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A GEOMETRIC PROPERTIES OF THE PARAMETRIZATION

We start by calculating the vector field induced by the parameterization G(·).
∇Gi([u>,v>]) = 2ug(i)vieg(i) + u2g(i)eL+i,

where ei ∈ RL+p is only 1 on ith entry and 0 elsewhere, and

∇2Gi([u
>,v>]) = 2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i),

where Ei,j ∈ R(L+p)×(L+p) is the one-hot matrix for ith row and jth column. For i 6= j s.t.
g(i) = g(j),

∇2Gi([u
>,v>])∇Gj([u>,v>]) = (2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i))

· (2ug(j)vjeg(j) + u2g(j)eL+j)

= 4ug(j)vivjeg(i) + 4ug(i)ug(j)vjeL+i

= 4ug(i)vivjeg(i) + 4u2g(i)vjeL+i,

similarly,
∇2Gj([u

>,v>])∇Gi([u>,v>]) = 4ug(i)vivjeg(i) + 4u2g(i)vieL+j .

Proof for Lemma 1. For two indices within the same group, i.e, i 6= j and g(i) = g(j), we obtain
that

[∇Gi,∇Gj ]([u>,v>]) =∇2Gj([u
>,v>])∇Gi([u>,v>])−∇2Gi([u

>,v>])∇Gj([u>,v>])
= 4u2g(i)vjeL+i − 4u2g(i)vieL+j ,

which is not always 0 when vi 6= vj . Therefore, G(·) is not commuting.

Proof for Theorem 1. For i 6= j and g(i) 6= g(j), we have

[∇Gi,∇Gj ]([u>,v>]) = 0.

For i 6= j and g(i) = g(j), we have that

[∇Gi,∇Gj ]([u>,v>]) = vj∇Gi − vi∇Gj ∈ span{∇Gi}pi=1.

By Corollary 4.13 in (Li et al., 2022) and Lemma 1, we show that there exists and initialization and a
time-dependent loss that the gradient flow can not be analyzed by mirror flow.

Alternatively, we can show directly that the necessary condition in Theorem 4.10 in Li et al. (2022) is
violated, i.e.,

〈∇Gj , [∇Gi, [∇Gi,∇Gj ]]〉([u>,v>]) 6= 0

for some [u>,v>] in every open set M .

We first obtain that

∇[∇Gi,∇Gj ]([u>,v>]) = 8ug(i)vjEL+i,g(i) + 4u2g(i)EL+i,L+j

− 8ug(i)viEL+j,g(i) − 4u2g(i)EL+j,L+i.

Therefore,

[∇Gi, [∇Gi,∇Gj ]]([u>,v>]) = ∇[∇Gi,∇Gj ]([u>,v>])∇Gi([u>,v>])
−∇2Gi([u

>,v>])[∇Gi,∇Gj ]([u>,v>])
= (8ug(i)vjEL+i,g(i) + 4u2g(i)EL+i,L+j

− 8ug(i)viEL+j,g(i) − 4u2g(i)EL+j,L+i)

· (2ug(i)vieg(i) + u2g(i)eL+i)

− (2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i))

· (4u2g(i)vjeL+i − 4u2g(i)vieL+j)

= 16u2g(i)vivjeL+i − 16u2g(i)v
2
i eL+j − 4u4g(i)eL+j − 8u3g(i)vjeg(i)

= 16u2g(i)vivjeL+i − (16u2g(i)v
2
i + 4u4g(i))eL+j − 8u3g(i)vjeg(i).
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Hence,

〈∇Gj , [∇Gi, [∇Gi,∇Gj ]]〉([u>,v>])
=〈2ug(i)vjeg(i) + u2g(i)eL+j , 16u

2
g(i)vivjeL+i − (16u2g(i)v

2
i + 4u4g(i))eL+j − 8u3g(i)vjeg(i)〉

=− 16u4g(i)v
2
j − 16u4g(i)v

2
i − 4u6g(i) < 0.

By Theorem 4.10 in Li et al. (2022), there exists an initialization such that no Legendre function R is
able to make the gradient flow be written as a mirror flow with respect to R.

B PROOF FOR ANALYSIS OF GRADIENT FLOW

Proof for Lemma 2. Recall
∂L
∂ul

= − 2

n
ulv
>
l X
>
l r(t),

∂L
∂vl

= − 1

n
u2lX

>
l r(t).

Therefore, we obtain that

∂ ‖vl(t)‖2
∂t

= 2v>l (t)
∂vl(t)

∂t
= 2v>l (t)

(
− ∂L
∂vl

)
=

2

n
u2l v

>
l (t)X

>
l r(t)

= ul

(
− ∂L
∂ul

)
=
∂ 1

2u
2
l (t)

∂t
.

Proof for Lemma 3. We start with decomposing vl(0)

vl(0) = η
1

n
X>l y = ηw?

l + η

(
1

n
X>l X− I

)
w?
l + η

∑
l′ 6=l

1

n
X>l Xl′w

?
l′ + η

1

n
X>l ξ

= ηw?
l + ηbl.

