∑2
i=1 µv,iQv,i(1) +

∑3
j=1 µs,jQs,j(1) + z where

z ∼ N (0, 5σ2Id). By Lemma 5, we have w̄(k) =
∑2

i=1 µv,i(k) +
∑3

j=1 µs,j(k) for each class
k = 1, 2, 3. Omitting the small noise term, the predicted logit for class k is w̄(k)⊤(xΦ̄)|y=e1 =
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∑2
i=1 µv,i(k)

⊤(µv,iQv,i(1)) +
∑3

j=1 µs,j(k)
⊤(µs,jQs,j(1)) . The model will mistakenly predict

e2 on the samples with true label e1 when w̄(1)⊤xΦ̄|y=e1 < w̄(2)⊤xΦ̄|y=e1 . This will hap-
pen when the three events {Qs,j(1) = e2}3j=1 simultaneously happen in OOD (see Appendix D.7
for detailed discussion). Each event occurs with a probability of p/3, resulting in a combination
probability of p3/27. This means that with a probability of p3/27, we encounter an OOD sce-
nario where the model f̄ = (w̄, Φ̄) incorrectly predicts almost all samples from the first class
e1 as the second class e2. This failure occurs because all three spurious features happen to
have values that are spuriously correlated with e2 in the training dataset. In other words, the
three spurious features dominate the prediction of e2, overshadowing the two invariant features
that predict the true label e1. For the OSE model, we have w̄(k)⊤(xΦ̄) + w̃(k)⊤(xΦ̃)|y=e1

=∑4
i=1 µv,i(k)

⊤(µv,iQv,i(1)) +
∑6

j=1 µs,j(k)
⊤(µs,jQs,j(1)). The model will mistakenly predict

e2 on the samples with true label e1 when at least five of the six events {Qs,j(1) = e2}6j=1 simul-
taneously happen in OOD (see Appendix D.6 for details), whose probability is much less than that
of f̄ . Intuitively, the failure probability of the averaged model is smaller as it utilizes more spurious
features, which are less likely to make the same mistakes.
Proposition 2 (General Results for OSE). Consider Definition 1-3, Assumption 1-2
hold, and infinite ID and OOD samples. Omitting small constants involving ϵ,
we have Aood(f̄) = Fp

(
(1−p)n̄s+n̄v√

n̄s

)
, Aood(f̃) = Fp

(
(1−p)ñs+ñv√

ñs

)
, and

Aood(fose) = Fp

(
(1−p)(ñs+n̄s)+(ñv+n̄v)√

ñs+n̄s+2nso

)
.

Figure 4: (a) Illustration of of F (x); (b)
Aood(fose)−Aood(f̄) in Example 2;

Here Fp(x) is a cumulative density function (CDF)
parameterized by p as defined in Appendix F.2,
which is monotonically increasing with x as shown
in Figure 4(a). Suppose two individuals learns the
same number of features with no-overlap, i.e., ñv =
n̄v = nv , n̄s = ñs = ns, and nvo = nso = 0,
we have Aood(fose) = Fp

(√
2t
)

and Aood(f̄) =
Aood(f̄) = Fp(t) where t = (1 − p)

√
ns +

nv√
ns

,
indicating that fose is better than f̄ since F (·) is
monotonically increasing.
Example 2. Consider p = 0.9 and two individual models learn none overlapped, i.e., nvo = nso =
0, fixing n̄v = 5, n̄s = 20, and vary ñv = 0, 1, .., 5 and ñs = 0, 1, ..., 20.
Figure 4(b) illustrates Aood(fose) − Aood(f̄) on Example 2. fose achieves better OOD perfor-
mance than f̄ in most cases. One exception is that if f̃ is much weaker than f̄ , e.g., f̄ learns 5
invariant features but f̃ learns 0 invariant features, the ensemble model fose is inferior than f̄ .

3.3 THE DIFFERENCE BETWEEN THE OUTPUT AND WEIGHT SPACE ENSEMBLE

It is an open problem on the difference between output space ensemble (OSE) and WSE (referred
as OSE-WSE difference). Furthermore, the mysterious phenomenon of weight space ensembles
outperforming output space ensembles in OOD scenarios has puzzled researchers (Wortsman et al.,
2022; Wortsman et al.; Rame et al., 2022). We shed light on this by our bilinear theoretical model
w⊤xΦ:
Definition 4 (Weight space ensemble (WSE)). Given the two individual models defined in Definition
2, the prediction of the WSE is fwse(x) = 1

4 (w̄ + w̃)⊤
(
x(Φ̄ + Φ̃)

)
.

In Appendix D.2, we show that the OSE-WSE difference in a 2-layer DNN is closely connected
with the OSE-WSE difference captured by our models in Definition 3- 4.
Proposition 3 (General Results for WSE). Consider Definition 1-3, Assumption 1-2, and in-
finite ID and OOD samples. Omittimg small constants involving ϵ, we have Aood(fwse) =

Fp(
(1−p)(ñs+n̄s+2nso)+(ñv+n̄v+2nvo)√

ñs+n̄s+14nso
).

Comparing Proposition 2 and 3, we can see that the only difference between Aood(fwse) and
Aood(fose) is the number of overlapped invariant and spurious features learned by individual
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models, i.e., nvo and nso. Specifically, when Φ̄ and Φ̃ selects no overlapped features, fwse and
fose makes the same prediction since xΦ̄ ⊥ w̃ and xΦ̃ ⊥ w̄ by Assumption 2 and further
(w̄ + w̃)⊤

(
x(Φ̄ + Φ̃)

)
∝ w̄⊤xΦ̄ + w̃⊤xΦ̃. When there is overlapped features: (a) for WSE,

the coefficient of overlapped features is amplified by 2 in Φ̄ + Φ̃, and further amplified twice in
w̄+ w̃. This results in coefficient of the overlapped feature becoming 4 in (w̄+ w̃)⊤x(Φ̄+ Φ̃). (b)
for OSE, i.e., w̄⊤xΦ̄ + w̃⊤x̃Φ, the coefficient of the overlapped feature is 2. See Appendix D.7.1
for a detailed discussion. In Appendix D.7.2, we provide conditions when fwse outperforms fose,
in addition with simulation results and supportive experiments. Our findings provide the first-ever
explanation for the mysterious phenomenon of weight space ensembles outperforming output
space ensembles in OOD.

3.4 EXPERIMENTAL VERIFICATION ON MULTICOLORMNIST

Previous efforts in OOD community have focused on learning invariant features and discarding spu-
rious features (Arjovsky et al., 2019). However, these approaches have not performed well on real-
world datasets (Rosenfeld et al., 2020). This could be due to the requirements of invariant learning,
such as the need for numerous domains (Rosenfeld et al., 2020), strong regularization (Zhou et al.,
2022b), and the challenges posed by non-linearity, overparameterization, and optimization (Rosen-
feld et al., 2020; Lin et al., 2022a; Chen et al., 2023c). In contrast, our findings show that learning
diverse spurious features also help with OOD generalization. This approach, as shown in ensemble-
based models, is easily implementable and has shown remarkable empirical success.

To further verify our findings, we contruct MultiColorMNIST, a 10-class variant of CMNIST (Ar-
jovsky et al., 2019) with 32 spurious features, following Definition 1. As shown in Figure 5, each
sample in MultiColorMNIST consists of 32 color patches, each serving as a spurious feature. We
train two neural networks, denoted as fθ1 and fθ2 , with the same architecture but different initial-
izations on MultiColorMNIST. The results in Table 1 show that the OSE model (fθ1(x) + fθ2(x))
improve OOD performance over individual models (fθ1(x) and fθ2(x)). In Appendix C.3, (1) we
show that each individual model learn a subset of spurious features in MultiColorMNIST and OSE
utilizes more diverse spurious features (2) we construct SingleColorMNIST with only one spurious
feature and show OSE yields little performance gain since both individual models learn the same
spurious feature (similar to the results in Rame et al. (2022)).

Figure 5: A sample from
MultiColorMNIST

p 0.70 0.75 0.80 0.85 0.90

model 1 71.05±1.04 60.07±1.04 48.57±0.92 36.93±0.70 26.01±0.45
model 2 71.77±0.94 60.75±0.91 49.26±0.83 37.74±0.66 26.63±0.42

model ensemble 78.64±0.73 67.61±0.80 55.25±0.75 42.34±0.64 29.28±0.40

Table 1: OOD performance of (output space) model ensemble on Multi-
ColorMNIST. The spurious correlation is 1 and 1 − p in the training and
testing set, respectively. A larger p indicates larger distributional shift

4 BALANCED AVERAGING (BANG)

Our previous results show that EBM can boost the OOD performance. An implicit requirement
is that the scaling of the two models should be roughly the same. If the two models have different
scalings, e.g., one model is much more confident than the other, the EBM improvement is weakened.

Proposition 4 (Imbalanced scaling weakens WSE). Consider the Example 1, Definition 1-4,
Assumption 1-2. Consider an WSE of two imbalanced models, f̄ = (w̄, Φ̄) and f̃λ =

(λw̃, λΦ̃), where λ ≥ 1. Specifically, fwse(x) = 0.25(w̄ + λw̃)x(Φ̄ + λΦ̃). We have
Aood(fwse)|λ>√

5 − Aood(fwse)|λ=1 < − 34/729p3.

See Appendix F.3 for proofs and Appendix D.8 for an illustration of the over-confidence charac-
terized by λ. When λ = 1, indicating similar confidence levels between f̄ and f̃λ, the WSE is
balanced. However, when λ >

√
5 and f̃λ is significantly more confident than f̄ , fwse becomes

biased towards f̃λ, resulting in a performance drop of over 34/729p3. Here we set λ =
√
5 for illus-

tration purposes and similar results can be similarly obtained for other λ > 1. Unfortunately, we find
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Methods Model Averaging IN IN-V2 IN-R IN-A IN-S ObjectNet Avg OOD

Zero-shot (Wortsman et al., 2022) No 68.3 61.9 77.6 49.8 48.2 53.0 58.1
Fine-tuning (Wortsman et al., 2022) No 81.3 70.9 65.6 36.7 46.3 49.6 53.8

Fine-tuning (LS) No 82.0 72.3 63.3 38.3 46.5 51.1 54.3
Fine-tuning (Mixup) No 83.0 72.7 66.4 43.7 48.8 52.4 56.8

Fine-tuning (Mixup + LS) No 82.9 72.7 65.8 43.6 48.5 52.2 56.6

WiSE-FT (Wortsman et al., 2022) Yes 81.7 72.8 78.7 52.2 53.9 57.3 63.0
BANG (LS) Yes 82.1 73.3 78.2 55.2 53.7 58.9 63.9

BANG (Mixup) Yes 81.5 73.0 79.5 57.9 54.5 58.7 64.7
BANG (Mixup + LS) Yes 81.6 73.1 79.7 58.2 54.8 58.9 64.9

Table 2: Results of fine-tuning CLIP VIT-B/16 on ImageNet. LS is short for Label Smoothing. The
performance of the baseline methods are from the Table 8 of (Wortsman et al., 2022).
WiSE-FT, which is the WSE of the pre-trained model (PM) and fine-tuned model (FM), suffers from
the imbalanced confidence issue. Specifically, we compare the PM and FM on their confidence and
accuracy. The confidence is defined as the largest probability that a model assigns to a class (details
in Appendix E.3). Figure 6 shows that the fine-tuned model is highly over-confident, especially on
OOD datasets, e.g., ImageNetA have only 0.37 accuracy while the average confidence is over 0.7.
Such overconfidence magnifies the FM’s incorrect prediction, leading to deteriorate OOD ensemble
performance (details in Appendix E.6).

A direct fix to the issue of over-confidence is to tune the temperature of the softmax of the
fine-tuned model (Kumar et al., 2022). However, this method can not be directly applied to
WiSE-FT since WiSE-FT ensemble model weights instead of the outputs. Moreover, the tem-
perature scaling tuned on the ID dataset (Kumar et al., 2022) fails to calibrate the fine-tuned
model on OOD datasets, where over-confidence is more severe (results of (Kumar et al., 2022)
in Appendix E.5-E.6). Therefore, we propose BAlaNced averaGing (BANG), which adopt la-
bel smoothing or Mixup during fine-tuning to prevent overconfidence and then average the pre-
trained model with such fine-tuned model. (1) Label smoothing replaces the label of the true
class (e.g., 1) with a positive value (e.g., 0.8), while distributing the smoothing parameter (e.g.,
0.2) evenly among the other classes (Müller et al., 2019). (2) Mixup (Zhang et al., 2017) gen-
erates new samples during fine-tuning by linearly mixing pairs of training data and their labels.
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The comparision of zero-shot and finetuned model
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Figure 6: Comparison of confidence
and accuracy between zero-shot and
finetuned model. In the figure, ▽ refers
to IN, ◦ for IN-A, □ for IN-R, + for IN-
S, ♢ for IN-V2 and × for ObjNet.

We conduct experiments with CLIP ViT-B/16(Radford
et al., 2021). We impose Mixup or Label Smoothing dur-
ing fine-tuning the pre-trained CLIP on ImageNet (IN),
and test OOD performance on IN-V2, IN-R, IN-A, IN-
S and ObjectNet. Following Wortsman et al. (2022),
BANG averages the pre-trained CLIP model and the
model finetuned with LS and MixUp (details in Ap-
pendix E.4). The results in Table 2 show that BANG ef-
fectively improve the performance over WiSE-FT. Specif-
ically, BANG(LS+Mixup), where both LS and MixUp
are adopted, achieves 1.9% higher average OOD accu-
racy than WiSE-FT. Further experimental results in the
appendix show that Mixup and Label Smoothing can ef-
fectively alleviate the over-confidence of the fine-tuned
model on both ID and OOD datasets.

Since Mixup and LS also improve the performance of the
fine-tuned model, so a curious reader would wonder whether the improvement of BANG comes
from better calibration or just due to the improvement in the fine-tuned model. We conduct further
investigation in Appendix E.6 to confirm the contribution of better calibration: (1) Dividing the
weight of the vanilla fine-tuned model by multiple scalars significantly enhances the performance
of weight averaging, which nearly matches the performance of BANG. (2) BANG can correct sub-
stantially more samples that is mis-classified by the fine-tuned model. We also show that BANG’s
effectiveness can not be explained by other data augmentation methods in Appendix E.5.
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Lopez-Paz. Recycling diverse models for out-of-distribution generalization. arXiv preprint
arXiv:2212.10445, 2022.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Galli-
nari, and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. arXiv
preprint arXiv:2205.09739, 2022.

12



Published as a conference paper at ICLR 2024

Alexandre Rame, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz.
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A SOCIAL IMPACT

We investigate how to enable machine learning models to generalize in OOD scenarios, which makes
machine learning models more reliable in real-world applications.

B RELATED WORKS

B.1 A REVIEW ON THE EXISTING METHODS

Out-of-distribution generalization Machine learning models are based on the I.I.D. (indepen-
dently and identically distribution) assumption. Whereas, the I.I.D. assumption can be easily vio-
lated since the model can easily encounter novel testing samples that are from distributions different
with the training distribution. This is also known as the out-of-distribution generalization (OOD)
problem. Existing works find that the model performance deteriorates dramatically under distribu-
tional shift. This is especially the case when the model rely on spurious features that are unstable
in a new domain (Geirhos et al., 2020; Arjovsky et al., 2019; Deng et al., 2023). OOD problem
has attracted great attention in recent years and there are a rich line of works in this direction, such
as Invariant Risk Minimization (IRM) (Arjovsky et al., 2019; Lin et al., 2022b), model averaging
(Wortsman et al.; 2022; Ramé et al., 2022; Cha et al., 2021), feature alignment methods (Ganin et al.,
2016; Sun & Saenko, 2016; Li et al., 2018) and so on.

Among them, Invariant Risk Minimization (IRM) has gained significant attention from the re-
searchers (Arjovsky et al., 2019) and inspires a great line of works. Recall that there are two kinds
of features for OOD generalization: invariant features that can stably predict the labels, and spu-
rious features whose correlation with the labels is unstable. IRM tries to build robust models by
extracting only invariant features. IRM has strong theoretical guarantees in linear system and clear
connection with causal theory. Nevertheless, IRM methods face challenges in dealing with large
scale real-world datasets, as it has been repeatedly observed that IRM cannot outperform ERM on
various datasets. Some works have provided explanation for this, e.g., (Rosenfeld et al., 2020) shows
that IRM needs a very great number of domains, (Rosenfeld et al., 2020) shows IRM lacks theretical
guarantees on non-linear models, Lin et al. (2022b) shows it is difficult to learn invariance without
domain partition and (Lin et al., 2022a; Chen et al., 2023c) show the difficulty of optimizing IRM
objects on deep neural networks. In contrast, model averaging is exceptionally powerful and achieve
SOTA performance in a lot of benchmark with various models and architecture (Cha et al., 2021;
Wortsman et al., 2022; Wortsman et al.; Rame et al., 2022; Chu et al., 2022; Arpit et al., 2022).

Output and weight space ensemble The ensemble of multiple models is a powerful idea that
often leads to stronger predictive performance (Caruana et al., 2004; Dietterich, 2000; Bauer &
Kohavi, 1999; Breiman, 1996). Typically, conventional ensemble methods aggregate the outputs
of models, as known as the output space ensemnle. The recent application usually average the
parameters of models which is generated from the same pre-training model by finetuning (Wortsman
et al.; 2022; Cha et al., 2021), also known as the weight space ensemble. While averaging two
models trained from scratch by different initialization often yields poor results (close to random
guessing). (Neyshabur et al., 2020) finds that fine-tuning two models from the same pre-trained
initialization results in two different models that were connected via a linear path in weight-space,
along which the performance remains high. This is also known as linear mode connectivity (Frankle
et al., 2020). A notable difference between ensemble in ID and OOD study is that the improvement
of ensemble in OOD is much more significant than that in IID. (Wortsman et al., 2022) shows
that an ensemble the finetuned model with the pre-trained model improve near 1pp in ImageNet
(the ID domain) and over 6-8pp on the variants of ImageNet (the OOD Domain). Actually, model
averaging is still among strongest methods for OOD generalization. It still remains mysterious on
why averaging methods are so effective for OOD.

