<u>Shi Maruoyan</u>^a, Zhu Hanjing^a, Liang Mingxuan^{©a}, Hwang Bon-Gang^a

^a Department of the Built Environment, National University of Singapore, Singapore <u>e1168824@u.nus.edu</u>, <u>hanjingz@nus.edu.sg</u>, <u>Mingxuanliang@u.nus.edu</u>, <u>bdqhbq@nus.edu.sg</u>

1. Introduction

Project management is essential in the construction industry, ensuring structure and guidance for successful outcomes. With digital transformation accelerating, the industry increasingly integrates Generative Artificial Intelligence (GenAI) into project management. While GenAI offers significant potential, existing research often treats it solely as a technical tool, overlooking its dynamic interaction with project managers across lifecycle phases. Additionally, studies rarely examine feedback mechanisms between GenAI and project managers, which are critical for optimizing effectiveness. This research aims to address these challenges by conducting a comprehensive lifecycle analysis of the interaction and feedback processes between GenAI and project managers, with a focus on enhancing collaboration and contributing to project outcomes. Specifically, this study will be guided by the following research objectives:

(1) To identify current and potential applications of Generative AI across the construction project lifecycle;

(2) To identify key factors in the interaction between project managers and GenAI tools among different lifecycle phases;

(3) To propose a Generative AI-Project Manager Interaction Evaluation Framework (GAI-PMIEF) to guide the interaction between project managers and GenAI; and

(4) To develop a Project Manager-Based Bidirectional Feedback System (PM-BFS).

2. Methodology

To identify critical evaluation factors in the interactions between project managers and GenAI throughout the construction project lifecycle, this study proposes the Generative AI-Project Manager Interaction Evaluation Framework (GAI-PMIEF) and Project Manager-Based Bidirectional Feedback System (PM-BFS), aiming to contribute to decisionmaking, project efficiency, and human-AI collaboration.

2.1 Proposed Conceptual Framework: GenAI-Project Manager Interaction Evaluation Framework (GAI-PMIEF)

This study introduces the GAI-PMIEF to systematically analyze and improve the bidirectional interactions between project managers and GenAI tools in construction project management. Unlike existing frameworks that focus solely on AI performance or the unidirectional application of AI tools, the GAI-PMIEF is designed to evaluate both sides of the interaction. It emphasizes the mutual assessment between project managers and GenAI systems, aiming to optimize their collaborative effectiveness across all phases of the project lifecycle.

Based on the bidirectional interaction emphasized

in this study, this evaluation is divided into two aspects: Project managers' Evaluation Metrics for Generative AI Tools and GenAI's Evaluation Metrics for Project managers.

	-	Tools	
Primary Factor	Subfactor	Aspect	Metrics for Evaluation
Goal	Individual	Skill Enhancement,	System development;
	Goals	Achieve Task	Overall System
		Objectives	Accuracy ;
	Collective	Succussful Project	Objective Fulfillment
	Goals	Delivery, Effective	Rate; Knowledge
		Collaboration	Transfer
Perform	Usefulness	Problem Solving	Solution Accuracy;
ance		Ability	Problem Resolution
		Relevance to need	Rate; Learning
		Ability to handle	Adaptability
		errors and provide	
		guidance	
	Accessibilit	Clarity of	Instructions Clarity
	у	Instructions	Rate; Ease of
	5	User-friendliness	Navigation; User
		Simplicity of the	Effort Score
		Interface	
	Efficiency	Promptness of	Resource Utilization
		Responses	Completion Time;
		Time savings when	Workload Reduction;
		using the tools	
		Reduction in Effort	
		for Completing	
		Tasks	
	Trust and	Trust in GenAI tools	Trust Score; Safety
	Safety	Privacy Concerns	Incidents; Confidence
	Safety	Reliability of	merdents, connuence
	Quality	Responses Accuracy and	Accuracy Rate;
	Quanty	Correctness of	Relevance Score;
			Feedback Quality
		Chatbot Responses Relevance of	Feedback Quality
		Information	
		Credibility and	
		Trustworthiness of	
		Source	
		Depth and	
	D I'	Comprehensiveness	A 11 / 11
	Personaliz	Tailored Content	Alignment with
	ed	Customized	Priorities; Accuracy of
	Experience	Recommendations	Customization; User
		Feedback and	Satisfaction Ratings
		Progress Tracking	
Mutual	Adaptabili	Frequency of Output	Learning Curve; Model
Learnin	ty	Adjustments	Improvement Rate;
g and		Time required for	Strategy Knowledge
Improve		adapting to inputs	Retention; Adaptability
ment		Interactivity	Score
	. .	Positively	
	Iterative	Number of	Iteration Count;
	Refinemen	Iterations required	Convergence Speed
	t	to achieve optimal	
		results	
		Improvement in	
		1	
		Output Quality	
	Collaborati	•	Output Consistency;
	Collaborati on	Output Quality	Output Consistency; Impact of Corrections;
		Output Quality Frequency of	