With this decomposition, we have that

〈vl(0),v?l 〉2 = η2((u?l )
2 + 〈bl,v?l 〉)2

‖vl(0)‖22 = η2((u?l )
4 + 2〈bl,w?

l 〉+ ‖bl‖22).
Therefore,

〈vl(0),v?l 〉2
‖vl(0)‖22

=
η2((u?l )

2 + 〈bl,v?l 〉)2
η2((u?l )

4 + 2〈bl,w?
l 〉+ ‖bl‖

2
2)

= 1− ‖bl‖22 − 〈bl,v?l 〉2
(u?l )

4 + 2〈bl,w?
l 〉+ ‖bl‖

2
2

= 1−
∥∥bl/(u?l )2∥∥22 − 〈bl/(u?l )2,v?l 〉2

1 + 2〈bl/(u?l )2,v?l 〉+ ‖bl/(u?l )2‖
2
2

= 1− 1− 〈bl/ ‖bl‖ ,v?l 〉2
1 + 2 ‖bl‖ /(u?l )2〈bl/ ‖bl‖ ,v?l 〉+ ‖bl‖

2
/(u?l )

4

∥∥bl/(u?l )2∥∥2
≥ 1−

∥∥bl/(u?l )2∥∥22 ,
where last inequality is from

1− α2

β2 + 2αβ + 1
=

1
β2+2αβ+1

1−α2

=
1

1 + β2+2αβ+α2

1−α2

=
1

1 + (α+β)2

1−α2

≤ 1,
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for 0 ≤ α ≤ 1.

Since

‖bl‖2 ≤ δin(u?l )2 + Lδout(u
?
l )

2 +

∥∥∥∥ 1nX>l ξ
∥∥∥∥
2

,

we obtain that 〈
vl(0)

‖vl(0)‖
,v?l

〉
≥ 1−

(
δin + Lδout +

∥∥∥∥ 1nX>l ξ
∥∥∥∥
2

/(u?l )
2

)2

.

Lemma 4. Consider a simplified case where 1
nX
>
l Xl = I, 1

nX
>
l Xl′ = O, l 6= l′, if vl(0) =

η 1
nX
>
l y, then

vl(t) = c
1

n
X>l y,

for some constant c.

Proof. From the gradient on the directions, we have that

∂vl(t)

∂t
=

1

n
u2l (t)X

>
l r(t) =

1

n
u2l (t)X

>
l y −

1

n
u2l (t)X

>
l

∑
l′

Xl′u
2
l′(t)vl′(t)

=
1

n
u2l (t)X

>
l y − u4l (t)vl(t).

Since vl(0) is with the same direction as 1
nX
>
l y at the initialization. Therefore, ∂vl(t)∂t has the same

direction as vl(t). We obtain that vl(t) = c 1
nX
>
l y for some constant c.

Lemma 5. If the gradient flow satisfies

1

2

∂u2(t)

∂t
≤ u6(t) +

√
2u4(t)B

for some constant B > 0, then for any t ≤ T =
log 1

θ

2θ2+θ
√
2B

we have u(t) ≤
√
θ with initialization

u(0) = θ.

Proof. We wanted to find some time T such that when t ≤ T , u(t) ≤
√
θ. Since the gradient is

bounded from above, we obtain that

1

2
u2(T ) ≤ 1

2
θ2 · exp

(∫ T

0

2u4(t) +
√
2u2(t)Bdt

)

≤ 1

2
θ2 · exp

(
(2θ2 +

√
2θB)T

)
≤ 1

2
θ.

This gives us

T ≤ log 1
θ

2θ2 + θ
√
2B

.

Lemma 6. Fix any τ < 1
2 . Consider the gradient flow

1

2

∂u2(t)

∂t
≥ (1− 2B)

√
2u3(t)(u?)2 − u6(t)−

√
2u3(t)B(u?)2

for some constant 0 < B < 1
10 with initialization u(0) = θ < 1

2u
?, we have that∣∣∣∣ 1√

2
u3(t)− (u?)2

∣∣∣∣ < (1− 3B − τ)(u?)2,

after

t ≥ T =
21/3(u?)4/3

θ2
1

(1− 6B)
√
2(u?)2θ

+
2 log2

1
2τ

3(u?)2(1/2− 3B)
(√

2(1/2− 3B)(u?)2
)1/3 .
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Proof. For any T ≥ 0, we have that

1

2
u2(T ) ≥ 1

2
θ2 · exp

(∫ T

0

(1− 2B)2
√
2u(t)(u?)2 − 2u4(t)− 2

√
2u(t)B(u?)2dt

)
.