Theory of Out-of-distribution generalization. Existing theory mostly focus on the worst case
metric on analyzing the OOD performance (Wald et al., 2022; Arjovsky et al., 2019; Rosenfeld
et al., 2020; Puli et al., 2021; Zhou et al., 2022b). The worst case metric requires a model to
be robust at any OOD testing distribution. Typically, a model that only uses invariant features
can minimize the worst case metric. However, as we discuss above, invariance learning is hard in
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practice and performs ineffectively on real world datasets (Gulrajani & Lopez-Paz, 2020; Rosenfeld
et al., 2020; Lin et al., 2022b). The worst case metric based theory can not explain the success of
model averaging methods. To be specific, the averaging of two models can use spurious features that
learnt by each individual model due to its pessimism as described in Appendix D.4. In contrast, our
theoretical results characterize the probability of the model failure due to distributional shift, which
can successfully explain the experimental results.

B.2 ON OUR DIFFERENCE WITH EXISTING WORKS

Difference with existing works on learning diverse features. There have been some works that
promote feature diversity to enhance empirical performance OOD generalization by weight aver-
age (Chu et al., 2022; Rame et al., 2022; 2023), feature concatenation (Zhang & Bottou, 2023),
boosted rich feature learning (Zhang et al., 2022; Chen et al., 2023b; Jain et al., 2022; Teney et al.,
2022; Feng et al., 2023), and utilizing model zoo (Dong et al., 2022; Chen et al., 2023a). Teney et al.
(2022) train a set of diverse models and select the best one among them for OOD. Feng et al. (2023)
proposes to use an ensemble of prompts which contains diverse descriptions of a class to perform
classification via CLIP. Jain et al. (2022) train two models with different feature priors and then
ensemble the predictions of these models. However, existing explanations either do not distinguish
the invariant or spurious features (Chu et al., 2022; Rame et al., 2022; 2023; Zhang & Bottou, 2023;
Dong et al., 2022; Chen et al., 2023a), or focus only on learning the potentially missing invariant
features (Chen et al., 2023b; Feng et al., 2023). In fact, according to existing invariance learning
perspective Arjovsky et al. (2019) arguing that models relying on spurious features are prone to
failure in OOD scenarios, these methods that learn diverse features while also incorporating spu-
rious features may not be able to generalize effectively under distributional shift. In contrast, our
spurious feature diversification viewpoint provides a explanation by characterizing why and when
incorporating more diverse spurious feature diversification can improve OOD performance.

Difference with the existing theoretical results on ensemble and boosting in IID settings.
There are existing explanations for the effectiveness of model ensemble in the IID setting, which
is mainly from the perspective of variance due to over-fitting the label noise in finite samples cases
(Dietterich et al., 2002). Specifically, model ensemble can have smaller variance in prediction com-
pared with each single model. Whereas, we consider infinite sample case, where the variance of the
model due to fitting label noise is zero. So model ensemble can not bring significant IID improve-
ment in this case. However, the model trained on infinite samples can still fail due to distributional
shift (Arjovsky et al., 2019). This is because the model utilizes the spurious features, which are
also considered as a kind of bias (Wald et al., 2022). Our results show that model ensemble can
reduce the risk of model failure and lead to better expected performance under distributional shift
by spurious feature diversification. In other words, model ensemble reduces the probability of the
model failure due to the bias. This is a new result in the OOD problem as shown in Proposition 1
and 2. Notably, Allen-Zhu & Li (2020) also considers ensemble in the IID setting, however, their
theory can not explain the OOD performance improvement of ESM models on the data in Defini-
tion 1, explain the FalseFalseTrue phenomenon, or explain the difference of weight and output space
ensemble.

Another related area to this work is boosting. Boosting can benefit by training multiple models,
where each model corrects the mistakes made by the previous ones and each model would possibly
utilize on different subsets of features. While previous studies on boosting mainly focused on ID
scenarios (Schapire, 1990; Freund & Schapire, 1997; Schapire, 2013; 2003), we show that in the
context of OOD, the improvement in performance due to using diverse features can be even more
significant. This is because different irrelevant features can cause different errors when the distri-
bution changes, and diversifying the features helps reduce the impact of each individual feature (as
shown in Figure 1). By utilizing a diverse set of models, boosting allows us to take advantage of a
wider range of features and effectively deal with the challenges posed by OOD situations.

Difference with existing explanations on the OOD performance of ensemble-based methods
(EBM). There are some previous attempts that try to explain the effectiveness of EBM for OOD.
Cha et al. (2021) shows that the loss landscape changes under distributional shift and model averag-
ing can lead to flatter minima. However, as discussed in Rame et al. (2022), the upper bound of Cha
et al. (2021) is uncontrolled and their analysis based on flat minima fails to explain many experi-
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mental results. Rame et al. (2022) decomposes the OOD loss into the bias, variance and covariance
terms. They show that the variance term can benefit from EBM. Different from the results of Rame
et al. (2022) that only tackles with the variance term, our results provide a concise characterization
on the overall OOD performance. Further, Rame et al. (2022)’s results can not differentiate between
the weight and output space ensemble.
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C SUPPORTIVE EMPIRICAL RESULTS FOR THE THEORY

C.1 FALSEFALSETRUE PHENOMENON

In this subsection, we take a deeper look at WiSE-FT (Wortsman et al., 2022), a popular model
averaging method that averages the weights of the pre-trained and fine-tuned model. (Wortsman
et al., 2022) obtains the fine-tuned model by fine-tuning the pre-trained CLIP model on ImageNet.
They have shown that the averaging of the pre-trained and the fine-tuned model can outweigh both of
them on ImageNet (ID dataset) as well as five OOD datasets (ImageNetV2, ImageNetA, ImageNetR,
ImageNetSketch and ObjectNet). We denote the pre-trained model as PM, fine-tuned model as FM,
and averaged model as AM.

To understand why model averaging is effective, we divide each dataset into eight groups of samples
according to whether the PM, FM and AM make correct predictions, respectively. We further use
T/F to denote whether a model makes correct predictions, i.e., T for True and F for False. For
example, we use PM(T)-FM(F)-AM(T) to denote the group of samples on which the predictions
of PM , FM and AM are correct, wrong, and correct, respectively. A simple explanation for the
improvement of the averaging of two models is that when one model makes a mistake and the other
one is correct, the correct model can rectify the mistakes made by the other model. So we evaluate
the performance on the group of data where one model makes a wrong prediction while the other
model makes a correct prediction, i.e., the group containing PM(T)-FM(F) and PM(F)-FM(T). We
refer to this group of data as TF+FT for short in the following discussion. We also look into another
subset TT+FF which contains PM(T)-FM(T) and PM(F)-FM(F).

Given a subset G of a dataset D, we use CorrectNum(G; f) to denote the number samples in G
that are correctly predicted by a model f , e.g., CorrectNum(TF+FT;PM) stands for the num-
ber of samples that are correctly classified by the pre-trained model PM. We propose the metric
ImproveContri(G) which estimates how much AM performs better than PM and FM on the group G
and how much the improvement on G contributes to the overall accuracy improvement on the whole
dataset D:

ImproveContri(G) = CorrectNum(G;AM)−max{CorrectNum(G; PM),CorrectNum(G; FM)}
|D|

(2)

For Example, suppose D contains 1,000 samples and its subset G contains 200 samples. PM,
FM and AM correctly predict 120, 118, 130 samples in G, i.e., CorrectNum(G;PM) = 120,
CorrectNum(G;FM) = 118, CorrectNum(G;PM) = 130. AM outperform PM and FM by mak-
ing 10 more correct predictions on G, further these 10 samples contribute to 10

1,000 × 100% = 1.0%

accuracy improvement on the whole dataset. Note that ImproveContri(D) denotes the accuracy
improvement of model averaging on the dataset D, which is also denoted as ImproveContri(ALL)
in the following discussion. The results of ImproveContri(TT+FF), ImproveContri(TF+FT) and
ImproveContri(ALL) are illustrated in Figure 7(a).

We surprisingly find that ImproveContri(G) is significant on TT+FF in all the datasets, which means
the averaged model AM can exceed PM and FM on the groups where PM and FM are both right or
wrong. Recall that the subset TT+FF contains four groups, PM(T)-FM(T)-AM(T), PM(T)-FM(T)-
AM(F), PM(F)-FM(F)-FM(F), and PM(F)-FM(F)-FM(T). We further plot the ratio of the sample
size in PM(T)-FM(T)-AM(F) and PM(F)-FM(F)-FM(T) over |G| in Figure 7(b), respectively. We
find that PM(T)-FM(T)-AM(F) is nearly the same (about 0.5% ) in all datasets. The group PM(F)-
FM(F)-AM(T) is much larger than PM(T)-FM(T)-AM(F), especially in OOD datasets. It indicates
that AM can make correct predictions on many samples where the both PM and FM make wrong
predictions when distributional shift occurs! Interestingly, we find ImproveContri(TF + FT ) is
negative on some datasets, e.g, IN-R and IN-S. In Section 4 and Appendix E.6, we find that this is
because the fine-tuned model is highly over-confident and the fine-tuned model dominate WiSE-FT
even when it make mistakes.

Remark: In Figure 2(Left) of Section 2, we present the results of ImproveContri(TT+FF) to repre-
sent the samples where both individual models make incorrect predictions, but the averaged model
makes correct predictions. ImproveContri(TT+FF) is calculated as the group ratio of PM(F)-FM(F)-
AM(T) subtracted by PM(T)-FM(T)-AM(F). We use ImproveContri(TT+FF) instead of PM(F)-
FM(F)-AM(T) because we believe that there is a certain proportion of samples in PM(F)-FM(F)-
AM(T) where the averaged model corrects mistakes due to the randomness introduced by the non-
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Figure 7: A closer look at WiSE-FT, which averages the pre-trained CLIP and the model obtained by
fine-tuning CLIP on ImageNet. Here ImageNet is regarded as ID domain and the other 5 ImageNet
variants are OOD domains, i.e., IN-V2 (ImageNetV2), IN-R(ImageNetR), IN-A(ImageNetA), IN-S
(ImageNetSketch), and ObjNet (ObjectNet). (Left) ImproveContri(G) is defined in Eqn. equation 2,
which estimates how the AM (averaged model) performs better than the PM (pre-trained) and FM
(fine-tuned model) on the group G and how much the improvement on G contributes to the overall
accuracy improvement on the whole dataset D. (Right) The ratio of sample size in PM(T)-FM(T)-
AM(F) and PM(F)-FM(F)-AM(T) over the same size of the whole dataset. Here PM(T)-FM(T)-
AM(F) denotes the group where the AM make wrong predictions and the PM and FM models make
correct predictions; PM(F)-FM(F)-AM(T) denotes the group where AM make correct predictions
while both PM and FM make wrong predictions. Putting these two figures together, we can see the
AM can correct many samples on which PM and FM make wrong predictions in OOD.

linearity of deep neural networks (DNNs) during weight averaging. To approximate such random-
ness, we use the size of PM(T)-FM(T)-AM(F). This adjustment helps account for a more accurate
approximation of the sample ratios where the averaged model corrects the samples due to its utiliza-
tion of more diverse spurious features.

C.2 DEEP NEURAL NETWORKS LEARN DIFFERENT FEATURES

In Section 2, we have shown that the pre-trained and fine-tuned uses different features and the aver-
aged model can utilize more diverse features. Actually, (Allen-Zhu & Li, 2020) provides empirical
evidence (e.g., Figure 3 and 4 in (Allen-Zhu & Li, 2020)) supporting the use of diverse features by
different deep neural networks with same architecture, even when trained on the same datasets (with
different initialization). We add their empirical observations in Figure 8 for easy of reference.

C.3 EXPERIMENTS ON MULTICOLORMNIST

MultiColorMNIST. We extend the CMNIST (Arjovsky et al., 2019) to MultiColorMNIST, which
is constructed following Definition 1. MultiColorMNIST contains 10 classes with 32 spurious fea-
tures. Each image has 42×42×3 pixels. There are 32 patches in each image and each patch can take
one of 10 colors. Figure ?? illustrates two samples from MultiColorMNIST. Specifically, the label
of the sample is generated from the shape of the digit and each color patch is perfected correlated
with the label. Let Ci denote ith color patch for i = 1, 2, ..., 32. Each Ci takes one of the color
which is perfectly correlated with y. For example, the 1st patch, i.e., C1, always takes ‘white’ on
samples with label 5; the 2nd patch, i.e., C2, always takes ‘yellow’ on samples with label 5. Each
Ci is independently generated from the label y and we have Ci ⊥ Cj |y for i ̸= j. See Figure 10 for
detailed illustration of the data generation process which follows the theoretical Definition 1. In the
OOD testing distribution, the spurious correlation can fail with probability p. For example, samples
with label 5 can randomly pick any color with probability p in OOD . The data generation process is
analogous to the theoretical setting in Definition 1, where each patch is a spurious feature and each
color is an attribute that the spurious feature can take.

SingleColorMNIST. We also introduce SingleColorMNIST for better comparision. SingleCol-
orMNIST has 10 classes and each image has 42× 42× 3 pixels, which is the same with MultiCol-
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Figure 8: Figures taken from (Allen-Zhu & Li, 2020) which show that different DNN (with the same
architecture) learns different features even trained on the same dataset.

orMNIST. However, SingleColorMNIST only contains 1 spurious features. In other words, the 32
patches in each image are the same. The spurious correlation is defined similarly with MultiCol-
orMNIST. Figure 9 illustrates two samples from SingleColorMNIST.

Experimental Details. We use the following configuration for both SingleColorMNIST and Mul-
tiColorMNIST. We use an 2 layer MLP with 64 hidden units to perform classification. We adopt
Adam with learning rate 10−3 and batch size 100. We train for 5000 steps and report the perfor-
mance at the last step. We train two individual models f̄ and f̃ with different random initialization on
MultiColorMNIST. We also evaluate the ensemble of the two models, i.e., fose(x) = f̄(x)+ f̃(x).
Each experiment is repeated for n = 20 random seeds.

Results. We vary p in MultiColorMNIST and compare the performance of the ensemble model
with each individual model. p is the probability that spurious correlation no-longer holds in testing
environment. A larger p indicates larger distributional shift. The results of MultiColorMNIST are
summarized in Table 3. We can see that model ensemble consistently improve the OOD perfor-
mance. Figure 11 visualizes how much each model relies on each patch. Specifically, Figure 11
shows how much the model changes its prediction when we replace a patch with black color. We
can see each individual models uses different feature sets and model ensemble uses more diverse
features. Table 4 shows the results of SingleColorMNIST. We can see that model ensemble can not
improve the OOD performance in SingleColorMNIST (since there is only one spurious feature in
SingleColorMNIST and model ensemble can not utilize more diverse spurious features).

Comparing Table 3 and Table 4, we can see that the performance of individual model in MultiCol-
orMNIST is higher than that in SingleColorMNIST when the p is the same. This is because the
individual model already learns multiple spurious features (even though it is only a small subset of
the whole feature set as shown in Figure 11). This is also consistent with our theoretical results that
diverse spurious features leads to better OOD performance.

Remark. Recall weight space ensemble (WSE) needs to be conducted between the pre-trained and
fine-tuned models or different fine-tuned models starting from the same pre-trained model (Worts-
man et al., 2022; Frankle et al., 2020). Since we have suitable pre-trained model for the synthetic
dataset, we leave the investigation of WSE on MultiColorMNIST to future work.
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Figure 9: Two samples from SingleColorMNIST. SingleColorMNIST has 10 classes and each sam-
ple contains 1 spurious feature.

Figure 10: The data generation process of MultiColorMNIST (follows Definition 1)

Figure 11: Visualization of the features uses by each model and model ensemble.

p model 1 model 2 model ensemble

0.10 100.00±0.00 100.00±0.00 100.00±0.00
0.20 99.99±0.00 99.99±0.00 100.00±0.00
0.30 99.91±0.01 99.89±0.04 99.99±0.01
0.40 99.16±0.11 99.19±0.13 99.75±0.03
0.50 95.84±0.35 96.06±0.35 98.13±0.14
0.60 87.15±0.74 87.56±0.69 92.31±0.41
0.70 71.05±1.04 71.77±0.94 78.64±0.73
0.75 60.07±1.04 60.75±0.91 67.61±0.80
0.80 48.57±0.92 49.26±0.83 55.25±0.75
0.85 36.93±0.70 37.74±0.66 42.34±0.64
0.90 26.01±0.45 26.63±0.42 29.28±0.40

Table 3: Results on MultiColorMNIST
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p model 1 model 2 model ensemble

0.1 91.04±0.03 91.07±0.05 91.04±0.04
0.2 82.34±0.02 82.39±0.07 82.34±0.04
0.3 72.93±0.08 72.99±0.10 72.93±0.09
0.4 64.08±0.09 64.21±0.19 64.10±0.11
0.5 54.89±0.12 54.99±0.18 54.88±0.14
0.6 45.91±0.16 46.09±0.31 45.92±0.19
0.7 37.39±0.15 37.55±0.27 37.39±0.17
0.8 27.86±0.19 28.06±0.32 27.87±0.22
0.9 19.28±0.18 19.50±0.34 19.29±0.20

Table 4: Results on SingleColorMNIST

C.3.1 INCREASING THE NUMBER OF ENSEMBLE

In Table 1 and 3, we show that the ensemble of two models improves significantly over each indi-
vidual model on MultiColorMNIST. In this part, we are going to show that if increasing the number
of models in the ensemble can even increases more significantly.

Specifically, in Table 5, we show the results of different model number in the ensemble. When the
ensemble number is 1, it means that we consider a single model (in other words, not performing
model ensemble). If ensemble number is 16, it indicates that we independently train 16 models with
different initialization and use the ensemble of these 16 models to make predictions. We can see
that increasing the ensemble number can signficantly boost the OOD performance. For example,
when p = 0.8, the OOD performance of single model (ensemble number equals 1) is 49.33%. The
ensemble of two models achieves 55.92% OOD accuracy. The ensemble of 16 models can increases
the OOD accuracy to 64.85%! This also gives us a hint on the effectiveness of model soup, which
averages multiple checkpoints trained with different hyper-parameters.

p 0.70 0.75 0.80 0.85 0.90
Ensemble Number

1 71.66±2.06 60.68±2.23 49.33±2.02 37.74±1.58 26.74±1.05
2 78.88±1.24 68.34±0.89 55.96±0.77 42.91±0.64 29.89±0.63
4 84.39±1.33 74.00±1.26 62.04±1.32 47.92±1.17 32.74±0.75
8 85.64±1.22 75.73±1.62 63.52±1.61 49.15±1.23 33.67±0.93
16 86.76±0.55 77.31±0.87 64.85±1.09 50.63±0.69 34.47±0.40

Table 5: Experiments on MultiColorMNIST. A larger p indicates larger distributional shift.