<u>Shi Maruoyan</u>^a, Zhu Hanjing^a, Liang Mingxuan^{©a}, Hwang Bon-Gang^a

^a Department of the Built Environment, National University of Singapore, Singapore <u>e1168824@u.nus.edu</u>, <u>hanjingz@nus.edu.sg</u>, <u>Mingxuanliang@u.nus.edu</u>, <u>bdghbg@nus.edu.sg</u>

Reference: (Brosque et al., 2020; De Visser et al., 2018; Dellermann et al., 2019, 2019, 2021; Fragiadakis et al., 2024, 2024; Gînguță et al., 2023; Kapočiūtė-Dzikienė, 2020; Mason, 2007; Nielsen, 1994; Norman, 2013; Regona et al., 2022; Robertson et al., 2024; Saihi et al., 2024; Seeber et al., 2020; Shneiderman, 1983; Tankelevitch et al., 2024; Zhang et al., 2023 among others).

Table 2: GenAI' E	valuation Factors	for Pro	ject Managers
-------------------	-------------------	---------	---------------

Primary	Subfactor	Aspect	Metrics for Evaluation	
Factor	Subructor	nopeer	incluies for Dranaation	
Goal	Individual	Skill Enhancement,		M
	Goals	Achieve Task	Skill development;	
		Objectives	Adaptability to AI Tools	S
	Collective	Successful Project	ol	n
	Goals	Delivery, Effective	Objective Fulfillment	b
		Collaboration	Rate	
Perform	Decision-	Decision Accuracy	Decision Accuracy;	sy
ance	making	Ability to Recognize	Prioritization accuracy;	a
	0	Key Issues	Task completion time;	eı
		Time Management	Incident Prevention;	p
		Safety Management	Budget Adherence;	li
		Budget Management	Frequency of proactive	
		Risk Management	risk identification;	0
		Resource Utilization	Resource utilization rate	bi
	Leadership	Effective leadership	Leadership; Prompt	b
	and	Clarity of	Clarity; Interaction	eı
	Communic	Communication	Frequency; Resolution	q
	ation	Team Collaboration	Speed	al
		Stakeholder	-	
		Management		m
		Conflict Resolution		st
	Technical	Domain-Specific	Knowledge Depth; Plan	re
	Expertise	Knowledge	Quality; Data Accuracy;	cł
		Analytical	Strategy Alignment	it
		Competence		aı
		Problem-Solving		ef
		Skills		ga
		Strategic Thinking		al
	Innovation	Flexibility and	Flexibility; Creativity;	in
	Conscious	Creativity	Technology Awareness;	
	ness	Awareness of	Implementation Rate	3
		Innovative Solutions		
		Adoption of		m
		Emerging		fr
		Technologies		in
Mutual	Workflow	Seamless Adoption	Automation	T
Learnin	Integration	of GenAI Outputs	Effectiveness; Workload	
g and		Efficiency in Task	Reduction	Cl
Improve	. .	Execution		w
ment	Learning	Adaptability of	Knowledge Transfer;	d
	and	GenAI Outputs	Learning Speed	a
	Adaptation	Skill Improvement		lo
	Feedback	Clarity of Feedback	Feedback Clarity rate;	0
	Mechanis	Timeliness of	Input Relevance	01
	ms Callah anati	Feedback Loops	Teo dia ala Treita di	b
	Collaborati	Effectiveness of	Feedback Utilization;	p
	ve Dafin and an	Feedback to refine	Iteration Frequency;	in
	Refinemen	GenAI outputs	Improvement Rate	m
	t	Enhancement of		u
		Results		

Reference: (Alam et al., 2010; Apel et al., 2004; Chipulu et al., 2013; Clarke, 2010; Dainty et al., 2003; Fragiadakis et al., 2024; Hanna et al., 2016; Hwang et al., 2024; Hyväri,

2006; Maedche et al., 2019; Muzio et al., 2007; Pant & Baroudi, 2008; Peng et al., 2024; Pereira & de Carvalho, 2009; Simard et al., 2017; Wang et al., 2022; Wu et al., 2023 among others).

This framework provides a structured foundation to analyze and enhance the collaborative potential of GenAI and project managers.

2.2 Development of the Bidirectional Feedback Mechanism

The Project Manager-Based Bidirectional Feedback System (PM-BFS) is designed to address the critical need for dynamic, two-way feedback mechanisms between project managers and GenAI tools. This system ensures that both parties—human and AI actively contribute to iterative improvements, enabling enhanced decision-making and adaptive project management processes throughout the lifecycle of construction projects.