When u(t) < 1
2u

?, we first aim to get T1 such that 1√
2
u3(T1) ≥ 1

2 (u
?)2. Therefore,

1

2
θ2 · exp

(∫ T

0

(1− 2B)2
√
2u(t)(u?)2 − 2u4(t)− 2

√
2u(t)B(u?)2dt

)

≥ 1

2
θ2 · exp

((
(1− 2B)2

√
2(u?)2 −

√
2(u?)2 − 2

√
2B(u?)2

)
θT1

)
≥ 1

2

(√
2

2
(u?)2

)2/3

.

We obtain that

T ≥ 21/3(u?)4/3

θ2
1

(1− 6B)
√
2(u?)2θ

.

When t ≥ T1, we have that 1√
2
u3(t) ≥ 1

2 (u
?)2. Let us denote 1√

2
u3(0) = ((1− 3B)− η)(u?)2, we

wonder how many iterations Td are needed to make 1√
2
u3(Td) ≥

(
(1− 3B)− 1

2η
)
(u?)2.

1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3
· exp

(∫ T

0

(1− 2B)2
√
2u(t)(u?)2 − 2u4(t)− 2

√
2u(t)B(u?)2dt

)

≥ 1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3
· exp

((
1

2
η(u?)2

)(√
2 ((1− 3B)− η) (u?)2

)1/3
T2

)
≥ 1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3
·
(
1 +

(
1

2
η(u?)2

)(√
2 ((1− 3B)− η) (u?)2

)1/3
T2

)
≥ 1

2

(√
2

(
(1− 3B)− 1

2
η

)
(u?)2

)2/3

.

Therefore,

T2 ≥
(
(1− 3B)− 1

2η
)2/3 − ((1− 3B)− η)2/3

((1− 3B)− η)2/3
1

1
2η(u

?)2
(√

2 ((1− 3B)− η) (u?)2
)1/3

≥ 2

3

1
2η

1
2η(u

?)2 ((1− 3B)− η)
(√

2 ((1− 3B)− η) (u?)2
)1/3

≥ 2

3(u?)2(1/2− 3B)
(√

2(1/2− 3B)(u?)2
)1/3 .

Overall, we obtain that ∣∣∣∣ 1√
2
u3(t)− (u?)2

∣∣∣∣ < (1− 3B − ε)(u?)2,
after

t ≥ T = T1 + T2 log2
1

2τ
.

Proof of Theorem 2. Denote ζ = 100
∥∥ 1
nX
>ξ
∥∥
∞. For l ∈ S, the gradient flow can be simplied as

1

2

∂u2l (t)

∂t
=

2

n
w>l (t)X

>
l r(t)

= 2w>l (t)(w
?
l −wl(t)) +

2

n
w>l X

>
l ξ

≥ 2u2l (t)(u
?
l )

2〈vl(t),v?l 〉 − 2u4l (t) ‖vl(t)‖22 − 2u2l (t) ‖vl(t)‖2
∥∥∥∥ 1nX>l ξ

∥∥∥∥
2

.
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Since the initialization is balanced 1
2u

2
l (0) = ‖vl(0)‖22, we know that from the balancing result

Lemma 2,
1

2
u2l (t) = ‖vl(t)‖22 .

Since the initialization of vl(t) is aligned with direction 1
nX
>
l y, and with our assumption on

orthogonal design, by Lemma 3 and Lemma 4, if
∥∥ 1
nX
>
l ξ
∥∥
2
≤ B(u?l )

2, we can further simplify the
gradient flow as

1

2

∂u2l (t)

∂t
≥
√
2(1− 2B2)u3l (t)(u

?
l )

2 − u6l (t)−
√
2u3l (t)B

≥
√
2(1− 2B)u3l (t)(u

?
l )

2 − u6l (t)−
√
2u3l (t)B,

where the last inequality holds when B < 1. We will verify that B < 1 holds in the following
analysis.

If ζ ≥ (u?max)
2, then our desired inequality is achieved at the initialization.

If (u?min)
2 ≤ ζ ≤ (u?max)

2, for these group that ζ ≤ (u?l )
2, applying Lemma 6 with

B =

∥∥ 1
nX
>
l ξ
∥∥
2

(u?l )
2
≤
∥∥ 1
nX
>ξ
∥∥
∞

(u?l )
2

≤ 1

100
, τ =

ε

(u?l )
2

we obtain the convergence on magnitudes
| ‖wl(t)‖2 − ‖w?

l ‖2 | ≤ (3B + ε) ‖w?
l ‖2 ,

after

21/3(u?l )
4/3

θ2
1

(1− 6B)
√
2(u?l )

2θ
+

2 log2
(ul)

2

2ε

3(u?l )
2(1/2− 3B)

(√
2(1/2− 3B)(u?l )

2
)1/3 .

If ζ ≤ (u?min)
2, similarly applying Lemma 6, the number of iterations needed for entries on the

support to converge is

Tl =
21/3(u?max)

4/3

θ2
1

(1− 6B)
√
2(u?min)

2θ
+

2 log2
(umax)

2

2ε

3(u?min)
2(1/2− 3B)

(√
2(1/2− 3B)(u?min)

2
)1/3 .