On the other hand, if the dataset only contains a single spurious feature, e.g., the SingleColorMNIST,
we find that increasing ensemble number does not help the OOD performance. These results are
included in Table 6.

p 0.70 0.75 0.80 0.85 0.90
Ensemble Number

1 37.40 ± 0.11 32.64 ± 0.11 27.90 ± 0.14 23.32 ± 0.14 19.32 ± 0.14
2 37.32 ± 0.03 32.54 ± 0.05 27.78 ± 0.04 23.20 ± 0.04 19.18 ± 0.05
4 37.35 ± 0.09 32.57 ± 0.12 27.81 ± 0.13 23.22 ± 0.11 19.23 ± 0.12
8 37.30 ± 0.01 32.50 ± 0.01 27.74 ± 0.02 23.16 ± 0.02 19.16 ± 0.00

16 37.35 ± 0.08 32.56 ± 0.09 27.82 ± 0.12 23.22 ± 0.10 19.24 ± 0.11

Table 6: Experiments on SingleColorMNIST. A larger p indicates larger distributional shift.
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C.4 SIMULATION

In this section, we take some simulations to investigate the performance of theoretical forecasting
results of OOD accuracy. Following the data generation process in Definition 1, here we consider
four examples:

1. example 1-1: n̄v = 2, n̄s = 3 in model 1; ñv = 2, ñs = 3 in model 2; overlapped feature
number nvo = nso = 0; noise variance σ = 0.01; distribution shift probability p = 0.9.

2. example 1-2: n̄v = 2, n̄s = 3 in model 1; ñv = 2, ñs = 3 in model 2; overlapped feature
number nvo = nso = 1; noise variance σ = 0.01; distribution shift probability p = 0.9.

3. example 2-1: n̄v = 5, n̄s = 20 in model 1; ñv = 4, ñs = 20 in model 2; overlapped feature
number nvo = nso = 0; noise variance σ = 0.01; distribution shift probability p = 0.9.

4. example 2-2: n̄v = 5, n̄s = 20 in model 1; ñv = 5, ñs = 20 in model 2; overlapped feature
number nvo = 4, nso = 1; noise variance σ = 0.01; distribution shift probability p = 0.9.

In each example, we take 1000 simulations to report the mean OOD accuracy in Table 7. To be
precise, the training data size is 20000 and the test data size is 10000 in each simulation. Then com-

Model 1 Model 2 Model Average Model Ensemble

Example 1-1 Simulation Results 0.866 0.866 0.974 0.974
Theoretical Results 0.865 0.865 0.973 0.973

Example 1-2 Simulation Results 0.866 0.861 0.943 0.940
Theoretical Results 0.865 0.865 0.948 0.946

Example 2-1 Simulation Results 0.940 0.894 0.978 0.978
Theoretical Results 0.941 0.910 0.980 0.980

Example 2-2 Simulation Results 0.943 0.939 0.999 0.989
Theoretical Results 0.943 0.943 0.992 0.983

Table 7: Simulation for the OOD accuracy in different models

paring the results of theoretical results and simulation results, it is safely to say that our theoretical
analysis, as well as proper approximations, could take an effective estimation for OOD accuracy.
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D DISCUSSIONS, ILLUSTRATIONS, AND SUPPORTIVE RESULTS FOR THE
THEORETICAL PARTS.

D.1 DISCUSSION ON THE THEORETICAL MODELS

Our theoretical models in Section 3 is designed to mimic the modern deep learning architectures such
as Vision Transforms (ViT) (Dosovitskiy et al., 2020). Figure 12 provides a comparison between
our theoretical models and Vision Transformers.

Similar to ViT, we process images as patches, where each patch corresponds to a specific feature
denoted as Patchi. Each Patchi is represented by high-dimensional vectors xi ∈ Rd in the embed-
ding space. Consequently, the whole feature is obtained by concatenating the embeddings of each
patch, resulting in x = [x1, x2, ...]. Assuming a total of dt features (dt = dv + ds in Section 3), we
have x ∈ Rd×dt . Notably, (Allen-Zhu & Li, 2020) also uses a similar theoretical data model that
concatenates the patches to analyze the convolutional neural networks, e.g., Figure 5 in (Allen-Zhu
& Li, 2020).

To simplify the model, we utilize a two-layer structure consisting of a binary feature mask Φ as
the feature encoder and a linear classifier w, analogous to ViT which uses the transformer feature
encoder with an MLP classifier. This two-layer simplification approach has been widely employed
in OOD literature (Arjovsky et al., 2019; Rosenfeld et al., 2020; Zhou et al., 2022b; Peters et al.,
2016; Lin et al., 2022b). The difference between our theoretical model and ViT is that ViT process
the features sequentially while we select the feature at once.

The binary feature mask Φ is represented as {0, 1}dt . For instance, if we have three features, i.e.,
x = [x1, x2, x3], and Φ = [1, 1, 0], the learned feature would be x⊤Φ = x1 + x2. Considering
a 3-class classification task, the linear classifier w ∈ Rd×3 takes the learned feature x⊤Φ as input
and produces a 3-dimensional vector whose elements represent the logits of the three classes. The
classifier w is optimized to minimize the in-distribution (ID) loss based on the learned feature.
Therefore, we have:

w = arg min
v∈Rd×3

Rid(v,Φ),

where Rid(v,Φ) represents the loss of (v,Φ) in the ID distribution.

D.2 COMPARISON ON OUR MODEL WITH A 2-LAYER DNN

In this paper, we consider the model w⊤xΦ, where w ∈ Rd×K and Φ ∈ {0, 1}dv+ds are paramters.
Here the input x ∈ Rd×(dv+ds) and see App D.1 for detailed discussion. We then compare our
model with a general 2-layer DNN to see why it can capture the difference between weight space
ensemble (WSE) and output space ensemble (OSE) in DNN.

Consider a general 2-layer DNN parameterized by (Wa ∈ Rd1×d2 ,Wb ∈ Rd2×K) with ReLU
activation δ(·) and output fdnn(X) = W⊤

b δ(W⊤
a X) for X ∈ Rd1 . Here we use uppercase X

to avoid confusion with our previous x since they have slightly different dimensions (App D.1).
Since WSE is conducted on the models that is close to a pre-trained model (Wortsman et al.), e.g.,
(Wa0,Wb0), so we consider fdnn(X) = (Wb0 + ∆Wb)

⊤δ((Wa0 + ∆Wa)
⊤X) where ∆Wa and

∆Wb is small and trainable. By Taylor expansion, we have

fdnn(X) = W⊤
b0δ(W

⊤
a0X)︸ ︷︷ ︸

(a)Fixed Term

+∆W⊤
b0δ(W

⊤
a0X) +Wb0δ

′(W⊤
a0X)(∆W⊤

a X)︸ ︷︷ ︸
(b)Linear Term

+∆Wbδ
′(W⊤

a0X)(∆W⊤
a X)︸ ︷︷ ︸

(c)Bilinear Term

+ξ

Where δ′(Y ) is ∂δ(Y )
∂Y . Further, we incorporate the fact that the second order derivative ∂2δ(Y )

∂2Y is
zero almost everywhere for ReLU activation function (except at Y = 0). Then ξ is the error term
induced by the non-linearity of ReLU activation function (while WT

a0X has some zero elements). To
be precise, as here we just focus on fine-tuning regime and WT

a0X is not sparse in general situations,
it is safely to say that ξ is small. WSE and OSE are exactly the same for the (a) fixed term and (b)
linear term. We will show that WSE and OSE differs on the (c)bilinear term, which is captured by
our model in Definition 3-4.
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Figure 12: Comparison of our theoretical models in Section 3 with Vision Transformers (Dosovit-
skiy et al., 2020). Some parts of the figures are adopted from (Dosovitskiy et al., 2020).

Consider two models, f̄dnn and f̃dnn, both close to the pre-trained model. Specifically,

f̄dnn(X) = (Wb0 +∆W̄b)
⊤δ((Wa0 +∆W̄a)

⊤X);

f̃dnn(X) = (Wb0 +∆W̃b)
⊤δ((Wa0 +∆W̃a)

⊤X);

Then the output space ensemble of f̄dnn(X) and f̃dnn(X) is

fdnn,ose = 0.5
(
(Wb0 +∆W̄b)

⊤δ((Wa0 +∆W̄a)
⊤X) + (Wb0 +∆W̃b)

⊤δ((Wa0 +∆W̃a)
⊤X)

)
= W⊤

b0δ(W
⊤
a0X)︸ ︷︷ ︸

(a)Fixed Term

+0.5(∆W̄b0 +∆W̃b0)
⊤δ(W⊤

a0X) +Wb0δ
′(W⊤

a0X)(0.5(∆W̄a +∆W̃a)
⊤X)︸ ︷︷ ︸

(b)Linear Term

+ 0.5
(
∆W̄bδ

′(W⊤
a0X)(∆W̄⊤

a X) + ∆W̃bδ
′(W⊤

a0X)(∆W̃⊤
a X)

)
︸ ︷︷ ︸

(c)Bilinear Term

fdnn,wse =(Wb0 + 0.5(∆W̄b +∆W̃b))
⊤δ((Wa0 + 0.5(∆W̄a +∆W̃a))

⊤X)

=W⊤
b0δ(W

⊤
a0X)︸ ︷︷ ︸

(a)Fixed Term

+0.5(∆W̄b0 +∆W̃b0)
⊤δ(W⊤

a0X) +Wb0δ
′(W⊤

a0X)(0.5(∆W̄a +∆W̃a)
⊤X)︸ ︷︷ ︸

(b)Linear Term

+

+ 0.25(∆W̄b +∆W̃b)δ
′(W⊤

a0X)((∆W̄a +∆W̃a)
⊤X)︸ ︷︷ ︸

(c)Bilinear Term

Comparing fdnn,ose with fdnn,wse , we can see that the difference of them lies in the bilinear term:

fdnn,wse − fdnn,ose =
(
0.25(∆W̄b +∆W̃b)δ

′(W⊤
a0X)((∆W̄a +∆W̃a)

⊤X)
)

− 0.5
(
∆W̄bδ

′(W⊤
a0X)(∆W̄⊤

a X) + ∆W̃bδ
′(W⊤

a0X)(∆W̃⊤
a X)

)
(3)

We can see the bilinear term difference has a clear analogy with our models in Definition 3-4.
Specifically, according to our Definition of OSE and WSE in Definition 3-4, we have

fwse − fose = 0.25(w̄ + w̃)⊤x(Φ̄ + Φ̃)− 0.5(w̄⊤xΦ̄ + w̃⊤xΦ̃). (4)
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Comparing equation 3 and equation 4, we can see that w is analogous to ∆Wb and Φ is analogous to
∆Wa. equation 3 and equation 4 differ by a scaling δ′(W⊤

a0X), which is a fixed matrix independent
of the trainable parameter (∆Wa,∆Wb) .

D.3 ILLUSTRATION OF THE TRANSFORMATION MATRIX Q

Consider the 3-class classification problem. In the ID distribution, we have,

Qs,i = [e1, e2, e3] = I3 =

[
1, 0, 0
0, 1, 0
0, 0, 0

]
,

This indicates that each spurious feature is perfectly correlated with the invariant feature, as illus-
trated in Figure 13 (left). For instance, Qs,j = I3 implies that the background of the dog, crow, and
camel are floor, grass, and sand, respectively.

In the OOD distribution, Qs,j is no longer equal to I , indicating that the correlation between ani-
mals and the background may fail with a certain probability. Figure 13 (right) illustrates Qs,j(1),
which represents the first column of Qs,j . Qs,j(1) can take the value e2 with a probability of p/3,
indicating that the background of the dog is grass in this case. Similarly, Qs,j(1) can take the value
e3 with a probability of p/3, indicating that the background of the dog is sand with a probability of
p/3.

Figure 13: Illustrations of the matrix Qs,j .

D.4 ON THE PESSIMISM OF WORST-CASE THEORETICAL ANALYSIS FOR OOD

D.5 ID PERFORMANCE

Recall that in Section 3 the OOD accuracy is defined by

Aood(f) = EQs

[
Ex,y[I(ek̂ = y)|Qs]

]
.

The ID accuracy Aid(f) is defined similarly by fixing [Qs,1, . . . ,Qs,ds ] = [I, . . . , I]. According
to Lemma 3, we know that the ID accuracy of all models involved in Definition 2, Example 1-2 are
larger than 1− ϵ.

D.6 INTUITION OF OOD PERFORMANCE IMPROVEMENT OF OSE

We use Example 1 to show the main intuition of the output space ensemble (OSE). In Example 1,
two individual models learn non-overlapped feature, so model ensemble and averaging are the same.
According to the proof in Appendix F.1, consider the samples from the first class, i.e., y = e1, the
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predicted logit of the each class is

w(1)⊤xΦ̄|y=e1
=

2∑
i=1

µv,i(1)
⊤ (µv,iQv,i(1)) +

3∑
j=1

µs,j(1)
⊤ (µs,jQs,j(1)) ,

w(2)⊤xΦ̄|y=e1
=

2∑
i=1

µv,i(2)
⊤ (µv,iQv,i(1)) +

3∑
j=1

µs,j(2)
⊤ (µs,jQs,j(1)) ,

w(3)⊤xΦ̄|y=e1
=

2∑
i=1

µv,i(3)
⊤ (µv,iQv,i(1)) +

3∑
j=1

µs,j(3)
⊤ (µs,jQs,j(1)) ,

where we omit the noise term whose impact on the accuracy is less than ϵ according to Lemma 3.
Further, let µ denote any µv,i and µs,j and Q denote its corresponding transformation matrix. For
example, µ = µs,j and Q = Qs,j . Suppose Q(1) = ek2

, we have

µ(k1)
⊤ (µQ(1)) = µ(k1)

⊤ (µek2
) = µ(k1)

⊤µ(k2) =

{
1, if k1 = k2,

0, otherwise.

For the invariant features, Qv,i(1) = e1 always hold and for spurious features, Qs,j(1) takes e1
with probability 1 − 2p

3 , and takes e2 or e3 with p
3 , respectively. So the predicted logit of the each

class is simply

w̄(1)⊤xΦ̄|y=e1
=2 +

3∑
j=1

I(Qs,j(1) = e1),

w̄(2)⊤xΦ̄|y=e1 =0 +

3∑
j=1

I(Qs,j(1) = e2),

w̄(3)⊤xΦ̄|y=e1 =0 +

3∑
j=1

I(Qs,j(1) = e3),

Let us consider the probability of w̄(2)⊤xΦ̄|y=e1
> w̄(1)⊤xΦ̄|y=e1

, i.e., the model (Φ̄, w̄) mis-
takenly predicts the second the class e2 even if the true class is e1. This will happen when
{I(Qs,j(1) = e2)}j=1,2,3 holds simultaneously, whose probability would be p3

27 . Intuitively, 3
spurious features takes the value in OOD that is correlated with the second class e2, overwhelming
the two invariant features correlated with e1.

As for the averaged model, we have

w̄(1)⊤xΦ̄|y=e1
=4 +

6∑
j=1

I(Qs,j(1) = e1),

w̄(2)⊤xΦ̄|y=e1
=0 +

6∑
j=1

I(Qs,j(1) = e2),

w̄(3)⊤xΦ̄|y=e1
=0 +

6∑
j=1

I(Qs,j(1) = e3).

We will have w̄(2)⊤xΦ̄|y=e1
> w̄(1)⊤xΦ̄|y=e1

if either of the following occurs

• {I(Qs,j(1) = e2)}6j=1 holds simultaneously, whose probability would be p6

729

• Five of {I(Qs,j(1)}6j=1 takes e2 and the remaining one takes e3, i.e.,
∑6

j=1 I(Qs,j(1) =

e2) = 5 and
∑6

j=1 I(Qs,j(1) = e3) = 1. Such probability is 6p6

729 .

The total probability is then 7p6

729 ≈ p6

104 ≤ p3

104 < p3

27 . See Figure 14 for a visualization of the main
intuition.
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Figure 14: Comparison of the failure probability of individual model and averaged model. With
probability p3/27, the individual model (Φ̄, w̄) will encounter an OOD distribution where it mistak-
enly predicting the second class e2 on the samples from the first class e1. For the averaged model,
such probability would be roughly about p6/729. Refer to Appendix D.6 for detailed explanation.

D.7 THE DIFFERENCE BETWEEN WSE AND OSE IN OOD

D.7.1 EXPLAINING THE DIFFERENCE BETWEEN WSE AND OSE

We use the following Example 3 to show the main intuition of the difference between model aver-
aging and ensemble.
Example 3. Two individual models learn overlapped features xv,2 and xs,3 as

xΦ̄⊤ = xv,1 + xv,2 + xs,1 + xs,2 + xs,3, xΦ̃⊤ = xv,2 + xv,3 + xs,3 + xs,4 + xs,5,

Proposition 5. Consider the Example 3, suppose Assumption 1 and 2 hold, and there are infinite ID
and OOD samples, the averaged and ensemble models are defined as Definition 3. Omitting small
terms containing ϵ, we have Aood(f̄) = Aood(f̃) = 1− 1

9p
3 and Aood(fose) = 1− 4p4

81 − 8p5

243 and

Aood(fwse) = 1− 4p4

81 − p5

27 .