Unlike traditional feedback systems that emphasize ne-way communication, the PM-BFS adopts a idirectional approach, incorporating insights from oth project managers and GenAI tools. The system nables project managers to provide qualitative and uantitative feedback on GenAI outputs while llowing GenAI tools to analyze and adapt to project anagers' responses, decision-making patterns, and trategic adjustments to refine their ecommendations and align with lifecycle-specific hallenges. This bidirectional approach ensures erative improvement in GenAI recommendations nd enhances project managers' ability to leverage AI ffectively. The PM-BFS not only addresses current aps in human-AI collaboration but also ensures lignment with evolving project demands and dustry standards.

3. Significance and Potential Contributions

This study advances construction project anagement by introducing a novel interaction amework and feedback system to enhance the tegration of GenAI across project lifecycle phases. he GAI-PMIEF establishes structured evaluation riteria to facilitate effective human-AI collaboration, hile the PM-BFS enables bidirectional feedback, riving continuous improvement in both AI models nd project management strategies. Furthermore, ongitudinal studies will assess the long-term impact f GenAI integration on project management utcomes, ensuring its scalability and adaptability for roader applications. This research not only provides ractical tools to address key challenges in tegrating GenAI into construction project anagement but also advances academic nderstanding of Human-GenAI interaction, laying a strong foundation for further exploration of GenAI's role in lifecycle-oriented industries.

<u>Shi Maruoyan</u>^a, Zhu Hanjing^a, Liang Mingxuan^{©a}, Hwang Bon-Gang^a

^a Department of the Built Environment, National University of Singapore, Singapore <u>e1168824@u.nus.edu</u>, <u>hanjingz@nus.edu.sg</u>, <u>Mingxuanliang@u.nus.edu</u>, <u>bdghbg@nus.edu.sg</u>

Acknowledgments

This study was supported by the Construction Performance Analytics & Innovations Research Unit (cPAIRu) at the National University of Singapore. The authors would like to thank Prof. Hwang Bon-Gang and other contributors for their valuable insights and guidance during this research.

References

[1] Alam, M., Gale, A., Brown, M., & Khan, A. (2010). The importance of human skills in project management professional development. International Journal of Managing Projects in Business, 3(3), 495–516.

[2] Apel, H., Thieken, A. H., Merz, B., & Blöschl, G. (2004). Flood risk assessment and associated uncertainty. Natural Hazards and Earth System Sciences, 4(2), 295–308.

[3] Brosque, C., Galbally, E., Khatib, O., & Fischer, M. (2020). Human-Robot Collaboration in Construction: Opportunities and Challenges. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 1–8. https://doi.org/10.1109/HORA49412.2020.915288 8

[4] Chipulu, M., Neoh, J. G., Ojiako, U., & Williams, T. (2013). A Multidimensional Analysis of Project Manager Competences. IEEE Transactions on Engineering Management, 60(3), 506–517. https://doi.org/10.1109/TEM.2012.2215330

[5] Clarke, N. (2010). Emotional intelligence and its relationship to transformational leadership and key project manager competences. Project Management Journal, 41(2), 5–20.

[6] Dainty, A. R. J., Cheng, M.-I., & Moore, D. R. (2003). Redefining performance measures for construction project managers: An empirical evaluation. Construction Management and Economics, 21(2), 209–218. https://doi.org/10.1080/0144619032000049737

[7] De Visser, E. J., Pak, R., & Shaw, T. H. (2018). From 'automation'to 'autonomy': The importance of trust repair in human–machine interaction. Ergonomics, 61(10), 1409–1427.

[8] Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2019). The Future of Human-AI Collaboration: A Taxonomy of Design Knowledge for Hybrid Intelligence Systems. Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2019.034

[9] Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2021). The future of human-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems. arXiv Preprint arXiv:2105.03354.

[10] Fragiadakis, G., Diou, C., Kousiouris, G., & Nikolaidou, M. (2024). Evaluating Human-AI Collaboration: A Review and Methodological Framework (arXiv:2407.19098). arXiv. http://arxiv.org/abs/2407.19098

[11] Gînguță, A., Ștefea, P., Noja, G. G., & Munteanu, V. P. (2023). Ethical Impacts, Risks and Challenges of Artificial Intelligence Technologies in Business Consulting: A New Modelling Approach Based on Structural Equations. Electronics, 12(6). https://doi.org/10.3390/electronics12061462

[12] Hanna, A. S., Ibrahim, M. W., Lotfallah, W., Iskandar, K. A., & Russell, J. S. (2016). Modeling Project Manager Competency: An Integrated Mathematical Approach. Journal of Construction Engineering and Management, 142(8), 04016029. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001141

[13] Hwang, B.-G., Ngo, J., & Zhu, H. (2024). Managing Projects with Smart Technologies: Developing Technological Competency for Project Managers. Taylor & Francis.