We now have that for l ∈ S,
| ‖wl(t)‖2 − ‖w?

l ‖2 | ≤ (3B + ε) ‖w?
l ‖2 ,

where B =
‖ 1
nX>y‖∞
(u?min)

2 ≤ 1
100 ,∀l ∈ S.

Recall that the direction is lower bounded by Lemma 3 and Lemma 8,〈
wl(t)

‖wl(t)‖2
,

w?
l

‖w?
l ‖2

〉
≥ 1−B2.

Therefore, the error bound on the support is as follows,

‖wl(t)−w?
l ‖∞ ≤ ‖wl(t)−w?

l ‖2 =

∥∥∥∥(‖wl(t)‖2 − (u?l )
2
) vl(t)

‖vl(t)‖
+ (u?l )

2

〈
vl(t)

‖vl(t)‖
,v?l

〉∥∥∥∥
2

≤ (3B + τ)(u?l )
2 + (u?l )

2

√
2− 2

〈
vl(t)

‖vl(t)‖
,v?l

〉
= (3B + τ)(u?l )

2 + (u?l )
2
√
2B ≤

∥∥∥∥ 1nX>y
∥∥∥∥
∞

+ ε.

For l /∈ S, we derive a lower bound on the growth rate
1

2

∂u2l (t)

∂t
=

2

n
w>l (t)X

>
l r(t)

= 2 ‖wl(t)‖22 +
2

n
w>l X

>
l ξ

≤ u6l (t) +
√
2u4l (t)B.
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By applying Lemma 5 with B =
∥∥ 1
nX
>y
∥∥
∞, we obtain that before

Tu =
log 1

θ

2θ2 + θ
√
2B

.

Since θ < ε
2(umax)2

, Tl < Tu is ensured.

C ANALYSIS OF GRADIENT DESCENT

C.1 MONOTONIC UPDATES

Lemma 7. With an initialization u(0) < u? and step size γ ≤ 1
4(u?)2 , the updating sequence

u(t) = u(t− 1) + 2γu(t− 1)[(u?)2 − u2(t− 1)],

is always bounded above by u?.

Proof. We prove it by contradiction. Assume there is a time t s.t.

u(t) ≤ u?, u(t+ 1) > u?.

Therefore,
u(t) + 2γu(t)[(u?)2 − u2(t)] > u?.

Denote λ = u(t)/u?, we have that

1 + 2γ(u?)2(1− λ2)− 1/λ > 0

for some λ ∈ (0, 1].

Let f(λ) = 1 + 2γ(u?)2(1− λ2)− 1/λ, we obtain the derivative

f ′(λ) = −4γ(u?)2λ+
1

λ2
> 0.

However, fmax(λ) = f(1) = 0, and f(λ) ≤ 0 for all λ ∈ (0, 1], which gives our desired contradic-
tion.

C.2 UPDATES WITH BOUNDED PERTURBATIONS

To study the general non-orthogonal and noisy case, we first extend the lemmas above to gradient
dynamics with bounded perturbations.

Consider the update on v(t) with bounded perturbations

z(t+ 1) = v(t) + ηtu
2(t)((u?)2v? − u2(t)v(t)) + ηtu

2(t)bt

v(t+ 1) =
z(t+ 1)

‖z(t+ 1)‖ .
(4)

and the updates on u(t)

u(t+ 1) = u(t) + 2γu(t)v>(t+ 1){(u?)2v? − u2(t)v(t+ 1)}+ 2γu(t)et, (5)

Note that if we choose ηt = 1
u4(t) , Eq. (4) is recast as

z(t+ 1) =
(u?)2

u2(t)
v? +

1

u2(t)
bt

v(t+ 1) =
z(t+ 1)

‖z(t+ 1)‖ .
(6)
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Lemma 8. Consider the update in Eq. (6), if ‖bt‖ ≤ B(u?)2 for some constant 0 < B < 1, we
have that

〈v(t+ 1),v?〉 ≥ 1−B2.

Proof. We have that

〈z(t+ 1),v?〉 = (u?)2

u2(t)
+

1

u2l (t)
〈bt,v?〉

‖z(t+ 1)‖2 =
(u?)4

u4(t)
+ 2

(u?)2

u4(t)
〈bt,v?〉+

1

u4l (t)
‖bt‖2 ,

therefore,

〈z(t+ 1),v?〉2
‖z(t+ 1)‖2

=

(u?)4

u4(t) + 2 (u?)2

u4(t) 〈bt,v?〉+ 1
u4
l (t)
〈bt,v?〉2

(u?)4

u4(t) + 2 (u?)2

u4(t) 〈bt,v?〉+ 1
u4
l (t)
‖bt‖2

= 1− ‖bt‖2 − 〈bt,v?〉2
(u?)4 + 2(u?)2〈bt,v?〉+ ‖bt‖2

= 1−
∥∥bt/(u?)2∥∥2 − 〈bt/(u?)2,v?〉2

1 + 2〈bt/(u?)2,v?〉+ ‖bt/(u?)2‖2

= 1− 1− 〈bt/ ‖bt‖ ,v?〉2
1 + 2 ‖bt‖ /(u?)2〈bt/ ‖bt‖ ,v?〉+ ‖bt‖2 /(u?)4

∥∥bt/(u?)2∥∥2
≥ 1−

∥∥bt/(u?)2∥∥2
≥ 1−B2.