Full Proof in Appendix F.4. In Example 3, two individual models learn overlapped feature, xv,i(k)
and xs,3(k). By Lemma 5 , for k = 1, 2, 3, we have

w̄(k) =

2∑
i=1

µv,i(k) +

3∑
j=1

µs,j(k),

w̃(k) =

3∑
i=2

µv,i(k) +

5∑
j=3

µs,j(k),

So we have
w̄(k) + w̃(k) =

∑
i=1,3

µv,i(k) + 2µv,2(k) +
∑

j=1,2,4,5

µs,j(k) + 2µs,3(k)

For samples from the first class, we also have

x(Φ̄+Φ̃)|y=e1 =
∑
i=1,3

µv,iQv,i(1)+2µv,2Qv,2(1)+
∑

j=1,2,4,5

µs,jQs,j(1)+2µs,3Qs,3(1)+

10∑
i=1

zi

where zi ∼ N (0, σ2Id),∀i. We then have

(w̄(k) + w̃(k))⊤x(Φ̄ + Φ̃)|y=e1

=
∑
i=1,3

µv,i(k)
⊤ (µv,iQv,i(1)) + 4µv,2(k)

⊤ (µv,2Qv,2(1))

+
∑

j=1,2,4,5

µs,j(k)
⊤ (µs,jQs,j(1)) + 4µs,3(k)

⊤ (µs,3Qs,3(1)) + ξ (5)
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Figure 15: (a) Aood(fwse)−Aood(f̄) on Example 4, (b) Aood(fwse)−Aood(fose) on Example 4,

As for model ensemble, we have

w̄(k)⊤xΦ̄ + w̃(k)⊤xΦ̃

=
∑
i=1,2

µv,i(k)
⊤ (µv,iQv,i(1)) +

∑
j=1,2,3

µs,j(k)
⊤ (µs,jQs,j(1))

+
∑
i=2,3

µv,i(k)
⊤ (µv,iQv,i(1)) +

∑
j=3,4,5

µs,j(k)
⊤ (µs,jQs,j(1)) (6)

=
∑
i=1,3

µv,i(k)
⊤ (µv,iQv,i(1)) + 2µv,2(k)

⊤ (µv,2Qv,2(1))

+
∑

j=1,2,4,5

µs,j(k)
⊤ (µs,jQs,j(1)) + 2µs,3(k)

⊤ (µs,3Qs,3(1)) + ξ′ (7)

Comparing equation 5 and equation 6, we can see that

• For model averaging, the overlapped features µv,2 and µs,3 (corresponding to xv,2 and
xs,3) have coefficients amplified by 2 in Φ̄+Φ̃, and further amplified twice in w̄+ w̃. This
results in coefficients of the overlapped feature becoming 4 in (w̄ + w̃)⊤x(Φ̄ + Φ̃.

• For model ensemble, i.e., w̄⊤xΦ̄ + w̃⊤x̃Φ, the coefficients of the overlapped feature are
2.

D.7.2 THE THEORETICAL CONDITION OF WSE OUTPERFORMING OSE

Recall Proposition 2 that we have

Aood(fwse) = Fp

(
(1− p)(ñs + n̄s + 2nso) + (ñv + n̄v + 2nvo)√

ñs + n̄s + 14nso

)
,

Aood(fose) = Fp

(
(1− p)(ñs + n̄s) + (ñv + n̄v)√

ñs + n̄s + 2nso

)
.

A direct consequence of Proposition 2 is as follows, which illustrates when model averaging can be
more effective than model ensemble:
Proposition 6. Consider the models in Definition 2, suppose Assumption 1 and 2 hold, there are
infinite ID and OOD samples. Suppose the number of features that Φ̄ and Φ̃ learn are the same,
i.e., n̄v = ñv

.
= nv, n̄s = ñs

.
= ns and denote ρs

.
= nso/ns, ρv

.
= nvo/nv . Omitting

small constants involving ϵ, we have Aood(fwse) > Aood(fose) when ρv

ρs
> 3(1−p)ns

nv
, and

Aood(fwse) ≤ Aood(fose) when ρv

ρs
≤ 3(1−p)ns

nv
.

As shown in Appendix D.7.1, the coefficient of an overlapped feature in model averaging is 4, and
The coefficient of an overlapped feature in model ensemble is 2. If more Φ̄ and Φ̃ learns more
overlapped invariant features, the model averaging would put more weight on the invariant features,
leading to better OOD performance.

In Figure 4 (c) and (d), we illustrate Aood(fwse) − Aood(f̄) and Aood(fwse) − Aood(fose) on
the following example:
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Example 4. Consider both models learn the same number of features, i.e., fixing n̄v = ñv = 10
and n̄s = ñs = 20, vary nvo = 0, 1, ..., 5 and nso = 0, 1, ..., 5.

We can see that fwse achieves larger OOD improvement over fose when two individual models
learns more overlapped invariant features (e.g., larger nvo) and less overlapped spurious features
(e.g., smaller nso). In Appendix D.7.2, we provide conditions when fwse outperforms fose, discuss
why this can happen easily in real-world datasets, provide some primary experimental results.
Why does it easily happen in OOD on many real-world applications? Recall that there are
totally dv invariant features and ds spurious features. It is a common believe that spurious features
are high-dimensional and invariant features are low-dimensional, i.e., ds ≫ dv (Arjovsky et al.,
2019; Rosenfeld et al., 2020). Since the spurious features are high dimensional and (Allen-Zhu &
Li, 2020; Zhang & Bottou, 2023) indicate that different models can learn different (limited size)
subsets of features, the overlap ratio of spurious feature ρs is relatively low. On the other hand, there
are a small number of invariant features and recent studies (Rosenfeld et al., 2022; Qiu et al., 2023;
Kirichenko et al., 2022) show that models always learn some invariant features for the fine-tuned
task during ERM fine-tuning regardless of the presence of spurious features, so we conjecture that
the overlapped ratio of invariant feature ρv is relatively higher.

However, we recognize that our discussion regarding the overlap ratio of invariant spurious features
being larger than spurious features is not supported by rigorous proof, but rather it remains a conjec-
ture. Further research in this area is necessary to provide more conclusive evidence and establish a
solid foundation for this claim. In the next part, we will conduct experiments to provide some initial
support for this conjecture.

D.7.3 EMPIRICAL VERIFICATION

It is very difficult to directly empirically verified Proposition 6 because

• For real-world datasets, it is hard to identify whether and how much a model relies on
invariant or spurious features. Verifying Proposition 6 needs to estimate how much two
models relies on the same feature.

• For synthetic datasets, such as CMNIST (Arjovsky et al., 2019), there is no feasible pre-
trained models available. On the other hand, weight space ensemble needs to be conducted
on models close to pre-trained models.

In this part, we design a primary experiment to get around the above obstacles. Consider the ensem-
ble of two models: pre-trained CLIP (f̄ ) and the CLIP fine-tuned on ImageNet (f̃ ).

First, we use ImageNet variants (ImageNet-V2, ImageNet-Sketch, ImageNet-A, ImageNet-R, Ob-
jectNet) for OOD performance evaluation. Recall that ImageNet variants share the same invariant
features with ImageNet. Also recent studies (Rosenfeld et al., 2022; Qiu et al., 2023; Kirichenko
et al., 2022) show that ERM fine-tuned models always learn some invariant features for the fine-
tuned task regardless of the presence of spurious features. So f̃ learns the invariant features for
ImageNet variants. At the same time, the pre-trained CLIP f̄ can stably perform zero-shot clas-
sification on ImageNet and its variants, indicating that f̄ also learns good invariant features for
ImageNet variants. According to the previous discussion, f̄ and f̃ have some overlapped invariant
features for ImageNet variants, leading to better weight space ensemble than output space ensemble
on ImageNet variants (shown in Figure 16(Left)).

We then evaluate the OSE and WSE on three other distinct datasets, i.e., Places365, StanfordCars,
DTD and Food101 (refer as PSDF datasets). These tasks have different label space with ImageNets,
and contains different invariant features with ImageNet. Then in this case, the model f̃ fine-tuned
on the ImageNet learns little invariant for PSDF datasets. So overlap invariant features used by
the pre-trained model f̄ and fine-tuned f̃ are rather limited, indicating ρv is close to zero. Then
according to Proposition 6, WSE would be no better than OSE. This is consistent with the results in
Figure 16(right).
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Figure 16: Comparison of model ensemble and averaging. Left) OOD performance on ImageNet
variants, Right) OOD performance on PSDF (Places365, StanfordCars, DTD and Food101).

D.8 ILLUSTRATING THE OVER-CONFIDENCE.

In Section 4, we use λ to characterize the over-confidence of fλ = (λw, λΦ). Specifically, we have

fλ(x) = λ2w⊤xΦ.

Denote q := w⊤xΦ, which is a 3-dimensional vector for a 3-class classification problem. Consider
an example, i.e., q = [2, 1, 1]. Recall that q(k) is the k-th element of q for k = 1, 2, 3.. The predicted
probability for the first class when λ = 1 is

Probability of class 1 =
exp(q(1))

exp(q(1)) + exp(q(2)) exp(q(3))
=

exp(2)

exp(2) + exp(1) + exp(1)
= 0.576.

When the predicted class of fλ would be the same for λ > 1 and λ = 1. Whereas, when λ > 1, the
predicted probability for the largest class would be amplified, e.g., when λ =

√
5

Probability of class 1 =
exp(λ2q(1))

exp(λ2q(1)) + exp(λ2q(2)) exp(λ2q(3))

=
exp(2λ2)

exp(2λ2) + exp(λ2) + exp(λ2)

=0.99

So we can see that a larger λ won’t change the predicted class, but would make fλ more confident.

E MORE EXPERIMENTAL DETAILS AND RESULTS ON BANG

E.1 DETAILS ON IMAGENET VARIANTS

Details for ImageNet variants:

• ImageNet-V2(IN-V2): A recreated version of the ImageNet test set, but with a different set
of data distribution.

• ImageNet-R(IN-R): Renditions of 200 ImageNet classes resulting in 30,000 images.

• ImageNet Sketch(IN-S): Sketch style images of the same categories as ImageNet, with a
total of 50000 images.

• ObjectNet(ON): Objects in this dataset are captured in cluttered and natural environments
at unusual poses.

• ImageNet-A(IN-A): This dataset consists of naturally occurring images that are misclassi-
fied by a ResNet-50 model for 200 ImageNet classes.
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ImageNet (Deng et al.) ImageNet-A (Hendrycks et al.) ImageNet-R (Hendrycks et al.)

ImageNetV2 (Recht et al.) ObjectNet (Barbu et al.) ImageNet Sketch (Wang et al.)

Figure 17: Datasets on ImageNet and its variants. For each dataset, we pick 4 samples of the class
lemon and show illustrative images from each dataset. The dataset descriptions are similar to that of
Wortsman et al. (2022).

E.2 DETAILS OF PLACES365, STANFORDCARS, DTD AND FOOD101 (PSDF)

• Places365 (Zhou et al. (2017)): A scene recognition dataset. In this paper, we use the
validation set from the Places365-standard, which is composed of 36,000 validation images
from 365 scene classes.

• StanfordCars (Krause et al. (2013)): This dataset contains 196 classes of cars. Classes are
typically at the level of Make, Model, Year, ex. 2012 Tesla Model S or 2012 BMW M3
coupe. In this paper, we evaluate models on the test set, comprising 8,041 images.

• Describable Textures Dataset (DTD) (Cimpoi et al. (2014)): DTD is a texture database,
organized according to a list of 47 categories inspired from human perception such as
banded, dotted and gauzy. In the paper, we use the test set with 40 images per class.

• Food101 (Bossard et al. (2014)): This dataset consists of 101 food categories. In the paper,
we use the test set with 250 test images for each class.

E.3 DETAILS ON CALCULATING THE CONFIDENCE

Consider a K-class classification problem. Denote the lth element of the output as Probl, indicating
the probability the model assigns to the lth class. We have

∑K
l=1 Probl = 1. The confidence is

defined as as:
Confidence = max

(
{Probl}Kl=1

)
.

E.4 EXPERIMENTAL DETAILS

We use the CLIP model ViT-B/16Radford et al. (2021). We fine-tune the pre-trained model on
ImageNet. We use the AdamW optimizer with the default PyTorch AdamW hyperparameters and
choose 512 as batch size. We use a learning rate of 3 × 10−5, gradient clipping at global norm 1
and fine-tune for a total of 10 epochs. The settings mentioned above are the same with Wortsman
et al. (2022). For our method BANG, we try four smoothing for LS (label smoothing): 0.05, 0.10,
0.15 and 0.20. We adopt 0.10 in our reported results in Table 2. Further results in Table 9 show
that BANG is relatively insensitive to the hyper-parameter. We do not tune the hyper-parameters of
Mixup Zhang et al. (2017). We use the default hyperparamter as MMPreTrainContributors (2023).
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(d) The model fine-tuned with Mixup
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(e) The model fine-tuned with both Mixup and LS

Figure 18: Comparison of confidence and accuracy between zero-shot and the model finetuned with
different methods. In the figure, the ID dataset is the ImageNet dataset, which is represented by
▽. the five OOD datasets are: ◦ for ImageNetA, □ for ImageNetR, + for ImageNetSketch, ♢ for
ImageNetV2 and × for ObjectNet.
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Methods Model Averaging IN IN-V2 IN-R IN-A IN-S ObjectNet Avg OOD

Zero-shot Wortsman et al. (2022) No 68.3 61.9 77.6 49.8 48.2 53.0 58.1
Fine-tuning Wortsman et al. (2022) No 81.3 70.9 65.6 36.7 46.3 49.6 53.8

Flip No 81.3 70.5 63.1 36.8 44.6 51.4 53.3
Rotate No 81.4 70.7 65.2 35.6 45.3 49.5 53.3
Color No 81.4 71.5 65.3 37.3 46.7 50.4 54.2

Mixup No 83.0 72.7 66.4 43.7 48.8 52.4 56.8

Flip Yes 81.8 72.7 78.2 52.9 53.6 58.4 63.1
Rotate Yes 81.7 72.8 78.8 52.7 53.7 57.3 63.1
Color Yes 81.7 72.9 78.5 53.2 54.2 58.2 63.4

Mixup Yes 81.5 73.0 79.5 57.9 54.5 58.7 64.7

Table 8: Results of fine-tuning CLIP VIT-B/16 with flip, color, and rotation data augmentation on
ImageNet.
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Figure 19: Comparison of confidence and accuracy between zero-shot and the model finetuned with
different data augmentation. In the figure, ▽ refers to ImageNet dataset, ◦ for ImageNetA, □ for
ImageNetR, + for ImageNetSketch, ♢ for ImageNetV2 and × for ObjectNet.

E.5 MORE RESULTS ON BANG AND DISCUSSIONS

Mixup and label smoothing can alleviate the over-confidence of the fine-tuned model Compare
Figure 18c, 18d, 18e with Figure 18a, we can see that imposing Mixup and LS during fine-tuning
can alleviate the over-confidence of the fine-tuned model on both ID (ImageNet, denoted by ▽ in
the figure) and OOD datasets, which is consistent with existing results Park & Caragea (2022).

Comparison with Calibrated Ensemble Kumar et al. (2022). Kumar et al. (2022) calibrates the
fine-tuned model on the ID dataset by searching for a temperature T of the softmax. Figure 18b
shows that the confidence of the calibrated fine-tuned model approximately equals its accuracy on
the ID dataset (ImageNet). However, such model is still highly over-confidence in OOD datasets,
e.g., the confidence is over 0.6 while the accuracy is lower than 0.4 on ImageNetA (denoted by ◦),
which is consistent with the findings in Ovadia et al. (2019) and also the discussions in the Section
4.2 of Ovadia et al. (2019). So the scaling issue shown in Proposition 4 still exists in OOD datasets.
Notably, Calibrated Ensemble itself Kumar et al. (2022) can not be directly applied on model aver-
aging: Model averaging merges the parameters of each layer. However, calibrated Ensemble only
tunes the temperature of the softmax, which does not affect the lower layers, indicating that the
layers other than the output layer can still suffer from scaling issues. We try a direct adaptation of
(Kumar et al., 2022) to WiSE-FT: divide the weights in the last layer w by a scalar (temperature)
and then perform weight averaging. This also does not yields satisfactory results (Appendix E.6)
and the reason is discussed above.

Comparison between Mixup with other data augmentations We also compare Mixup with other
data augmentations. We fine-tune the CLIP on ImageNet with flip, rotate, and color augmentation,
respectively. We then performance weight averaging on these fine-tuned model with the pre-trained
model as Wortsman et al. (2022) does. Table 8 shows that flip, rotate, and color augmentation can
not enhance the performance of model averaging. Figure 19 also shows that these augmentation
methods can not alleviate the over-confidence of the fine-tuned model.

BANG is relatively insensitive to hyper-parameters. Table 9 shows the performance of BANG
with different hyper-parameters of label smoothing. BANG is relatively insensitive to such hyper-
parameters, e.g., the average OOD performance of BANG(Mixup+LS) all remains at about 64.9%
for the four hyper-parameters.
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Methods Model Averaging IN(ImageNet) IN-V2 IN-R IN-A IN-Sketch ObjectNet Avg OOD

Zero-shot Wortsman et al. (2022) No 68.3 61.9 77.6 49.8 48.2 53.0 58.1
Fine-tuning Wortsman et al. (2022) No 81.3 70.9 65.6 36.7 46.3 49.6 53.8

Fine-tuning(LS(0.05)) No 82.0 71.5 62.8 37.7 45.5 50.6 53.6
Fine-tuning(LS(0.10)) No 82.0 72.3 63.3 38.3 46.5 51.1 54.3
Fine-tuning(LS(0.15)) No 82.1 72.1 63.3 38.0 46.6 50.7 54.1
Fine-tuning(LS(0.20)) No 82.1 72.1 62.8 36.9 46.2 50.5 53.7
Fine-tuning(Mixup) No 83.0 72.7 66.4 43.7 48.8 52.4 56.8

Fine-tuning(Mixup + LS(0.05)) No 83.0 73.2 65.9 43.9 48.5 52.3 56.7
Fine-tuning(Mixup + LS(0.10)) No 82.7 73.0 66.4 43.3 48.6 52.4 56.8
Fine-tuning(Mixup + LS(0.15)) No 82.9 72.7 65.8 43.6 48.5 52.2 56.6
Fine-tuning(Mixup + LS(0.20)) No 82.9 73.2 66.4 44.6 48.5 52.4 57.0

WiSE-FT Wortsman et al. (2022) Yes 81.7 72.8 78.7 52.2 53.9 57.3 63.0
BANG(LS(0.05)) Yes 82.2 73.0 78.1 54.7 53.8 58.3 63.6
BANG(LS(0.10)) Yes 82.1 73.3 78.2 55.2 53.7 58.9 63.9
BANG(LS(0.15)) Yes 82.0 73.2 78.1 55.0 53.4 58.9 63.7
BANG(LS(0.20)) Yes 81.7 73.1 77.9 54.2 53.6 58.6 63.4
BANG(Mixup) Yes 81.5 73.0 79.5 57.9 54.5 58.7 64.7

BANG(Mixup + LS(0.05)) Yes 81.6 73.1 79.7 58.2 54.8 58.9 64.9
BANG(Mixup + LS(0.10)) Yes 81.5 73.0 79.8 57.9 54.8 59.0 64.9
BANG(Mixup + LS(0.15)) Yes 81.7 72.9 79.6 57.7 54.6 59.1 64.8
BANG(Mixup + LS(0.20)) Yes 81.6 73.1 79.9 57.8 54.8 59.0 64.9

Table 9: Results of BANG with CLIP-B/16. We show different hyper-parameters of label smoothing.
Mixup use the default hyper-parameter of MMPreTrainContributors (2023).