[14] Hyväri, I. (2006). Success of projects in different organizational conditions. Project Management Journal, 37(4), 31–41.

[15] Kapočiūtė-Dzikienė, J. (2020). A domainspecific generative chatbot trained from little data. Applied Sciences, 10(7), 2221.

[16] Maedche, A., Legner, C., Benlian, A., Berger, B., Gimpel, H., Hess, T., Hinz, O., Morana, S., & Söllner, M. (2019). AI-based digital assistants: Opportunities, threats, and research perspectives. Business & Information Systems Engineering, 61, 535–544.

[17] Mason, R. B. (2007). The external environment's effect on management and strategy: A complexity theory approach. Management Decision, 45(1), 10–28. https://doi.org/10.1108/00251740710718935

[18] Muzio, E., Fisher, D. J., Thomas, E. R., & Peters, V.

<u>Shi Maruoyan</u>^a, Zhu Hanjing^a, Liang Mingxuan^{©a}, Hwang Bon-Gang^a

^a Department of the Built Environment, National University of Singapore, Singapore <u>e1168824@u.nus.edu</u>, <u>hanjingz@nus.edu.sg</u>, <u>Mingxuanliang@u.nus.edu</u>, <u>bdghbg@nus.edu.sg</u>

(2007). Soft skills quantification (SSQ) Foi project manager competencies. Project Management Journal, 38(2), 30–38.

[19] Nielsen, J. (1994). Usability engineering. Morgan Kaufmann.

[20] Norman, D. (2013). The design of everyday things: Revised and expanded edition. Basic books.

[21] Pant, I., & Baroudi, B. (2008). Project management education: The human skills imperative. International Journal of Project Management, 26(2), 124–128.

[22] Peng, L., Li, D., Zhang, Z., Zhang, T., Huang, A., Yang, S., & Hu, Y. (2024). Human-AI collaboration: Unraveling the effects of user proficiency and AI agent capability in intelligent decision support systems. International Journal of Industrial Ergonomics, 103, 103629. https://doi.org/10.1016/j.ergon.2024.103629

[23] Pereira, V. R., & de Carvalho, M. M. (2009). Evaluating project manager performance: A case study. 7.

[24] Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 45. https://doi.org/10.3390/joitmc8010045

[25] Robertson, J., Ferreira, C., Botha, E., & Oosthuizen, K. (2024). Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction. Business Horizons, S0007681324000533. https://doi.org/10.1016/j.bushor.2024.04.008

[26] Saihi, A., Ben-Daya, M., Hariga, M., & As'ad, R. (2024). A Structural equation modeling analysis of generative AI chatbots adoption among students and educators in higher education. Computers and Education: Artificial Intelligence, 7, 100274. https://doi.org/10.1016/j.caeai.2024.100274

[27] Seeber, I., Bittner, E., Briggs, R. O., De Vreede, T., De Vreede, G.-J., Elkins, A., Maier, R., Merz, A. B., Oeste-Reiß, S., Randrup, N., & others. (2020). Machines as teammates: A research agenda on AI in team collaboration. Information & Management, 57(2), 103174. [28] Shneiderman, B. (1983). Direct manipulation: A step beyond programming languages. Computer, 16(08), 57–69.

[29] Simard, P. Y., Amershi, S., Chickering, D. M., Pelton, A. E., Ghorashi, S., Meek, C., Ramos, G., Suh, J., Verwey, J., Wang, M., & others. (2017). Machine teaching: A new paradigm for building machine learning systems. arXiv Preprint arXiv:1707.06742.

[30] Tankelevitch, L., Kewenig, V., Simkute, A., Scott, A. E., Sarkar, A., Sellen, A., & Rintel, S. (2024). The Metacognitive Demands and Opportunities of Generative AI. Proceedings of the CHI Conference on Human Factors in Computing Systems, 1–24. https://doi.org/10.1145/3613904.3642902

[31] Wang, J., Pal, A., Yang, Q., Kant, K., Zhu, K., & Guo, S. (2022). Collaborative machine learning: Schemes, robustness, and privacy. IEEE Transactions on Neural Networks and Learning Systems, 34(12), 9625–9642.

[32] Wu, J., Huang, Z., Hu, Z., & Lv, C. (2023). Toward human-in-the-loop AI: Enhancing deep reinforcement learning via real-time human guidance for autonomous driving. Engineering, 21, 75–91.

[33] Zhang, G., Chong, L., Kotovsky, K., & Cagan, J. (2023). Trust in an AI versus a Human teammate: The effects of teammate identity and performance on Human-AI cooperation. Computers in Human Behavior, 139, 107536.