Hence, we have that
〈v(t+ 1),v?〉 ≥

√
1−B2 ≥ 1−B2.

Lemma 9. Consider the updates in Eq. (5) with |et| ≤ B, if u2(0) ≤ (u?)2, then u2(t) ≤ (u?)2+B
for all t. If u2(0) ≥ (u?)2 and |〈v(t),bt〉| ≤ B2τ(u

?)2, then u2(t) ≥ (1−B2)(u
?)2 −B for all t.

Proof. Proof by contradiction similarly to Lemma 7.

Lemma 10. Fix the step size γ for the update on u(t), and choose u(0) = α ≤ 1
5u

?. Consider
the updates in Eq. (5) and Eq. (4) with |〈v(t),bt〉| ≤ 1

20 (u
?)2 and |et| ≤ 1

20 (u
?)2, then T ≥

log
(u?)2

2α2

2 log(1+γ 1
2 (u

?)2)
, we have that u2(T ) ≥ 1

2 (u
?)2.

Proof. Apply Lemma 8 with B = 1
20 ,

〈v(t+ 1),v?〉 ≥ 1−B2 = 1− 1

400
≥ 4

5

Starting from t = 1, we have that

v>(t){(u?)2v? − u2(t)v(t)} ≥ 4

5
(u?)2 − u2(t),

therefore, we obtain an lower bound of the growth rate on u(t), which reads

u(t+ 1) ≥ u(t) + 2γu(t)

(
4

5
(u?)2 − u2(t)− 1

20
(u?)2

)
= u(t)

(
1 + 2γ

(
3

4
(u?)2 − u2(t)

))
≥ u(t)

(
1 + γ

1

2
(u?)2

)
.
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Therefore, the requirement on the number of iterations is recast as

α2

(
1 + γ

1

2
(u?)2

)2T

≥ 1

2
(u?)2

⇐⇒2T ≥ log (u?)2

2α2

log(1 + γ 1
2 (u

?)2)

⇐⇒T ≥ log (u?)2

2α2

2 log(1 + γ 1
2 (u

?)2)
.

With these requirements, by Lemma 9, we also have that u2(t) ≤ 3
2 (u

?)2,∀t ≥ 0.

Lemma 11. Fix the step size γ for the update on u(t), and choose the initialization u(0) such that
|(u?)2 − u2(0)| ≤ τ(u?)2 where 0 < τ ≤ 1/2. Consider the updates in Eq. (5) and Eq. (4) with
|〈v(t),bt〉| ≤ 1

10τ(u
?)2 and |et| ≤ 1

10τ(u
?)2, then after T ≥ 5

2γ(u?)2 , we have that 〈v(t),v?〉 ≥
1− 1

5τ
2 for all t ≤ T and |u2(T )− (u?)2| ≤ 1

2τ(u
?)2.

Proof. When u2(0) ≤ (u?)2, by applying to Lemma 8, we have that

〈v(t+ 1),v?〉 ≥ 1−
(

1

10
τ

)2

≥ 1− 1

5
τ2,

therefore,

u(t+ 1) ≥ u(t) + 2γu(t)

((
1− 1

5
τ

)
(u?)2 − u2(t)− 1

10
τ(u?)2

)
= u(t)

(
1 + 2γ

((
1− 3

10
τ

)
(u?)2 − u2(t)

))
.

Further, we want to find an lower bound requirement on T s.t.

(
(u?)2 − τ(u?)2

)(
1 + 2γ

((
1− 3

10
τ

)
(u?)2 −

(
(u?)2 − 1

2
τ

)
(u?)2

))2T

≥ (u?)2 − 1

2
τ(u?)2,

which can be relaxed as

(
(u?)2 − τ(u?)2

)(
1 +

2

5
γTτ(u?)2

)
≥ (u?)2 − 1

2
τ(u?)2

⇐⇒1 +
2

5
γTτ(u?)2 ≥ (u?)2 − 1

2τ(u
?)2

(u?)2 − τ(u?)2

⇐⇒2

5
γTτ(u?)2 ≥

1
2τ(u

?)2

((u?)2 − τ(u?)2)

⇐⇒T ≥ 5

4γ(u?)2(1− τ)

=⇒T ≥ 5

2γ(u?)2
.
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When u2(0) > (u?)2, we have that

u(t+ 1) ≤ u(t) + 2γu(t)

(
(u?)2 − u2(t) + 1

10
τ(u?)2

)
= u(t)

(
1 + 2γ

((
1 +

1

10
τ

)
(u?)2 − u2(t)

))
.