WiSE-FT Exp 1 Exp 2 BANG

63.0% 63.0% 64.1% 64.9%

Table 10: WiSE-FT can benefit significantly from better calibration by scaling the fine-tuned model.
(Exp 1)-(Exp 2) are described in Appendix E.6.

E.6 WISE-FT BENEFITS SIGNIFICANTLY FROM BETTER CALIBRATION

In Section 4, we theoretically show that model WSE can suffer from the imbalance issue where two
individual models have different scaling. This can happen if one model is much more confident
than the other. Unfortunately, we observe that the popular method, WiSE-FT suffers from this issue.
Specifically, WiSE-FT averages the pre-trained model with the fine-tuned model. In Section 4, we
show that the fine-tuned model is high-overconfident compared with the pre-trained model. We pro-
pose BANG, which averages the pre-trained model with the model fine-tuned with Label Smoothing
(LS) or MixUp. Since LS and MixUp can also improve the fine-tuned performance, we conduct the
following experiment to isolate the effect of better calibration from better fine-tuned performance.

Scale the fine-tuned model during weight space ensemble. A straightforward method to alleviate
over-confidence is to tune the temperature of the softmax of the fine-tuned model (Kumar et al.,
2022). However, this method can not be directly applied to WiSE-FT since WiSE-FT averages model
weights instead of ensemble the outputs. We first apply a direct adaptation of (Kumar et al., 2022)
to WiSE-FT: divide the weights in the last layer w by a scalar (temperature), which is equivalent
to softmax tempering. However, recall the model averaging (w̄ + w̃)⊤x(Φ̄ + Φ̃) also suffer from
the imbalance issue of Φ. Specifically, Proposition 4 shows that the averaged feature can be biased
towards Φ̃ if the scaling of Φ̃ is larger than Φ̄. So merely adjusting the weight of the classifier w
cannot alleviate this bias. The experiment result (Exp 1) in Table 10 also shows that merely re-
scaling the classifier can hardly improve WiSE-FT. In practice, we use a transformer (VIT-B/16)
with 12 block layers and 1 linear layer. We obtain the averaged model (θ̂, ŵ) as follows

• (Exp 1) Re-scale the classifier of FM (fine-tuned, θ̃, w̃) model during averaging, i.e., θ̂ =
0.5(θ̄ + θ̃) and ŵ = (1− α)w̄ + αw̃.

• (Exp 2) Re-scale whole network of FM as, θ̂ = (1− α)θ̄ + αθ̃ and ŵ = (1− α)w̄ + αw̃.

We search for the best α among 0.2-0.5 (with interval 0.1) for each ood dataset. The results in
Table 10 shows can merely scaling the fine-tuned model to alleviate its over-confidence can signifi-
cantly improvement the performance of WiSE-FT.
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Figure 20: (Left) Margins of WiSE-FT, where the fine-tuned model is obtained through vanilla fine-
tuning. (Right) Margins of BANG, where the fine-tuned model is obtained through fine-tuning with
MixUP+LS.

N1/N2

WiSE-FT 10.6%
BANG 13.4%

Table 11: The ratio (versus the entire dataset) of samples where model averaging can correct the
prediction in the PM(T)-FM(F) group. N1 denote the number of samples where model averaging
can correct the prediction in the PM(T)-FM(F) group and N2 denote the total sample size in the
dataset.

BANG can correct more samples on which the fine-tuned model make mistakes. In this part,
We denote the pre-trained model as PM, fine-tuned model as FM, and averaged model as AM. We
divide each dataset into four groups of samples according to whether the PM and FM make correct
predictions, respectively. We further use T/F to denote whether a model makes correct predictions,
i.e., T for True and F for False. For example, we use PM(T)-FM(F) to denote the group of samples
on which the predictions of PM and FM AM are correct and wrong, respectively. We visualize the
average margin of fine-tuned and pre-trained models on four groups, i.e., PM(T)-FM(T), PM(T)-
FM(F), PM(F)-FM(T), and PM(F)-FM(F). The margin is the difference between the probability
assigned to the correct class and the maximum probability among the wrong classes, i.e.,

Margin = Probl −max
k ̸=l

Prob(k)

where l is the it the true class, k = 1, ..K, and Prob(k) is the probability that a assign to the class
k. Averaging models with negative and positive margins can potentially correct mistakes. Fig-
ure 20 (Left) and (Right) visualize the the margins of pre-trained and fine-tuned models on each
group of each datasets for Wise-ft and BANG. In Wise-ft, the fine-tuned model exhibits signifi-
cantly negative margins in the PM(T)-FM(F) group. Specifically, Margin(PM) + Margin(FM) on
the group PM(T)-FM(F) is negative for WiSE-FT on Figure 20(Left), indicating dominance of fine-
tuned models in WiSE-FT even fine-tuned make mistakes. This also explains that why in some
datasets, e.g., IN-R and IN-A, ImproveContri(TF+FT) is negative as shown in Figure 7. How-
ever, in BANG, Margin(PM) + Margin(FM) on the group PM(T)-FM(F) is positive on average as
shown in Figure 20(Right), suggesting that BANG is capable of correcting more mistakes within the
PM(T)-FM(F) group. Table 11 shows that ratio (versus the entire dataset) of samples where model
averaging can correct the prediction in the PM(T)-FM(F) group. Specifically, let N1 denote the
number of samples where WiSE-FT can correct the prediction in the PM(T)-FM(F) group and N2

denote the total sample size in the dataset, Table 11 compares the N1/N2 (averaged over 5 OOD
datasets) of WiSE-FT and BANG. Table 11 shows BANG can correct substantially more mistakes
made by the fine-tuned model.
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F PROOFS

F.1 PROOF OF PROPOSITION 1

Proof. (a) Two individual models. Recall that in the 3-class classification problem, w =
[w(1),w(2),w(3)] ∈ Rd×3. We first solve the w̄ on the infinite ID samples. Lemma 5 , for
k = 1, 2, 3, we have

w̄(k) =

2∑
i=1

µv,iQv,i(k) +

3∑
j=1

µs,jQs,j(k) =

2∑
i=1

µv,i(k) +

3∑
j=1

µs,j(k),

where the last inequality is because: Qv,i = I always hold and Qs,j = I in the ID distribution.
Then Qv,i(k) = ek and Qs,j(k) = ek (recall that Q(k) is the kth column of the 3 × 3 matrix Q).
Then for each µQ(k) = µek = µ(k) and µ(k) is the kth column of the d× 3 matrix µ. Similarly,
we have

w̃(k) =

4∑
i=3

µv,i(k) +

6∑
j=4

µs,j(k).

We first look at the model (w̄, Φ̄) and consider the OOD accuracy of the samples from first class
k = 1. For each sample from the first class in OOD, we have

xΦ̄|y=e1
=

2∑
i=1

µv,iQv,i(1) +

3∑
j=1

µs,jQs,j(1) +

5∑
i=1

zi

where zi ∼ N (0, σ2Id),∀i. The model (w̄, Φ̄) makes correct prediction on the samples from
y = e1 if the following holds

w(1)⊤xΦ̄|y=e1
> w(2)⊤xΦ̄)|y=e1

, and w(1)⊤xΦ̄|y=e1
> w(3)⊤xΦ̄|y=e1

So for each OOD sample, we have

w(1)⊤xΦ̄)|y=e1

=

 2∑
i=1

µv,i(1) +

3∑
j=1

µs,j(1)

⊤  2∑
i=1

µv,iQv,i(1) +

3∑
j=1

µs,jQs,j(1) +

5∑
i=1

zi

 ,

=

2∑
i=1

µv,i(1)
⊤ (µv,iQv,i(1)) +

3∑
j=1

µs,j(1)
⊤ (µs,jQs,j(1)) + ξ

=2 +

3∑
j=1

µs,j(1)
⊤ (µs,jQs,j(1))︸ ︷︷ ︸

Aj

+ξ

where the second equality is by the Assumption 2 that different µ are all orthogonal to each other;
the last equality is because Qv,i(1) = e1 always hold and further by Assumption 2 we have

µv,i(1)
⊤ (µv,iQv,i(1)) = µv,i(1)

⊤ (µv,ie1) = µv,i(1)
⊤µv,i(1) = 1.

Similarly we have

w(2)⊤xΦ̄|y=e1

=

 2∑
i=1

µv,i(2) +

3∑
j=1

µs,j(2)

⊤  2∑
i=1

µv,iQv,i(1) +

3∑
j=1

µs,jQs,j(1) +

5∑
i=1

zi

 ,

=

2∑
i=1

µv,i(2)
⊤ (µv,iQv,i(1)) +

3∑
j=1

µs,j(2)
⊤ (µs,jQs,j(1)) + ξ

=0 +

3∑
j=1

µs,j(2)
⊤ (µs,jQs,j(1))︸ ︷︷ ︸

Bj

+ξ,
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where the last equality is because µv,i(2)
⊤ (µv,iQv,i(1)) = µv,i(2)

⊤µv,i(1) = 0. Similarly, we
also have

w(3)⊤xΦ̄|y=e1
=

3∑
j=1

µs,j(3)
⊤ (µs,jQs,j(1))︸ ︷︷ ︸

Cj

+ξ.

It is easy to see that, for k1, k2 = 1, 2, 3,

µs,j(k1)
⊤ (µs,jek2) =

{
0, if k1 = k2,

1, otherwise.

Since in the OOD distribution, Qs,j(1) can be any of e1, e2 and e3, we have Aj , Bj , Cj ∈ {0, 1}
and Aj + Bj + Cj = 1 for j = 1, 2, 3. Specifically, Aj = 1, Bj = 0, Cj = 0 if Qs,j = e1,
Aj = 0, Bj = 1, Cj = 0 if Qs,j = e2, and Aj = 0, Bj = 0, Cj = 1 if Qs,j = e3. We then have

(
w(1)⊤xΦ̄−w(2)⊤xΦ̄

)
|y=e1

=


−1, if

∑3
j=1 I(Qs,j(1) = e2) = 3,

0, if
∑3

j=1 I(Qs,j(1) = e2) = 2 and
∑3

j=1 I(Qs,j(1) = e3) = 1,

≥ 1 otherwise.

Recall Definition 1, in the OOD distribution, we have

Qs,j(1) =


e1, with probability 1− 2

3p,

e2, with probability p
3 ,

e3, with probability p
3 .

Combing Lemma 3 with the results above we have

• Aood(f̄) ∈ [0, ϵ] when
∑3

j=1 I(Qs,j(1) = e2) = 3 (equivalent to {I(Qs,j(1) = e2)}3j=1

holds simultaneously) or
∑3

j=1 I(Qs,j(1) = e3) = 3, the probability is 2p3/27.

• Aood(f̄) ∈ [1/2 − ϵ, 1/2 + ϵ] when
∑3

j=1 I(Qs,j(1) = e2) = 2 and
∑3

j=1 I(Qs,j(1) =

e3) = 1 or (
∑3

j=1 I(Qs,j(1) = e3) = 2 and
∑3

j=1 I(Qs,j(1) = e2) = 1) , the probability
of which is 2 · C1

3p
3/27 = 2p3/9.

• Aood(f̄) ∈ [1− ϵ, 1] otherwise, the probability of which is 1− 8p3/27.

So the overall expected OOD acuracy is Aood(f̄) = (2p3/9 · 1/2 + (1 − 8p3/27) · 1) ± ε ∈
[1− 5p3/27− ε, 1− 5p3/27+ ε]. We have Aood(f̃) ∈ [1− 5p3/27− ϵ, 1− 5p3/27+ ϵ] following
the same proof.

(b) Output space ensemble and weight space ensemble.
Similar to the proof above, for weight space ensemble we have

(w̄(1) + w̃(1))
⊤
x(Φ̄ + Φ̃)|y=e1

=

 4∑
i=1

µv,i(1) +

6∑
j=1

µs,j(1)

⊤  4∑
i=1

µv,iQv,i(1) +

6∑
j=1

µs,jQs,j(1) +

5∑
i=1

zi

 ,

=

4∑
i=1

µv,i(1)
⊤ (µv,iQv,i(1)) +

6∑
j=1

µs,j(1)
⊤ (µs,jQs,j(1)) + ξ

=4 +

6∑
j=1

µs,j(1)
⊤ (µs,jQs,j(1))︸ ︷︷ ︸

Aj

+ξ
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We also have

(w̄(2) + w̃(2))
⊤
x(Φ̄ + Φ̃)|y=e1

=

6∑
j=1

µs,j(2)
⊤ (µs,jQs,j(1))︸ ︷︷ ︸

Bj

+ξ,

(w̄(3) + w̃(3))
⊤
x(Φ̄ + Φ̃)|y=e1 =

6∑
j=1

µs,j(3)
⊤ (µs,jQs,j(1))︸ ︷︷ ︸

Cj

+ξ

Then

(
w(1)⊤xΦ−w(2)⊤xΦ

)
|y=e1

=



−2, if
∑6

j=1 I(Qs,j(1) = e2) = 6,

−1, if
∑6

j=1 I(Qs,j(1) = e2) = 5 and if
∑6

j=1 I(Qs,j(1) = e3) = 1,

0, if
(∑6

j=1 I(Qs,j(1) = e2) = 5 and
∑6

j=1 I(Qs,j(1) = e1) = 1
)

or ,(∑6
j=1 I(Qs,j(1) = e2) = 4 and

∑6
j=1 I(Qs,j(1) = e3) = 2

)
.

≥ 1 otherwise.

.

Then by Lemma 3, we have

Aood(fwse) ∈


[0, ϵ], with probability 2((p/3)6 + 6 · (p/3)6) = 14p6/729,

[ 12 − ϵ, 1
2 + ϵ], with probability

2(6 · (p/3)5 · (1− 2p/3) + 6C2 · (p/3)6) = 2p6/243 + 4p5/81

[1− ϵ, 1], with probability 1− 20p6/729− 4p5/81.

Then the overall expected OOD accuracy Aood(fwse) is in
[1− 2p5/81− 17p6/729− ε, 1− 2p5/81− 17p6/729 + ε].

The accuracy of the model ensemble and model averaging are the same in Example 1 since

(w̄(k) + w̃(k))
⊤
x(Φ̄ + Φ̃)|y=e1

=

4∑
i=1

µv,i(k)
⊤ (µv,iQv,i(1)) +

6∑
j=1

µs,j(k)
⊤ (µs,jQs,j(1)) + ξ

and

w̄(k)⊤(xΦ̄) + w̃(k)⊤(xΦ̃)|y=e1
=

4∑
i=1

µv,i(k)
⊤ (µv,iQv,i(1)) +

6∑
j=1

µs,j(k)
⊤ (µs,jQs,j(1)) + ξ.

F.2 PROOF OF PROPOSITION 2

Before starting the proof process, we restate Proposition 2 and Definition 1 for K (K ≥ 3) class
situation as follows:

Definition 5 (Data Generation Process). The whole data generation process are as follows:

y ∼ Unif {e1, e2, . . . , eK} ,x = Concat
(
{xv,i}dv

i=1 ∪ {xs,j}ds
j=1

)
,

Pθ(xv,i | y) = N
(
µv,iQv,iy, σ

2Id
)
,Pθ(xs,j | y) = N

(
µs,jQs,jy, σ

2Id
)
,∀i, j. (8)

where Qv,i,Qs,j ∈ {0, 1}K×K . Further, Qv,i = I3 = [e1, e2, . . . , eK ] always hold. In the ID
distribution Did, Qs,j = IK; and in OOD Dood, the kth column of Q, i.e., Qs,j(k), is as follows
for k = 1, 2, . . . ,K:

Qs,j(k) =

{
ek, with probability 1− p

Unif{e1, e2, . . . , eK}, with probability p.
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Proposition 7 (General Results for OSE). Consider Definition 1-3, Assumption 1-2 hold, and infi-
nite ID and OOD samples. Omitting small constants involving ϵ, we have

Aood(f̄) = Fp

(
(1− p)n̄s + n̄v√

n̄s

)
,

Aood(f̃) = Fp

(
(1− p)ñs + ñv√

ñs

)
,

Aood(fose) = Fp

(
(1− p)(ñs + n̄s) + (ñv + n̄v)√

ñs + n̄s + 2nso

)
.

In the proof process, here we take a notation first:

L(t1, . . . , tK−1) = Pz∼N (0,σ2IK−1)

(
aT
i z + ti > 0,∀i = 1, . . . ,K − 1

)
in which

∥ ai ∥22= 2, aT
i aj = 1,

for any i ̸= j.

Consider the extracted features in both models as

{xv,̄i}n̄v−nvo

ī=1
∪ {xs,j̄}n̄s−nso

j̄=1
∪ {xv,̃i}

ñv−nvo

ĩ=1
∪ {xs,̃i}

ñs−nso

ĩ=1
∪ {xv,i}nvo

i=1 ∪ {xs,i}nso
i=1,

in which nvo, nso are the numbers of overlapped invariant features and spurious features respec-
tively.

Then for each single model, we have

xΦ̄ =

n̄v−nvo∑
ī=1

xv,̄i +

n̄s−nso∑
j̄=1

xs,j̄ +

nvo∑
i=1

xv,i +

nso∑
i=1

xs,i,

w̄(k) =

∑n̄v−nvo

ī=1 µv,̄i(k) +
∑n̄s−nso

j̄=1 µs,j̄(k) +
∑nvo

i=1 µv,i(k) +
∑nso

i=1 µs,i(k)√
n̄v + n̄s

, k = 1, . . . ,K

xΦ̃ =

ñv−nvo∑
ĩ=1

xv,̃i +

ñs−nso∑
ĩ=1

xs,̃i +

nvo∑
i=1

xv,i +

nso∑
i=1

xs,i,

w̃(k) =

∑ñv−nvo

ĩ=1
µv,̃i(k) +

∑ñs−nso

ĩ=1
µs,̃i(k) +

∑nvo

i=1 µv,i(k) +
∑nso

i=1 µs,i(k)√
ñv + ñs

, k = 1, . . . ,K.

