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11 Proofs and Derivations

2 1.1 The Proof of Eq. 4 in Section 3.1.1

Proof.

v, logp (y) = / p(@ | y) Vylogp (y | z)de
- / p(@ | ) (Vylogh(y) + VyH(z) T () dz

~Vylogb(y) + 7' (0) [ plx|y) Hzhda

= Vylogh(y) +T'(y) E[H(x) | y].

4 1.2 The Proof of Proposition 3.1 in Section 3.1.2

5 Proof. Our derivation begins with the right part of Eq. 6:

/p<m | y) Vylogp (y | ) da

(= |y)r©),

p
x Vylo x

p(x|y)[Vylogp(x|y)+ Vylogp(y) — Vylogp (x)] de

p(x|y)[Vylogp(z|y) + Vylogp(y)| dex

p(z | y)Vylogp(wIy)dw+Vy10gp(y)/p(-’B |y)dz

I
— S —

p(x|y)Vylogp (x| y)dz + Vylogp (y)-

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



6

Now, we prove that [ p (z | y) Vylogp (z | y) dz = 0:

/p(w\y)vylogp(wly)dw
1
=/p<w 9 Sy @ e
:/vyp(a3 | y)dw
=vy/p<m|y>dm
—V,1=0.

Thus, Eq. 6 is proved. O

1.3 The Proof of Theorem 3.1 in Section 3.1.2

Proof. Given y suppose f(x,y) is invertible. Denote its inverse function as f ! By solving Eq. 7,
we obtain that

&=F," (s() =1y (Bayy [f (.9)]).

Let the Lipschitz constant of f is L S the Hessian matrix of f; is H ¢, and n is the dimension
of x. Then, we can derive that:

1£3" (Baly [f (@.9)]) — oy (]|,
= ||f;1 (]E:cly [f (.’E, )]) - .fy (f( m\y[m]ay»HQ
SLf;1 ||Eac|y [f(.’l), y)] - .f (]Eacly [CC] ,y) H2

n 1/2
:L.ﬂ]l <Z (Ew\y [f (ili,y)i] —f (Em‘y [x] 71/)1,)2>

i=1

g (35 (B [ @l ), + B )97 (5 ),

(€ — Eajy [z]) " Hy, (Eajy [z]) (z — Eqyy [z])

o (o~ By 02)] 7 (B e),))

(S5 (5[5~ a1 ) ) ()] ) )

+

DO =

i=1

<§n:( aly [;Hmaz Eey (] ] 0 (Eaty |||z — Ealy [w}HiD)Q)
(

VAL 1 (3B [l = Baty el]}] + 0 (B llo — By ] )
=VnL1 (HnaaTr (Cov [z | y]) + o (Tr (Cov [z | y]))),

1/2

where Hq is the maximal value of H ¢ for any 7. Let %\/ﬁL £ Hppaw = C, we prove Eq. 8 in
Theorem 3.1.
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16 1.4 A Useful Lemma

17 Lemma 1.1. We state the probability density transform equation as follows. Suppose x ~ x and
18 y~yandy = f(x). Assume [ is invertible and its inverse function is g. Then, we have

Jg

py (y) = ay | P (9(y))-

19 1.5 The Derivation of f (x,y) for Gamma Noise in Section 3.2.2

20 The derivation target is:

a—1 «
= 1 = —— =
f(z,y)=Vylogp(y| ) " -

2

Proof. According to Eq. 11, we have that:

Vylogp (y | ) =Vylog

(2

d @ a—1
o (5" [ w1
T (@) \ = x; X5
d a® " a—1 ay; 1
:v 1 —_— —_ L P —
y;OgF(Q)< z‘) exp{ xz} i
d a1 s 1
:ZVylog (yl) exp{— yl} - —
p T T T
d .
:Zvy ((a —1)logy; — zyz)
i=1

<

I' (@)

7

_a—l a

Yy xr
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23 1.6 The Proof of Eq. 12 in Section 3.2.2

Proof.

a—1 «

s(y) = y oz
o
<:>y®s(y):a—1—?y

e
@%za—l—y@s(y)
ay

a-1-yos(y)

=T =
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25 1.7 The Derivation of f (x,y) for Poisson Noise in Section 3.2.2

26 The derivation target is:

1
f(x,y) =VylogPr(y | ) = Aog (Az) — Alog ()\y—i— 2) .