≤ u(t)
(
1− 4

5
γτ(u?)2

)
.

Similarly, we want to get

(u?)2 +
1

2
τ(u?)2 ≥

(
(u?)2 + τ(u?)2

)(
1− 4

5
γTτ(u?)2

)
⇐⇒ (u?)2 + 1

2τ(u
?)2

(u?)2 + τ(u?)2
≥ 1− 4

5
γTτ(u?)2

⇐⇒4

5
γTτ(u?)2 ≥

1
2τ(u

?)2

(u?)2 + τ(u?)2

⇐⇒T ≥ 5

8γ(u?)2(1 + τ)

=⇒T ≥ 5

8γ(u?)2
.

If u(0) <= u? and u(t) > u?, t < T , or u(0) > u? and u(t) ≤ u?, t < T , we have already have
|u2(t)− u?)2| ≤ 1

2τ(u
?)2. By Lemma 9, |u2(T )− u?)2| ≤ 1

2τ(u
?)2 remains to hold.

Hence, after T ≥ 5
2γ(u?)2 , we have |u2(T )− u?)2| ≤ 1

2τ(u
?)2.

C.3 ANALYSIS OF PERTURBATIONS

We decompose the updates into several terms for later investigation.

The gradient of L(·) on each vl is

∂L
∂vl

= − 1

n
u2lX

>
l

y −
∑
l′ 6=l

u2l′Xl′vl′

+
1

n
u4lX

>
l Xlvl

= − 1

n
u2lX

>
l

(
y −

L∑
l′=1

u2l′Xl′vl′

)

When l ∈ S, the gradient update on each vl is

zl(t+ 1) = vl(t) + ηl,tu
2
l (t)

1

n
X>l

(
y −

L∑
l′=1

u2l′(t)Xl′vl′(t)

)
= vl(t) + ηl,tu

2
l (t)((u

?
l )

2v?l − u2l (t)vl(t))

+ ηl,tu
2
l (t)

(
1

n
X>l Xl − I

)
((u?l )

2v?l − u2l (t)vl(t))

+ ηl,tu
2
l (t)

∑
l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2l′(t)vl′(t))

− ηl,tu2l (t)
∑
l′∈Sc

1

n
X>l Xl′u

2
l′(t)vl′(t)

+ ηl,tu
2
l (t)

1

n
X>l ξ.
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The gradient of L(·) on each ul is

∂L
∂ul

= − 2

n
ul

〈
Xlvl,y −

∑
l′ 6=l

u2l′Xl′vl′

〉
+

2

n
u3l ‖Xlvl‖2

= − 2

n
ul

〈
Xlvl,y −

L∑
l′=1

u2l′Xl′vl′

〉

When l ∈ S, the gradient update on ul reads

ul(t+ 1) = ul(t) + γ
2

n
ul(t)

〈
Xlvl(t+ 1),y −

L∑
l′=1

u2l′(t)Xl′vl′(t+ 1)

〉
= ul(t) + 2γul(t)v

>
l (t+ 1)((u?l )

2v?l − u2l (t)vl(t+ 1))

+ 2γul(t)v
>
l (t+ 1)

(
1

n
X>l Xl − I

)
((u?l )

2v?l − u2l (t)vl(t+ 1))

+ 2γul(t)v
>
l (t+ 1)

1

n
X>l

∑
l′ 6=l,l′∈S

Xl′((u
?
l′)

2v?l′ − u2l′(t)vl′(t+ 1))

− 2γul(t)v
>
l (t+ 1)

1

n
X>l

∑
l′∈Sc

Xl′u
2
l′(t)vl′(t+ 1)

+ 2γul(t)
1

n
v>l (t+ 1)X>l ξ.

We now rewrite the definition of bounded perturbation in Eq. (4, 5), where the bounded perturbation
el,t on updates of ul(t) reads

el,t = v>l (t+ 1)

(
1

n
X>l Xl − I

)
((u?l )

2v?l − u2l (t)vl(t+ 1))

+ v>l (t+ 1)
1

n
X>l

∑
l′ 6=l,l′∈S

Xl′((u
?
l′)

2v?l′ − u2l′(t)vl′(t+ 1))

− v>l (t+ 1)
1

n
X>l

∑
l′∈Sc

Xl′u
2
l′(t)vl′(t+ 1)

+
1

n
v>l (t+ 1)X>l ξ,

and the bounded perturbation bl,t on updates of vl(t) reads

bl,t =

(
1

n
X>l Xl − I

)
((u?l )

2v?l − u2l (t)vl(t))

+
∑

l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2l′(t)vl′(t))

−
∑
l′∈Sc

1

n
X>l Xl′u

2
l′(t)vl′(t)

+
1

n
X>l ξ.