Then we can analysis the forecasting accuracy for both averaging model and ensemble model re-
spectively.

F.2.1 PROOF FOR SINGLE MODEL

Considering the extracted features in Algorithm 1 as

{xv,̄i}n̄v

ī=1
∪ {xs,j̄}n̄s

j̄=1
,

for convenience, we denote

x̄ := xΦ̄ =

n̄v∑
ī=1

xv,̄i +

n̄s∑
j̄=1

xs,j̄ ,

then according to Lemma 5, we can obtain the estimated classifier on label ek:

w̄(k) =

n̄v∑
ī=1

1√
n̄v + n̄s

µv,̄i +

n̄s∑
j̄=1

1√
n̄v + n̄s

µs,j̄ .
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Based on this classifier, the forecasting accuracy on ID case is

P(ŷ = y) =
1

K

K∑
k=1

Ex|y=ek{1(x̄
⊤w̄(k) > x̄⊤w̄(k′),∀k′ ̸= k)}

=
1

K

K∑
k=1

Pz∼N (0,(n̄v+n̄s)σ2Id)

(
(w̄(k)− w̄(k′))Tz + (w̄(k)− w̄(k′))TE(x̄ | y = ek) > 0,∀k′ ̸= k

)
=

1

K

K∑
k=1

Pz∼N (0,σ2Id)

(
(w̄(k)− w̄(k′))Tz + δ̄k,k′ > 0,∀k′ ̸= k

)
,

in which we denote that

δ̄k,k′ =
1

n̄v + n̄s

 n̄v∑
ī=1

1 +

n̄s∑
j̄=1

1

 = 1,

for any k′ ̸= k. And considering Assumption 2, we have

(w̄(k)− w̄(k′))T (w̄(k)− w̄(k′′)) = 1, ∥ w̄(k)− w̄(k′) ∥22= 2,

for any k ̸= k′ ̸= k′′. Then with Lemma 2, the IID forecasting accuracy can be expressed as

P(y = ŷ) = L(1, . . . , 1),

which can not be influenced by n̄v, n̄s.

Then we turn to the OOD forecasting accuracy. For class k, we suppose there are rk spurious
features maintaining their parameters, and rk→k′ refer to the number of spurious features flipping to
the class k′, the corresponding probability is

P([rk, [rk→k′ ,∀k′ ̸= k]]) =
n̄s!

rk!Πk′ ̸=krk→k′ !
(1− p+

p

K
)rk(

K − 1

K
p)n̄s−rk ,

and the conditional OOD forecasting accuracy on label ek is

P(ŷ = ek | [rk, [rk→k′ ,∀k′ ̸= k]],y = ek)

= Ex̄|[rk,[rk→k′ ,∀k′ ̸=k]],y=ek

{
1(x̄T w̄(k) > xT w̄(k′),∀k′ ̸= k)

}
= Pz∼N (0,(n̄v+n̄s)σ2Id)

(
(w̄(k)− w̄(k′))Tz +

n̄v + rk − rk→k′
√
n̄v + n̄s

,∀k′ ̸= k

)
= L(

n̄v + rk − rk→k′

n̄v + n̄s
,∀k′ ̸= k),

according to this, the OOD forecasting accuracy can be expressed as

P(ŷ = y) = Ey[P(ŷ = y | y)] = P(ŷ = e1 | y = e1)

=
∑

r1,r1→k′ ,∀k′≥2

P([r1, [r1→k′ ,∀k′ ̸= 1]])L(
n̄v + r1 − r1→k′

n̄v + n̄s
,∀k′ ≥ 1).

with Lemma 3, we can get related properties about L(·), then take upper and lower bounds respec-
tively.

Considering the close form of G(·) in equation 13, we denote nv = n̄v, ns = n̄s, nvo = nso =
0, C = 0, then the OOD forecasting accuracy can be lower bounded as

P(ŷ = y) ≥ P(A)(1− ϵ) +

K−1∑
N=1

P(C(N))(h(N)− ϵ)

≥ P(A) +

K−1∑
N=1

P(C(N))h(N)− ϵ = G(n̄v, n̄s, 0, 0, 0)− ϵ,

and on the other hand, it can also be upper bounded by

P(ŷ = y) ≤ P(A) +

K−1∑
N=1

P(C(N))h(N) + ϵP(B) ≤ G(n̄v, n̄s, 0, 0, 0) + ϵ,
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Similar with Algorithm 1, we can also get the ID and OOD forecasting accuracy in Algorithm 2,
which is related to another ñv invariant features and ñs spurious features.

For the OOD forecasting accuracy, we’d like to take some intuitive approximation for
G(nv, ns, 0, 0, 0). As the number nv, ns are large enough, we can take approximation by multi-
variate Gaussian distribution. To be specific, we denote r = [r1, r1→2, . . . , r1→K ], then can regard
them as r ∼ N (γ,Σ), in which

γ = [ns(1− p+ p/K), nsp/K, . . . , nsp/K]T ,

Σi,i =
γi(ns − γi)

ns
, Σi,j =

−γiγj
ns

.

If we denote a new (K − 1)×K matrix as

T =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

. . . . . . · · · 0
1 0 0 . . . −1


And the new (K − 1)-dim random variable, i.e,

η
.
= T Tr + nv1

is still Gaussian, to be specific, if we denote its distribution as η ∼ N (α,M), then we have

α = (ns(1− p) + nv)1,

Mi,i = ns
p(K + 2− pK)

K
,

Mi,j = ns
p(K + 1− pK)

K
,

G(nv, ns, 0, 0, 0) can be approximated as

P(η1 > 0, . . . ,ηK−1 > 0),

which is equal to Fp

(
(ns(1− p) + nv)/

√
ns

)
, and Fp(·) is defined in Appendix F.2.5.

F.2.2 PROOF FOR WEIGHT SPACE ENSEMBLE

For averaging model, we denote

x̂ :=
1

2
x(Φ̄+Φ̃) =

1

2

n̄v−nvo∑
ī=1

xv,̄i+
1

2

n̄s−nso∑
j̄=1

xs,j̄+
1

2

ñv−nvo∑
ĩ=1

xv,̃i+
1

2

ñs−nso∑
ĩ=1

xs,̃i+

nvo∑
i=1

xv,i+

nso∑
i=1

xs,i,

then after scaling, the averaging classifier on label ek:

ŵ :=
1

2
(w̄ + w̃)

=

∑n̄v−nvo

ī=1 µv,̄i(k) +
∑n̄s−nso

j̄=1 µs,j̄(k) +
∑ñv−nvo

ĩ=1
µv,̃i(k) +

∑ñs−nso

ĩ=1
µs,̃i(k) + 2

∑nvo

i=1 µv,i(k) + 2
∑nso

i=1 µs,i(k)√
n̄v + n̄s + ñv + ñs + 2nvo + 2nso

.

Based on this classifier, if we denote n̂ = (n̄v + n̄s + ñv + ñs + 2nvo + 2nso)/4, the forecasting
accuracy on ID case is

P(ŷ = y) =
1

K

K∑
k=1

Ex|y=ek{1(x̂
⊤ŵ(k) > x̂⊤ŵ(k′)),∀k′ ̸= k)}

=
1

K

K∑
k=1

Pz∼N (0,n̂σ2Id)

(
(ŵ(k)− ŵ(k′))Tz + (ŵ(k)− ŵ(k′))TE(x̂ | y = ek) > 0,∀k′ ̸= k

)
=

1

K

K∑
k=1

Pz∼N (0,σ2Id)

(
(ŵ(k)− ŵ(k′))Tz + δ̂k,k′ > 0,∀k′ ̸= k

)
,
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in which we denote that

δ̂k,k′ =

∑n̄v−nvo

ī=1 1 +
∑n̄s−nso

j̄=1 1 +
∑ñv−nvo

ĩ=1
1 +

∑ñs−nso

j̃=1
1 +

∑nvo

i=1 4 +
∑nso

i=1 4

n̄v + n̄s + ñv + ñs + 2nvo + 2nso
= 1,

for any k′ ̸= k. And considering Assumption 2, we have

(ŵ(k)− ŵ(k′))T (ŵ(k)− ŵ(k′)) = 1, ∥ ŵ(k)− ŵ(k′) ∥22= 2,

for any k ̸= k′ ̸= k′′. Then with Lemma 2, the IID forecasting accuracy can be expressed as

P(y = ywse) = L(1, . . . , 1) ∈ [1− ϵ, 1],

which can not be influenced by n̄v, n̄s, ñv, ñs, nvo, nso.

Then we turn to the OOD forecasting accuracy and for each k = 1, . . . ,K, we take some notations
as follows:

r̄k = |{I(µs,i(k) = µs,i(k))}n̄s
i=1 − nso|

r̃k = |{I(µs,i(k) = µs,i(k))}ñs−nso
i=1 |

rok = |{I(µs,i(k) = µs,i(k))}nso
i=1|

r̄k→k′ = |{I(µs,i(k) = µs,i(k
′))}n̄s

i=1 − nso|
r̃k→k′ = |{I(µs,i(k) = µs,i(k

′))}ñs−nso
i=1 |

rok→k′ = |{I(µs,i(k) = µs,i(k
′))}nso

i=1|.

(9)

To be specific, for class k, we suppose there are r̄k, r̃k spurious features (no overlapped) maintaining
their parameters, related to Algorithm 1, 2, and correspondingly, r̄k→k′ , r̃k→k′ refer to the number
of spurious features flipping to the class k′, and rok, r

o
k→k′ are defined similar in overlapped spuri-

ous features. Then denoting Rk(r) = [r̄k, r̃k, r
o
k, [r̄k→k′ , r̃k→k′ , rok→k′ ,∀k′ ̸= k]], we obtain the

corresponding probability as

P(Rk(r)) =
(n̄s + ñs − 2nso)!nso!

(r̄k + r̃k)!rok!Πk′ ̸=k(r̄k→k′ + r̃k→k′)!rok→k′ !
(1−p+

p

K
)r̄k+r̃k+rok(

K − 1

K
p)n̄s+ñs−nso−r̄k−r̃k−rok ,

and the conditional OOD forecasting accuracy on label ek is

P(ŷ = ek | Rk(r),y = ek)

= Ex̂|Rk(r),y=ek

{
1(x̂T ŵ(k) > x̂T ŵ(k′),∀k′ ̸= k)

}
= Pz∼N (0,n̂σ2Id)

(
(ŵ(k)− ŵ(k′))Tz +

n̄v + ñv + 2nvo + r̄k + r̃k + 4rok − r̄k→k′ − r̃k→k′ − 4rok→k′√
n̄v + n̄s + ñv + ñs + 2nvo + 2nso

,∀k′ ̸= k

)
= L(

n̄v + ñv + 2nvo + r̄k + r̃k + 4rok − r̄k→k′ − r̃k→k′ − 4rok→k′

n̄v + n̄s + ñv + ñs + 2nvo + 2nso
,∀k′ ̸= k),

according to this, the OOD forecasting accuracy can be expressed as

P(ŷ = y) = Ey[P(ŷ = y | y)] = P(ŷ = e1 | y = e1)

=
∑
r̂1

P(R1(r))L(
n̄v + ñv + 2nvo + r̄1 + r̃1 + 4ro1 − r̄1→k′ − r̃1→k′ − 4ro1→k′

n̄v + n̄s + ñv + ñs + 2nvo + 2nso
,∀k′ ̸= k).

with Lemma 3, we can get related properties about L(·), then take upper and lower bounds respec-
tively. Still recalling the expression in equation 13 with nv = n̄v + ñv, ns = n̄s + ñs, nvo =
nvo, nso = nso, C = 4, we can obtain the lower bound for OOD forecasting accuracy as

P(ŷ = y) ≥ P(A)(1− ϵ) +

K−1∑
N=1

P(C(N))(h(N)− ϵ)

≥ P(A) +

K−1∑
N=1

P(C(N))h(N)− ϵ = G(n̄v + ñv, n̄s + ñs, nvo, nso, 4)− ϵ,

and on the other hand, it can be upper bounded by

P(ŷ = y) ≤ P(A) +

K−1∑
N=1

P(C(N))h(N) + ϵP(B) ≤ G(n̄v + ñv, n̄s + ñs, nvo, nso, 4) + ϵ,
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Similar to the analysis before, for ID forecasting accuracy, we have

Jid = 0 ≤ 3ϵ,

and for OOD forecasting accuracy, we can draw a conclusion that

Jood ≥ G(n̄v + ñv, n̄s + ñs, nvo, nso, 4)−max{G(n̄v, n̄s, 0, 0, 0),G(ñv, ñs, 0, 0, 0)} − 3ϵ.

Similar to the analysis above, we’d like to take some intuitive approximation for OOD forecast-
ing accuracy in the ensemble model. As the number n̄v, n̄s, ñv, ñs, nvo, nso are large enough,
we can take approximation by multivariate Gaussian distribution. To be specific, we denote
r̄ = [r̄1, r̄1→2, . . . , r̄1→K ], r̃ = [r̃1, r̃1→2, . . . , r̃1→K ] and ro = [ro1, r

o
1→2, . . . , r

o
1→K ], then can

regard them as r̄ ∼ N (γ̄, Σ̄), r̃ ∼ N (γ̃, Σ̃) and ro ∼ N (γo,Σo) (they are independent), in which

γ̄ = [(n̄s − nso)(1− p+ p/K), (n̄s − nso)p/K, . . . , (n̄s − nso)p/K]T ,

Σ̄i,i =
γ̄i(n̄s − nso − γ̄i)

n̄s − nso
, Σ̄i,j =

−γ̄iγ̄j
n̄s − nso

,

γ̃ = [(ñs − nso)(1− p+ p/K), (ñs − nso)p/K, . . . , (ñs − nso)p/K]T ,

Σ̃i,i =
γ̃i(ñs − nso − γ̃i)

ñs − nso
, Σ̃i,j =

−γ̃iγ̃j
ñs − nso

,

γo = [nso(1− p+ p/K), nsop/K, . . . , nsop/K]T ,

Σo
i,i =

γo
i (nso − γo

i )

nso
, Σo

i,j =
−γo

i γ
o
j

nso
.

If we denote a new (K − 1)×K matrix as

T =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

. . . . . . · · · 0
1 0 0 . . . −1


And the new (K − 1)-dim random variable, i.e,

η
.
= (T ,T ,4T )(r̄, r̃, ro)T + (n̄v + ñv + 2nvo)1

is still Gaussian, to be specific, if we denote its distribution as η ∼ N (α,M), then we have

α = ((n̄s + ñs + 2nso)(1− p) + n̄v + ñv + 2nvo)1,

Mi,i = (n̄s + ñs + 14nso)
p(K + 2− pK)

K
,

Mi,j = (n̄s + ñs + 14nso)
p(K + 1− pK)

K
,

G(n̄v + ñv, n̄s + ñs, nvo, nso, 4) can be approximated as

P(η1 > 0, . . . ,ηK−1 > 0),

which is equal to Fp

(
((n̄s + ñs + 2nso)(1− p) + n̄v + ñv + 2nvo)/

√
n̄s + ñs + 14nso

)
, and

Fp(·) is defined in Appendix F.2.5.

F.2.3 PROOF FOR OUTPUT SPACE ENSEMBLE

For ensemble model, we also denote

ŵ(k) =

∑n̄v−nvo

ī=1
µv,̄i(k) +

∑n̄s−nso

j̄=1
µs,j̄(k) +

∑ñv−nvo

ĩ=1
µv,̃i(k) +

∑ñs−nso

ĩ=1
µs,̃i(k) + 2

∑nvo
i=1 µv,i(k) + 2

∑nso
i=1 µs,i(k)

√
n̄v + n̄s + ñv + ñs + 2nvo + 2nso

,

then the forecasting accuracy on IID case is

P(ŷ = y) =
1

K

K∑
k=1

Ex|y=ek{1(xΦ̄
⊤w̄(k) + xΦ̃T w̃(k) > xΦ̄⊤w̄(k′) + xΦ̃T w̃(k′),∀k′ ̸= k)}

=
1

K

K∑
k=1

Pz∼N (0,σ2Id)

(
(ŵ(k)− ŵ(k′))Tz + δ̂k,k′ > 0, ∀k′ ̸= k

)
,
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in which

δ̂k,k′ =

∑n̄v−nvo

ī=1
1 +

∑n̄s−nso

j̄=1
1 +

∑ñv−nvo

ĩ=1
1 +

∑ñs−nso

j̃=1
1 +

∑nvo
i=1 2 +

∑nso
i=1 2√

n̄v + n̄s + ñv + ñs + 2nvo + 2nso

√
n̄v + n̄s + ñv + ñs − nvo − nso

=
n̄v + n̄s + ñv + ñs√

n̄v + n̄s + ñv + ñs + 2nvo + 2nso

√
n̄v + n̄s + ñv + ñs − nvo − nso

.
= s < 1,

while nvo + nso < (n̄v + n̄s + ñv + ñs)/2, for any k′ ̸= k. And considering Assumption 2, we have

(ŵ(k)− ŵ(k′))T (ŵ(k)− ŵ(k′′)) = 1, ∥ ŵ(k)− ŵ(k′) ∥22= 2,

for any k ̸= k′ ̸= k′′. Then with Lemma 2, the IID forecasting accuracy can be expressed as

P(y = ŷ) = L(s, . . . , s) ≥ 1− ϵ,

which can be influenced by n̄v, n̄s, ñv, ñs, nvo, nso.

Then we turn to the OOD forecasting accuracy. Similar to the notation in equation 9, for class k, we suppose:

r̄k = |{I(µs,i(k) = µs,i(k))}n̄s
i=1 − nso|

r̃k = |{I(µs,i(k) = µs,i(k))}ñs−nso
i=1 |

rok = |{I(µs,i(k) = µs,i(k))}nso
i=1|

r̄k→k′ = |{I(µs,i(k) = µs,i(k
′))}n̄s

i=1 − nso|

r̃k→k′ = |{I(µs,i(k) = µs,i(k
′))}ñs−nso

i=1 |
rok→k′ = |{I(µs,i(k) = µs,i(k

′))}nso
i=1|.