27 Proof. According to Eq. 13, we have that

Vi

T )
VylogPr(y | z) =V, logH W@"\”"
i=1 e

iYi

d A
(Az;) Y
=) Vylog——""———e "%

d
=> " Vy (A\iyilog Az; — log (Ay:)!)
=1

1
=Alog (Ax) — Alog ()\y + 2) .
28 Here, we set V, log (Ay;)! = Alog ()\yi + %)

29 1.8 The Proof of Eq. 14 in Section 3.2.2

Proof.

s (y) = Alog (\x) — Alog (Ay+ ;)

=2 1o () —1og (Ay ’ ;)

<~ log (\x) = # + log ()\y + ;)

=z = ()\y—&-;) @exp{s()\y)}
T = <y+21)\>®exp{s(>\y)}.
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3t 1.9 The Derivation of f (x,y) for Rayleigh Noise in Section 3.2.2

32 The derivation target is:

1 y—x

f(:c,y)zvylogp(y|w)=y_$ 0_2:1:2'

33 Proof. According to Eq. 15, we have that

d
- 1y —ay (yi — x;)?
Vylogp(y | ) —Vylog};[l?i mo? P\ T e
d
1y —a (yi — x;)?
D A T

d 2
Yi — X4
= E :Vy (log (yi — ) — 7( 2x202) )
i=1 i

1 y—x

y—x o2x?’
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1.10 The Proof of the Solving Method in Algorithm 3

Proof. Our target equation is:
1 y—x
y—x o2x?’

s(y) =

For simplicity, we do not use bold font. Let ¢ = == and assume ¢ > 0 because z should be smaller
than y according to the Rayleigh distribution. We denote s (y) as s. Fixing x, then

1 Yy—
5= -
y—x o2
sz = —y_x
y— o3z
1 t
sr=-— —
t o2

—t’+osat— 2 =0
Since ¢t > 0, we have
—0%sx + Vois2z2 4 402
2
Therefore, the iterative process contains two steps:

t =
After solving ¢, we compute x = tTl

- —o?sx+/0%s2x2+402
= 5 .

O

1.11 The Derivation of V,, log py, (y | =) for Multiplicative Noise with Convolution Transform
in Section 3.2.2

The derivation target is:

Vylogpy (y | 2) = A"V, logp, (A 'y | z).

Proof. According to Lemma we have y = f(z) = A~ 'z, then g(y) = Ay. Thus,

py (y|x)=|A""|V.logp, (A 'y | x)
—=Vylogpy (y | x) = A LTy, log py, (Afly | m) .

O
1.12 The Proof of Eq. 16 in Section 3.2.3
Proof. Let z = E [z | y]. Then, we have:
wwlo~ [ 2] o)d
zrYy
~ [ n w2 (pe =)+ Vapa (2] ) (- 2)) dz
zrRYy
(2 12) [ @2t Ve (z0) [y y]2) (- 2)ds
zZRYy zZRY
~ps (2| %)+ Vaps (2| @) (y - 2).
O
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Table 1: The specific conclusions of Gaussian, Gamma and Poisson noise in Noise2Score.

Noise H (x) T (y) b(y) H;(ly) (2) z

| ] T 2 2
Gaussian = ) y o e 20 aa; o’s (012 +y
Gamma (alfl,f;) (logy,y) 1 7a—l—y®z —a—l—yQS(y)
Poisson log (\x) \y m %exp {;} <y i %) © exp { s ()\y) }

1.13 The Proof of Eq. 17 in Section 3.2.3

Proof.
Vylogpy (y | ®) =Vy log (pz (2] z) (1 L Vaps (pzz |(:)|Tw()y - z)>>
~Vylogp, (2| ) + Vy Vebe (pi |(":)|Tm<)y —2)
Wate el

2 Conclusions of Gaussian, Gamma and Poisson Noise

Refer to Table[T]

3 Experiment

When training score function, for o, in Eq. (29), we set initial value as 0.05 and final value as

1 x 10~°. We reduce o, linearly every 50 training steps and keep it as 1 x 1075 for the final 50 steps.

Another important point about the training for non-Gaussian noise model (from No.5 to No.10), we
add a slight Gaussian noise to noisy images such that the score function estimation is stable and
remove the additive Gaussian noise when inference as we do in mixture noise models. Here, we set

the o of Gaussian noise as 5.

For Neighbor2Neighbor, We use the code in https://git-hub.com/TaoHuang2018/Neighbor2Neighbor

and keep the default hyper-parameters setting.

For Noisier2Noise, we use the code in |https://git-hub.com/melobron/Noisier2Noise] We set o = 1

and compute the average of 50 denoised results.
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