We show in Lemma 11 that when the perturbations are bounded, the direction is roughly accurate
(〈vl(t),v?〉 is large) and ul(t) converges exponentially. Now we show below that when the direction
is roughly accurate and ul(t) is close to u?l , the perturbations are bounded.
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Lemma 12. Assume δin ≤ (u?min)
2

120(u?max)
2 and δout ≤ (u?min)

2

120s(u?max)
2 , α < 1

2

√
τ0
L u

?
l ,
∥∥ 1
nX
>ξ
∥∥
∞ ≤

1
80τ0(u

?
l )

2 and |(u?l )2−u2l (0)| ≤ τ(u?l )2 for each l ∈ [L] where 0 < τ0 ≤ τ ≤ 1/2. If 〈vl(t),v?l 〉 ≥
1− 1

5τ
2, then |〈vl(t),bl,t〉| ≤ 1

10τ(u
?
l )

2 and |el,t| ≤ 1
10τ(u

?
l )

2.

Proof. We first verify∥∥(u?l )2v?l − u2l (t)vl(t)∥∥ =
∥∥{(u?l )2 − u2l (t)}v?l − u2l (t){vl(t)− v?l }

∥∥
≤ |(u?l )2 − u2l (t)|+ u2l (t) ‖vl(t)− v?l ‖

≤ τ(u?l )2 + u2l (t)
√
2− 2〈vl(t),v?l 〉

≤ τ(u?l )2 +
3

2
(u?l )

2

√
2√
5
τ (7)

≤ 3τ(u?l )
2.

By Assumption 1, we have that∣∣∣∣∣∣v>l (t)
(
1

n
X>l Xl − I

)
((u?l )

2v?l − u2l (t)vl(t)) + v>l (t)
∑

l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2l′(t)vl′(t))

∣∣∣∣∣∣
≤ 3δinτ(u

?
max)

2 + 3sδoutτ(u
?
max)

2 ≤ 1

40
τ(u?l )

2 +
1

40
τ(u?l )

2 =
1

20
τ(u?l )

2.

For the other two terms, we have that∣∣∣∣∣v>l (t) ∑
l′∈Sc

1

n
X>l Xl′u

2
l′(t)vl′(t)

∣∣∣∣∣ ≤ δ(L− s)α2 ≤ 1

80
τ(u?l )

2,

and ∣∣∣∣v>l (t) 1nX>l ξ
∣∣∣∣ ≤ ∥∥v>l (t)∥∥1 ∥∥∥∥ 1nX>l ξ

∥∥∥∥
∞

≤
∥∥v>l (t)∥∥2 ∥∥∥∥ 1nX>l ξ

∥∥∥∥
∞

≤ 1

80
τ(u?l )

2.

Therefore,

|el,t| = |〈vl(t),bl,t〉| ≤
1

20
τ(u?l )

2 +
1

80
τ(u?l )

2 +
1

80
τ(u?l )

2 ≤ 1

10
τ(u?l )

2.

Lemma 11 shows that when the upper bound of perturbation is fixed, ul(t) grows. Now we show that
after ul(t) grows, the upper bound of perturbations will be decreased.

Lemma 13. Assume δin ≤ (u?min)
2

120(u?max)
2 and δout ≤ (u?min)

2

120s(u?max)
2 , α <

√
τ0

2
√
L
u?l ,

∥∥ 1
nX
>ξ
∥∥
∞ ≤

1
80τ0(u

?
l )

2 and 〈vl(t),v?l 〉 ≥ 1 − 1
5τ

2. If we achieve that |(u?l )2 − u2l (0)| ≤ 1
2τ(u

?
l )

2 for each
l ∈ [L] where 0 < τ0 ≤ τ ≤ 1/2, then |〈vl(t),bl,t〉| ≤ 1

20τ(u
?
l )

2 and |el,t| ≤ 1
20τ(u

?
l )

2.

Proof. Similarly to the proof of Lemma 11,

∥∥(u?l )2v?l − u2l (t)vl(t)∥∥ ≤ 1

2
τ(u?l )

2 + u2l (t)
√
2− 2〈vl(t),v?l 〉

≤ 1

2
τ(u?l )

2 +
3

2
(u?l )

2 1√
5
τ

≤ 3

2
τ(u?l )

2.
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By Assumption 1, we have that∣∣∣∣∣∣v>l (t)
(
1

n
X>l Xl − I

)
((u?l )

2v?l − u2l (t)vl(t)) + v>l (t)
∑

l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2l′(t)vl′(t))

∣∣∣∣∣∣
≤ 3

2
δinτ(u

?
max)

2 +
3

2
sδoutτ(u

?
max)

2 ≤ 1

40
τ(u?l )

2,

where δ ≤ 1
60s . Similarly, we obtain that

|el,t| = |〈vl(t),bl,t〉| ≤
1

40
τ(u?l )

2 +
1

80
τ(u?l )

2 +
1

80
τ(u?l )

2 ≤ 1

20
τ(u?l )

2.