Then denoting Rk(r) := [r̄k, r̃k, r
o
k, [r̄k→k′ , r̃k→k′ , rok→k′ ,∀k′ ̸= k]], we have the corresponding probability

is

P(Rk(r)) =
(n̄s + ñs − 2nso)!nso!

(r̄k + r̃k)!rok!Πk′ ̸=k(r̄k→k′ + r̃k→k′)!rok→k′ !
(1−p+

p

K
)r̄k+r̃k+rok (

K − 1

K
p)n̄s+ñs−nso−r̄k−r̃k−rok ,

and the conditional OOD forecasting accuracy on label ek is

P(ŷ = ek | Rk(r),y = ek)

= ExΦ̂|Rk(r),y=ek

{
1(xΦ̄⊤w̄(k) + xΦ̃T w̃(k) > xΦ̄⊤w̄(k′) + xΦ̃T w̃(k′), ∀k′ ̸= k)

}
= L(

n̄v + ñv + r̄k + r̃k + 2rok − r̄k→k′ − r̃k→k′ − 2rok→k′√
n̄v + n̄s + ñv + ñs + 2nvo + 2nso

√
n̄v + n̄s + ñv + ñs − nvo − nso

,∀k′ ̸= k).

According to this, the OOD forecasting accuracy can be expressed as

P(ŷ = y) = Ey[P(ŷ = y | y)] = P(ŷ = e1 | y = e1)

=
∑
R1(k)

P(R1(k))L(
n̄v + ñv + r̄1 + r̃1 + 2ro1 − r̄1→k′ − r̃1→k′ − 2ro1→k′√

n̄v + n̄s + ñv + ñs + 2nvo + 2nso

√
n̄v + n̄s + ñv + ñs − nvo − nso

,∀k′ ̸= 1).

with Lemma 3, we can get related properties about L(·), then take upper and lower bounds respectively.

To be specific, recalling the expression in equation 13 with nv = n̄v + ñv, ns = n̄s + ñs, nvo = nvo, nso =
nso, C = 2, we can lower bound the OOD forecasting accuracy as

P(ŷ = y) ≥ P(A)(1− ϵ) +

K−1∑
N=1

P(C(N))(h(N)− ϵ)

≥ P(A) +

K−1∑
N=1

P(C(N))h(N)− ϵ = G(n̄v + ñv, n̄s + ñs, nvo, nso, 2)− ϵ,

and on the other hand, it can be upper bounded by

P(ŷ = y) ≤ P(A) +

K−1∑
N=1

P(C(N))h(N) + ϵP(B) ≤ G(n̄v + ñv, n̄s + ñs, nvo, nso, 2) + ϵ,

Similar to the analysis before, for ID forecasting accuracy, we have

Jid = 0 ≤ 3ϵ,
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and for OOD forecasting accuracy, we can draw a conclusion that

Jood ≥ G(n̄v + ñv, n̄s + ñs, nvo, nso, 2)−max{G(n̄v, n̄s, 0, 0, 0),G(ñv, ñs, 0, 0, 0)} − 3ϵ.

Similar to the analysis above, we’d like to take some intuitive approximation for OOD forecasting accu-
racy in the ensemble model. As the number n̄v, n̄s, ñv, ñs, nvo, nso are large enough, we can take ap-
proximation by multivariate Gaussian distribution. To be specific, we denote r̄ = [r̄1, r̄1→2, . . . , r̄1→K ],
r̃ = [r̃1, r̃1→2, . . . , r̃1→K ] and ro = [ro1, r

o
1→2, . . . , r

o
1→K ], then can regard them as r̄ ∼ N (γ̄, Σ̄),

r̃ ∼ N (γ̃, Σ̃) and ro ∼ N (γo,Σo) (they are independent), in which

γ̄ = [(n̄s − nso)(1− p+ p/K), (n̄s − nso)p/K, . . . , (n̄s − nso)p/K]T ,

Σ̄i,i =
γ̄i(n̄s − nso − γ̄i)

n̄s − nso
, Σ̄i,j =

−γ̄iγ̄j
n̄s − nso

,

γ̃ = [(ñs − nso)(1− p+ p/K), (ñs − nso)p/K, . . . , (ñs − nso)p/K]T ,

Σ̃i,i =
γ̃i(ñs − nso − γ̃i)

ñs − nso
, Σ̃i,j =

−γ̃iγ̃j
ñs − nso

,

γo = [nso(1− p+ p/K), nsop/K, . . . , nsop/K]T ,

Σo
i,i =

γo
i (nso − γo

i )

nso
, Σo

i,j =
−γo

i γ
o
j

nso
.

If we denote a new (K − 1)×K matrix as

T =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

. . .
. . . · · · 0

1 0 0 . . . −1


And the new (K − 1)-dim random variable, i.e,

η
.
= (T ,T ,4T )(r̄, r̃, ro)T + (n̄v + ñv + 2nvo)1

is still Gaussian, to be specific, if we denote its distribution as η ∼ N (α,M), then we have

α = ((n̄s + ñs)(1− p) + n̄v + ñv)1,

Mi,i = (n̄s + ñs + 2nso)
p(K + 2− pK)

K
,

Mi,j = (n̄s + ñs + 2nso)
p(K + 1− pK)

K
,

the OOD forecasting accuracy can be approximated as

P(η1 > 0, . . . , ηK−1 > 0),

which is equal to Fp(((n̄s+ñs)(1−p)+n̄v+ñv)/
√
n̄s + ñs + 2nso), and Fp(·) is defined in Appendix F.2.5.

F.2.4 CASE STUDY FOR K = 3

To interpret the improvements on OOD accuracy of model average and model ensemble, here we set K = 3,
and further take an insight on the representation function G(·).

Recalling the results calculated above, the OOD accuracy for single models can be approximated as

G(n̄v, n̄s, 0, 0, 0), G(ñv, ñs, 0, 0, 0),

and for average model and ensemble model, we could focus on

G(n̄v + ñv, n̄s + ñs, nvo, nso, 4), G(n̄v + ñv, n̄s + ñs, nvo, nso, 2).

To take specific calculations, we denote the random vector as [r1, ro1, r1→2, r1→3, r
o
1→2, r

o
1→3], and approxi-

mate them on probabilities related to the two-dimensional Gaussian random vector η ∼ N (0, H), in which the
covariance matrix H has components as

Hii =
p(5− 3p)

3
, Hij =

p(4− 3p)

3
.
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Then we could obtain

G(n̄v, n̄s, 0, 0, 0) = P(η1 ≥ − (1− p)n̄s + n̄v√
n̄v

, η2 ≥ − (1− p)n̄s + n̄v√
n̄v

),

G(ñv, ñs, 0, 0, 0) = P(η1 ≥ − (1− p)ñs + ñv√
ñv

, η2 ≥ − (1− p)ñs + ñv√
ñv

),

G(n̄v + ñv, n̄s + ñs, nvo, nso, 4)

= P(η1 ≥ − (1− p)(n̄s + ñs + 2nso) + ñv + n̄v + 2nvo√
n̄s + ñs + 14nso

, η2 ≥ − (1− p)(n̄s + ñs + 2nso) + ñv + n̄v + 2nvo√
n̄s + ñs + 14nso

),

G(n̄v + ñv, n̄s + ñs, nvo, nso, 2)

= P(η1 ≥ − (1− p)(n̄s + ñs) + ñv + n̄v√
n̄s + ñs + 2nso

, η2 ≥ − (1− p)(n̄s + ñs) + ñv + n̄v√
n̄s + ñs

).

Here we denote a new function
F (x) := P(η1 ≥ −x, η2 ≥ −x),

which implies that F is monotonically increasing with respect to x. And it shows that average model and
ensemble model could obtain higher OOD accuracy compared with single models due to

(1− p)(n̄s + ñs + 2nso) + ñv + n̄v + 2nvo√
n̄s + ñs + 14nso

≥ max{ (1− p)n̄s + n̄v√
n̄v

,
(1− p)ñs + ñv√

ñv

},

(1− p)(n̄s + ñs) + ñv + n̄v√
n̄s + ñs + 2nso

≥ max{ (1− p)n̄s + n̄v√
n̄v

,
(1− p)ñs + ñv√

ñv

}.

F.2.5 CLOSE FORM OF Fp(·)

Here we provide the explicit expression of function Fp(x) in K class situation, which is monotonically increas-
ing with x.

We denote a K − 1-dim random variable η ∼ N (x,M), in which

Mi,i =
p(K + 2− pK)

K
,Mi,j =

p(K + 1− pK)

K
,

then Fp(x) is defined as
Fp(x) = P(η1 > 0, . . . ,ηK−1 > 0).

F.2.6 CLOSE FORM OF G(nv, ns, nvo, nso, C)

First, denoting a random vector Rk(r) := [rk, r
o
k, [rk→k′ , rok→k′ , ∀k′ ̸= k]] ∈ R2K , we have the correspond-

ing probability as

P(Rk(r)) =
(ns − 2nso)!nso!

rk!rok!Πk′ ̸=krk→k′ !rok→k′ !
(1− p+

p

K
)rk+rok (

K − 1

K
p)ns−nso−rk−rok ,

then we can define several sets:

A := {Rk(r) : r1 + Cro1 − r1→k′ − Cro1→k′ + nv > 0,∀k′ = 2, . . . ,K}, (10)

B := {Rk(r) : min
k′=2,...,K

r1 + Cro1 − r1→k′ − Cro1→k′ + nv < 0}, (11)

C(N) := {Rk(r) : min
k′=2,...,K

r1 + Cro1 − r1→k′ − Cro1→k′ + nv = 0,

the minimum can be achieved by N values}, (12)

and related functions as

h(N) = Pz∼N (0,σ2IN )

(
aT
i z > 0, ∀i = 1, . . . , N

)
in which aT

i aj = 1 and ∥ ai ∥22= 1 for any i ̸= j.

G(ns, nv, nso, nvo, C) is the probability defined as following:

G(ns, nv, nso, nvo, C) = P(A) +

K−1∑
N=1

P(C(N))h(N) (13)

where set A and C(N) are two sets of Rk(r) defined in Equation equation 10 and equation 12, respectively.
Note that P(Rk(r)) and the set A and C(N) all depend on ns, nv, nso, nvo and C.
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F.3 PROOF OF PROPOSITION 4

By the proof in Proposition 1 we have

w̄(k) =

2∑
i=1

µv,i(k) +

3∑
j=1

µs,j(k).

w̃(k) =

4∑
i=3

µv,i(k) +

6∑
j=4

µs,j(k).

Then we consider the averaged mode about the value of ŵTxΦ̂T , where ŵ = w̄+λw̃
1+λ

and Φ̂ = Φ̄+λΦ̃
1+λ

We first have:

ŵ(k) =
1

1 + λ
(
∑
i=1,2

µv,i(k) + λ
∑
i=3,4

µv,i(k) +
∑

j=1,2,3

µs,j(k) +
∑

j=4,5,6

µs,j(k) )

xΦ̂T |y=e1 =
1

1 + λ
(xΦ̄T + λxΦ̃T )

=
1

1 + λ
(
∑
i=1,2

µv,iQv,i(1) + λ
∑
i=3,4

µv,iQv,i(1)

+
∑

j=1,2,3

µs,jQs,j(1) + λ
∑

j=4,5,6

µs,jQs,j(1) + (

5∑
i=1

zi + λ

10∑
i=6

zi))

ŵ(k)TxΦ̂T |y=e1 =
1

(1 + λ)2
(
∑
i=1,2

µv,i(k)
Tµv,iQv,i(1) + λ2

∑
i=3,4

µv,i(k)
Tµv,iQv,i(1)

+
∑

j=1,2,3

µs,j(k)
Tµs,jQs,j(1) + λ2

∑
j=4,5,6

µs,j(k)
Tµs,jQs,j(1))

Then for class k = 1, we have

ŵ(1)TxΦ̂T |y=e1 =
1

(1 + λ)2
(2 + 2λ2︸ ︷︷ ︸

>12

+
∑

j=1,2,3

µs,j(1)
Tµs,jQs,j(1)+ λ2︸︷︷︸

>5

∑
j=4,5,6

µs,j(1)
Tµs,jQs,j(1))

For the other two classes, we have

ŵ(2)TxΦ̂T |y=e1 =
1

(1 + λ)2
(
∑

j=1,2,3

µs,j(2)
Tµs,jQs,j(1)) + λ2︸︷︷︸

>5

∑
j=4,5,6

µs,j(2)
Tµs,jQs,j(1))

ŵ(3)TxΦ̂T |y=e1 =
1

(1 + λ)2
(
∑

j=1,2,3

µs,j(3)
Tµs,jQs,j(1) + λ2︸︷︷︸

>5

∑
j=4,5,6

µs,j(3)
Tµs,jQs,j(1))

For simplicity of the discussion, we will ignore the constant factor 1
(1+λ)2

, when λ >
√
5, we discuss the

value of ŵ(1)TxΦ̂T |y=e1 − ŵ(2)TxΦ̂T |y=e1 :

When
∑

j=4,5,6

I(Qs,j(1) = e2) = 2, it suffices to consider comparing:{
2 +

∑
j=1,2,3 µs,j(1)

Tµs,jQs,j(1) + λ2∑
j=4,5,6 µs,j(1)

Tµs,jQs,j(1)∑
j=1,2,3 µs,j(2)

Tµs,jQs,j(1)

ŵ(1)TxΦ̂T |y=e1 ≤ ŵ(2)TxΦ̂T |y=e1 only when
∑

j=4,5,6

I(Qs,j(1) = e1) = 0, that is,∑
j=4,5,6

I(Qs,j(1) = e3) = 1.

The probability of the aforementioned scenario is 3 · (p/3)3 = p3/9.

Then
ŵ(1)TxΦ̂T |y=e1 < ŵ(2)TxΦ̂T |y=e1 if

∑
j=1,2,3

I(Qs,j(1) = e2) = 3

ŵ(1)TxΦ̂T |y=e1 = ŵ(2)TxΦ̂T |y=e1 if
∑

j=1,2,3

I(Qs,j(1) = e2) = 2 and
∑

j=1,2,3

I(Qs,j(1) = e3) = 1
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Therefore, the probability of ”<” is p3/9 · (p/3)3 = p6/243, ”=” is p3/9 · 3 · (p/3)3 = p6/81.

When
∑

j=4,5,6 I(Qs,j(1) = e2) = 3, it suffices to consider comparing{
2 +

∑
j=1,2,3 µs,j(1)

Tµs,jQs,j(1)∑
j=1,2,3 µs,j(2)

Tµs,jQs,j(1) + λ2

Trivially we have
∑

j=1,2,3 µs,j(2)
Tµs,jQs,j(1)+λ2 > 5 ≥ 2+

∑
j=1,2,3 µs,j(1)

Tµs,jQs,j(1), therefore,
”<” holds under this case, the probability is (p/3)3 = p3/27.

When
∑

j=4,5,6 I(Qs,j(1) = e2) = 0/1,∑
j=1,2,3

µs,j(2)
Tµs,jQs,j(1)) + λ2

∑
j=4,5,6

µs,j(2)
Tµs,jQs,j(1)) ≤ 3 + λ2 < 2 + 2λ2 + · · · Therefore,

” ≤ ” is impossible to hold in this case.

To sum up, for comparing the first class and the second class, the ” < ” probability is p6/243 + p3/27, the
”=” probability is p6/81.

Generally, the ”<” probability is 2p6/243 + 2p3/27, the ”=” probability is 2p6/81, the otherwise probability
is 1−8p6/243−2p3/27. Then the total accuracy is approximately 1/2 ·2p6/81+(1−8p6/243−2p3/27) =
1− 5p6/243− 2p3/27, that is, the accuracy lies in [1− 5p6/243− 2p3/27− ε, 1− 5p6/243− 2p3/27+ ε].

F.4 PROOF OF PROPOSITION 5

Proof. (a)Two individual models. The accuracy of two individual models are the same with Example (1-1)
following the same proof. Specifically, so we have Aood(f̄) ∈ [1− 5p3/54− ϵ, 1− 5p3/54+ ϵ]. Aood(f̃) ∈
[1− 5p3/27− ϵ, 1− 5p3/27 + ϵ]

(b) Weight space ensemble. We first solve the w̄ and w̃ on the infinite ID samples. Lemma 5 , for k = 1, 2, 3,
we have

w̄(k) =

2∑
i=1

µv,i(k) +

3∑
j=1

µs,j(k),

w̃(k) =

3∑
i=2

µv,i(k) +

5∑
j=3

µs,j(k),

So we have

w̄(k) + w̃(k) =
∑
i=1,3

µv,i(k) + 2µv,2(k) +
∑

j=1,2,4,5

µs,j(k) + 2µs,3(k)

For samples from the first class, we also have

x(Φ̄ + Φ̃)|y=e1 =
∑
i=1,3

µv,iQv,i(1) + 2µv,2Qv,2(1) +
∑

j=1,2,4,5

µs,jQs,j(1) + 2µs,3Qs,3(1) +

10∑
i=1

zi

where zi ∼ N (0, σ2Id), ∀i. We then have

(w̄(k) + w̃(k))⊤x(Φ̄ + Φ̃)|y=e1

=
∑
i=1,3

µv,i(k)
⊤ (µv,iQv,i(1)) + 4µv,2(k)

⊤ (µv,2Qv,2(1))

+
∑

j=1,2,4,5

µs,j(k)
⊤ (µs,jQs,j(1)) + 4µs,3(k)

⊤ (µs,3Qs,3(1)) + ξ

So

(w̄(1) + w̃(1))⊤x(Φ̄ + Φ̃)|y=e1

= 6 +
∑

j=1,2,4,5

µs,j(1)
⊤ (µs,jQs,j(1)) + 4µs,3(1)

⊤ (µs,3Qs,3(1)) + ξ
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Similarly, we have

(w̄(2) + w̃(2))⊤x(Φ̄ + Φ̃)|y=e1 =
∑

j=1,2,4,5

µs,j(2)
⊤ (µs,jQs,j(1)) + 4µs,3(2)

⊤ (µs,3Qs,3(1)) + ξ,

(w̄(3) + w̃(3))⊤x(Φ̄ + Φ̃)|y=e1 =
∑

j=1,2,4,5

µs,j(3)
⊤ (µs,jQs,j(1)) + 4µs,3(3)

⊤ (µs,3Qs,3(1)) + ξ.

Then

(w̄(1) + w̃(1))⊤ x
(
Φ̄ + Φ̃

)⊤
− (w̄(2) + w̃(2))⊤ x

(
Φ̄ + Φ̃

)⊤

=



−2, if
∑

j=1,2,4,5 I(Qs,j(1) = e2) = 4, and I(Qs,3(1) = e2) = 1

−1, if
(
I(Qs,3(1) = e2) = 1,

∑
j=1,2,4,5 I(Qs,j(1) = e2) = 3, and

∑
j=1,2,4,5 I(Qs,j(1) = e3) = 1

)
,

0, if
(
I(Qs,3(1) = e2) = 1,

∑
j=1,2,4,5 I(Qs,j(1) = e2) = 3, and

∑
j=1,2,4,5 I(Qs,j(1) = e1) = 1

)
or(

I(Qs,3(1) = e2) = 1,
∑

j=1,2,4,5 I(Qs,j(1) = e2) = 2, and
∑

j=1,2,4,5 I(Qs,j(1) = e3) = 2
)
.

≥ 1 otherwise.

,

Then we can compute the probability respectively,
For -2 case, the probability is given by 2 · (p/3)5 = 2p5/243
For -1 case, the probability is given by 2 · 4 · (p/3)5 = 8p5/243
For 0 case, the probability is given by 2 · (4 · (1− 2p/3) · (p/3)4 + 4C2 · (p/3)5) = 8p4/81− 4p5/243
Otherwise, the probability is: 1− 8p4/81− 2p5/81

Then the total accuracy can be computed as approximately 1− 4p4/81− 8p5/243,
the interval is [1− 4p4/81− 8p5/243− ε, 1− 4p4/81− 8p5/243 + ε]

(c) Output Space Ensemble. Similar to the derivation of model averaging, we have

w̄(k)⊤xΦ̄ + w̃(k)⊤xΦ̃|y=e1

=
∑
i=1,3

µv,i(k)
⊤ (µv,iQv,i(1)) + 2µv,2(k)

⊤ (µv,2Qv,2(1))

+
∑

j=1,2,4,5

µs,j(k)
⊤ (µs,jQs,j(1)) + 2µs,3(k)

⊤ (µs,3Qs,3(1)) + ξ.

Then we consider the fist class:

w̄(1)⊤xΦ̄ + w̃(1)⊤xΦ̃|y=e1

=
∑
i=1,3

µv,i(1)
⊤ (µv,iQv,i(1)) + 2µv,2(1)

⊤ (µv,2Qv,2(1))

+
∑

j=1,2,4,5

µs,j(1)
⊤ (µs,jQs,j(1)) + 2µs,3(1)

⊤ (µs,3Qs,3(1)) + ξ.

= 4 +
∑

j=1,2,4,5

µs,j(1)
⊤ (µs,jQs,j(1)) + 2µs,3(1)

⊤ (µs,3Qs,3(1)) + ξ.

Similarly we have,

w̄(2)⊤xΦ̄ + w̃(2)⊤xΦ̃|y=e1 =
∑

j=1,2,4,5

µs,j(2)
⊤ (µs,jQs,j(1)) + 2µs,3(2)

⊤ (µs,3Qs,3(1)) + ξ.

w̄(3)⊤xΦ̄ + w̃(3)⊤xΦ̃|y=e1 =
∑

j=1,2,4,5

µs,j(3)
⊤ (µs,jQs,j(1)) + 2µs,3(3)

⊤ (µs,3Qs,3(1)) + ξ.

Then

(w̄(1)⊤xΦ̄ + w̃(1)⊤xΦ̃)|y=e1 − (w̄(2)⊤xΦ̄ + w̃(2)⊤xΦ̃)|y=e1

=



−2, if
∑

j=1,2,4,5 I(Qs,j(1) = e2) = 4, and Qs,3(1) = e2

−1, if
∑

j=1,2,4,5 I(Qs,j(1) = e2) = 3,
∑

j=1,2,4,5 I(Qs,j(1) = e3) = 1 and Qs,3(1) = e2

0, if (
∑

j=1,2,4,5 I(Qs,j(1) = e2) = 2 and
∑

j=1,2,4,5 I(Qs,j(1) = e3) = 2) and Qs,3(1) = e2)

or (
∑

j=1,2,4,5 I(Qs,j(1) = e2) = 4 and Qs,3(1) = e3)

or (
∑

j=1,2,4,5 I(Qs,j(1) = e2) = 3,
∑

j=1,2,4,5 I(Qs,j(1) = e1) = 1,Qs,3(1) = e2)

≥ 1 otherwise.
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Then we can compute the probability respectively:
For -2 case, the probability is given by 2 · (p/3)5 = 2p5/243
For -1 case, the probability is given by 2 · 4 · (p/3)4 · (p/3) = 8p5/243
For 0 case, the probability is given by 2·(4C2(p/3)4 ·(p/3)+(p/3)4 ·(p/3)+4·(1−2p/3)·(p/3)3 ·(p/3)) =
8p4/81− 2p5/243
Otherwise, the probability is given by 1− 8p4/81− 8p5/243

Then the probability can be computed as approximately [1− 4p4/81− p5/27− ε, 1− 4p4/81− p5/27 + ε].

F.5 AUXILIARY LEMMAS

Lemma 1. For any N i.i.d random variables {zi}Ni=1 ∼ N (0, σ2) and t > 0, with probability at least

1−Ne
− t2

2σ2 , we have
zi + t ≥ 0, for any i = 1, . . . , N.

Proof. For any index i, according to Markov inequality, with any λ > 0, we have

P(zi + t ≤ 0) = P(eλzi ≥ eλt) ≤ Eeλzi
eλt

≤ exp{λ
2σ2

2
− λt},

taking the minimum value on the right handside, with respect to λ, we can get

P(zi + t ≤ 0) ≤ exp{− t2

2σ2
}.

Then considering the random variables through all index i = 1, . . . , N ,

P(min
i

zi + t ≤ 0) = P(emaxi λzi ≥ eλt)) ≤ E(exp{max
i

λzi − λt}),

while
Eexp{max

i
λzi} = Emax

i
eλzi ≤

∑
i

Eeλzi ≤ Neλ
2σ2/2,

we can take the minimum value on the right hand side, with respect with λ, then further obtain

P(min
i

zi + t ≥ 0) ≤ Ne−t2/2σ2

.

Lemma 2. Suppose that x ∼ N (0, σ2Id), k − 1 vectors {a1, . . . ,ak−1} and δi ∈ R for i = 1, . . . , k − 1,
then by Gram-Schmidt process, the probability of

aT
1 x+ δ1 > 0,

. . .

aT
k−1x+ δk−1 > 0,

is equivalent to the probability of

e1 +
δ1

∥ a1 ∥2
> 0,√

1− (
aT
2 v1

∥ a2 ∥2∥ v1 ∥2
)2e2 +

aT
2 v1

∥ a2 ∥2∥ v1 ∥2
e1 +

δ2
∥ a2 ∥2

> 0,

. . .√√√√1−
k−2∑
i=1

(
aT
k−1vi

∥ ak−1 ∥2∥ vi ∥2
)2ek−1 +

k−2∑
i=1

aT
k−1vi

∥ ak−1 ∥2∥ vi ∥2
ei +

δk−1

∥ ak−1 ∥2
> 0.

in which {ei} are i.i.d. N (0, σ2) and {vi}k−1
i=1 are orthogonal vectors span on {ai}k−1

i=1 as

v1 =
a1

∥ a1 ∥2
,

v2 =
a2 − (aT

2 v1)v1√
∥ a2 ∥22 −(aT

2 v1)2
,

. . .

vk−1 =
ak−1 −

∑k−2
i=1 (a

T
k−1vi)vi√

∥ ak−1 ∥22 −
∑k−2

i=1 (a
T
k−1vi)2

,
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Lemma 3. Just consider two classes K = 1, 2 and denote r1−→2 as the number of the events {I(Qs,i(1) =
e2)} that holds. Suppose Assumption 1 hold, then

1. when ns + nv − 2r1−→2 > 0, the related probability P((w(1) − w(2))TxΦ > 0 |y=e1) is larger
than

√
1− ϵ,

2. when ns + nv − 2r1−→2 = 0, the related probability P((w(1)−w(2))TxΦ > 0 |y=e1) in [1/2−
ϵ, 1/2 + ϵ],

3. when ns +nv − 2r1−→2 < 0, the related probability P((w(1)−w(2))TxΦ > 0 |y=e1) is less than
ϵ.

Proof. This can be directly deduced by using Lemma 4, which is the more general version.

Lemma 4. Denote rk−→l as the number of the events {I(Qs,i(k) = el)}ns
i=1 that hold. Suppose Assumption 1

hold, then for class k,

• when ns + nv −
∑

l ̸=k rk−→l > maxl ̸=k rk−→l, the accuracy is larger than 1− ϵ,

• when ns + nv −
∑

l ̸=k rk−→l = maxl ̸=k rk−→l, denote N as the number of the events that holds
{I(rk−→l = ns + nv −

∑
l′ rk−→l′)}l̸=k, the accuracy in [1/(N + 1)− ϵ, 1/(N + 1) + ϵ],

• when ns + nv −
∑

l ̸=k rk−→l < maxl ̸=k rk−→l, the accuracy is less than ϵ.

Proof. Considering the conditional forecasting accuracy on class k, with respect to rk→1, . . . , rk→K , it is
equivalent with G({ns + nv −

∑
l ̸=k rk→l − rk→s, ∀s ̸= k}), which is defined previously. Then we can take

analysis case by case:

• ns + nv −
∑

l̸=k rk−→l > maxl ̸=k rk−→l

In this case, all elements in function G(·) are larger than 0, which means that no smaller than 1/(N ′
v+

N ′
s). With Assumption 1, we have

G({ns + nv −
∑
l ̸=k

rk→l − rk→s, ∀s ̸= k}) ≥ FK(
1

σ(N ′
v +N ′

s)
) ≥ 1− ϵ.

• ns + nv −
∑

l ̸=k rk−→l = maxl ̸=k rk−→l

In this case, all elements in function G(·) are no smaller than 1/(N ′
v +N ′

s), except N zero elements.
With Assumption 1, we have

G({ns + nv −
∑
l ̸=k

rk→l − rk→s, ∀s ̸= k}) ≥ 1

2N
(1− ϵ) ≥ 1

2N
− ϵ.

• ns + nv −
∑

l ̸=k rk−→l < maxl ̸=k rk−→l

In this case, there is at least one element in G(·) no larger than −1/(N ′
v + N ′

s), still considering
Assumption 1, we have

G({ns + nv −
∑
l ̸=k

rk→l − rk→s,∀s ̸= k}) ≤ F (− 1

σ(N ′
v +N ′

s)
) ≤ ϵ.

Lemma 5. With features {xv,i}nv
i=1 and {xs,j}ns

j=1, the classifier trained on infinite samples is equivalent with
the mean value of x =

∑nv
i=1 xi +

∑ns
j=1 xj .

Proof. Considering the classifier, it should be maxw P(ŷ|Φ(x)⊤w). From Definition 1, we have x | y ∼
N (µ◦y, (nv+ns)σ

2), in which µ =
∑nv

i=1 µv,i+
∑ns

j=1 µs,j . For simplicity, we denote z = x | y−µ◦y,
and z is independent of y.
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Given samples as {(xi,yi)}i, by maximum likelihood estimation (MLE), we have

argmax
w

Πn
i=1

exp{ 1
(nv+ns)σ2x

⊤
i (w ◦ yi)}∑

ej
exp{ 1

(nv+ns)σ2x
⊤
i (w ◦ ej)}

⇐⇒ argmax
w

n∑
i=1

1

(nv + ns)σ2
x⊤

i (w ◦ yi)−
n∑

i=1

log

∑
ej

exp{ 1

(nv + ns)σ2
x⊤

i (w ◦ ej)}

 ,

then taking derivative for each wk, we have

1

(nv + ns)σ2

nk∑
ik=1

xik −
n∑

i=1

1

(nv + ns)σ2

exp{ 1
(nv+ns)σ2x

⊤
i wk}∑

ej
exp{ 1

(nv+ns)σ2x
⊤
i (w ◦ ej)}

xi = 0, ∀k = 1, . . . ,K.

On the other hand, using Bayesian formula to consider the conditional expectation of x, we have

E(x | y = ek) =
E(x1(y = ek))

P(y = ek)
=

E(xE[1(y = ek) | x])
P(y = ek)

⇐⇒ E(x | y = ek) = KE

(
x

exp{ 1
(nv+ns)σ2x

⊤(µ ◦ ek)}∑K
r=1 exp{ 1

(nv+ns)σ2x
⊤
i (µ ◦ er)}

)
,

it implies that as sample size n goes to infinity, the following term can maximize the likelihood function:

w(k) = µ ◦ ek = (

nv∑
i=1

µv,i +

ns∑
j=1

µj) ◦ ek,

for k = 1, . . . ,K. And by scaling the classifier, we can get the estimated classifier as

w(k) =
1√

nv + ns

µ ◦ ek,

for any class k = 1, . . . ,K, which is the same as (1/
√
nv + ns)Ex|y=ek

[x | y = ek].

G ILLUSTRATING THE THEORY OF WISE-FT

Recall Definition 2 that, f̄ learns n̄v invariant features and n̄s spurious features, as well as another single model
f̃ has ñv invariant features and ñs spurious features. Further, f̄ and f̃ learns nvo overlapped invariant features
and nso overlapped spurious features. Let f̄ denote the pre-trained model and f̃ denote the fine-tuned model.
WiSE-FT is specifically is the following: f̄ has good OOD but bad ID, f̃ has bad OOD but good ID, and the
weight space ensemble of f̄ and f̃ has excellent OOD performance. These can be expressed as:

Aid(f̄) < Aid(f̃),

Aood(f̄) > Aood(f̃),

Aood(f̃wse) > max{Aood(f̄),Aood(f̃)}

It straightforward that the ID accuracy satisfies the following inequality due to Assumption 2:

Aid(f̄) < Aid(f̃), if n̄v + n̄s < ñv + ñs.

Intuitively, if a model learns more feature, it can predict the label better in the ID setting.

As for the OOD accuracy, by Proposition 2, we have

Aood(f̄) = Fp

(
(1− p)n̄s + n̄v√

n̄s

)
, Aood(f̃) = Fp

(
(1− p)ñs + ñv√

ñs

)
.

Furthermore, by Proposition 3, the OOD accuracy of weight space ensemble (WSE) is

Aood(fwse) = Fp

(
(1− p)(n̄s + ñs + 2nso) + n̄v + ñv + 2nvo√

n̄s + ñs + 14nso

)
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Then the WiSE-FT phenomenon can be effectively explained if the following conditions holds:
n̄v + n̄s < ñv + ñs,
(1−p)n̄s+n̄v√

n̄s
> (1−p)ñs+ñv√

ñs
,

(1−p)(n̄s+ñs+2nso)+n̄v+ñv+2nvo√
n̄s+ñs+14nso

> max{ (1−p)n̄s+n̄v√
n̄s

, (1−p)ñs+ñv√
ñs

}

The theoretical results above characterize the conditions for the WiSE-FT phenomenon. To gain a better un-
derstanding, we use a concrete example for illustration: p = 0.9, there is no overlapped features learned by
two models, i.e., nso = nvo = 0. The pretrained model f̄ learns some invariant and spurious features, i.e.,
n̄v = 2, n̄s = 4. The fine-tuned f̃ model learns more spurious features and less invariant features, i.e.,
ñv = 1, ñs = 6. In this example, the fine-tuned model f̃ has better ID performance than the pre-trained f̄

since ñv + ñs = 7 > n̄v + n̄s = 6. The fine-tuned model f̃ has worse OOD performance than the pretrained
model f̄ since f̃ focuses more on spurious features. Specifically, we have Aood(f̄) > Aood(f̃) since

Aood(f̄) = Fp

(
(1− p)n̄s + n̄v√

n̄s

)
≈ Fp(1.20),

Aood(f̃) = Fp

(
(1− p)ñs + ñv√

ñs

)
≈ Fp(0.97),

Based on Proposition 3, the OOD performance of wse is

Aood(fwse) = Fp

(
(1− p)(n̄s + ñs + 2nso) + n̄v + ñv + 2nvo√

n̄s + ñs + 14nso

)
≈ Fp(1.27).

Recall that Fp(·) is monotonically increasing, we can see that Aood(fwse) > max{Aood(f̃),Aood(f̄)}.

H ILLUSTRATING THE EFFECTIVENESS OF BANG THROUGH THE LENS
“ACCURACY ON THE CURVE”

Considering that Mixup and Label Smoothing (LS) enhance the OOD performance of the fine-tuned model, we
investigate whether the improvement achieved by BANG is primarily due to better calibration or the fine-tuned
model’s enhanced OOD performance. In Appendix E.6, we present our findings, which include the following
observations:

• Dividing the weight of the vanilla fine-tuned model by multiple scalars significantly enhances the
performance of weight averaging, closely approaching the performance of BANG.

• BANG demonstrates the ability to correct a substantial number of misclassified samples compared to
the fine-tuned model.

To further investigate the performance of BANG, we examine the concept of “Accuracy on the Line” (Miller
et al., 2021; Liang et al., 2023). We generate many checkpoints of vanilla fine-tuning by using different
hyper-parameters. Specifically, we fine-tune the model using various hyperparameters, including learning rates
(1e−5, 2e−5, 3e−5, 5e−5), training epochs (4, 8, 10, 12, 16, 20), and learning rate schedules (cosine, step de-
cay). Notably, the default hyperparameters used in Section 4 and mentioned in Wortsman et al. (2022) are a
learning rate of 3e−5, 10 training epochs, and a cosine scheduler. Weight averaging is applied to each fine-tuned
checkpoint with the pretrained model.

Figure 21 illustrates the OOD performance of each fine-tuned model, as well as the averaged model that com-
bines the fine-tuned model with the pre-trained model. Interestingly, we observe that the OOD accuracy of the
averaged model forms a quadratic function with respect to the OOD accuracy of the fine-tuned model Liang
et al. (2023), rather than a linear relationship as described in (Miller et al., 2021).

Furthermore, BANG demonstrates significant robustness in OOD scenarios, surpassing the curve of expected
performance.

56



Published as a conference paper at ICLR 2024

Figure 21: Illustrating the effectiveness of BANG through the lens of “accuracy on the curve”.
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