By Lemma 10, we know that after certain iterations, we have that |u2(t)− (u?)2| ≤ 1
2 (u

?)2. Starting
from there, we will apply Lemma 11 and Lemma 12 iteratively until we have our desired accuracy.

We just need to verify when τ = 1
2 , the condition of either Lemma 11 and Lemma 12 is satisfied.

Note that the condition of Lemma 10 already satisfies the condition of Lemma 11 at τ = 1
2 . Note the

condition of Lemma 10 is satisfied when δin ≤ (u?min)
2

120(u?max)
2 and δout ≤ (u?min)

2

120s(u?max)
2 , α ≤ 1

4 (u
?
min)

2,∥∥ 1
nX
>ξ
∥∥
∞ ≤

1
80τ0(u

?
min)

2.

C.4 ERROR ANALYSIS OUTSIDE THE SUPPORT

We only care about the growth rate of ul(t) when l /∈ S. When l ∈ Sc, the gradient updates on ul
reads

ul(t+ 1) = ul(t) + γ
2

n
ul(t)

〈
Xlvl(t),y −

L∑
l′=1

u2l′(t)Xl′vl′(t)

〉
= ul(t)− 2γu3l (t)

− 2γu3l (t)v
>
l (t)

(
1

n
X>l Xl − I

)
vl(t)

+ 2γul(t)v
>
l (t)

1

n
X>l

∑
l′∈S

Xl′((u
?
l′)

2v?l′ − u2l′(t)vl′(t))

− 2γul(t)v
>
l (t)

1

n
X>l

∑
l′ 6=l,l′∈Sc

Xl′u
2
l′(t)vl′(t)

+ 2γul(t)
1

n
vl(t)X

>
l ξ.

Consider the initialization is ul(0) = α, we wonder the smallest number t of iterations that we can
ensure ul(t) ≤

√
α. Denote

el,t = −u2l (t)− u2l (t)v>l (t)
(
1

n
X>l Xl − I

)
vl(t)

+ v>l (t)
1

n
X>l

∑
l′∈S

Xl′((u
?
l′)

2v?l′ − u2l′(t)vl′(t))

− v>l (t)
1

n
X>l

∑
l′ 6=l,l′∈Sc

Xl′u
2
l′(t)vl′(t)

+
1

n
v>l (t)X

>
l ξ.

We have that

|el,t| ≤ α+ αδin + αδout(L− s) +
3

2
(u?max)

2δouts+

∥∥∥∥ 1nX>l ξ
∥∥∥∥
∞
.
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If α ≤ 1
80L (u

?
min)

2, δin ≤ (u?min)
2

120(u?max)
2 and δout ≤ (u?min)

2

120s(u?max)
2 , we have that

|el,t| ≤
1

20
(u?min)

2 +

∥∥∥∥ 1nX>l ξ
∥∥∥∥
∞
. (8)

Lemma 14. Consider
u(t+ 1) = u(t)(1 + 2γet)

where |et| ≤ B and u(0) = α. Let the step size γ ≤ 1
4B , then for any t ≤ T = 1

32γB log 1
α4 , we

have u(t) ≤
√
u(0).

Proof. We start by observing,
√
α ≥ u(t) ≥ α(1 + 2γB)t

⇐⇒t ≤
log 1√

α

log(1 + 2γB)
.

By using log x ≤ x− 1,

log 1√
α

log(1 + 2γB)
≥ 1

2γB
log

1√
α
≥ 1

32γB
log

1

α4
.

D PROOF FOR THEOREMS IN SECTION 4

D.1 PROOF OF THEOREM 3

Proof. If ζ ≥ (u?max)
2, at the initialization, we already have for ∀l ∈ [L]∥∥u2l (0)vl(0)− (u?l )

2v?l
∥∥
∞ ≤ u

2
l (0) + (u?l )

2 ≤ α2 + (u?max)
2

≤ 2(u?max)
2 ≤ 2ζ

≤ 160

∥∥∥∥ 1nX>ξ
∥∥∥∥
∞
∨ 160ε.

If ζ ≤ (u?max)
2, for those l ∈ S such that ζ ≤ (u?l )

2, we can apply Lemma 10. After

T1 =
log

(u?l )
2

2α2

2 log(1 + γ 1
2 (u

?
l )

2)
,

we obtain that 1
2 (u

?
l )

2 ≤ u2l (T1) ≤ 3
2 (u

?
l )

2, where we also have that
∥∥ 1
nX
>ξ
∥∥
∞ ≤

1
80 (u

?
l )

2 for
every l.

Let m0 be the number s.t.

2−m0−1(u?max)
2 ≤ ζ ≤ 2−m0(u?max)

2,

which can be written as m0 = blog2 (u?max)
2

ζ c. We can apply Lemma 11 and Lemma 12 together m0

times. Then further after

T2 = blog2
(u?max)

2

ζ
c 5

2γ(u?l )
2
,

we have that

|u2l (T2)− (u?l )
2| ≤ 2−m0(u?max)

2 ≤ 2ζ

〈vl(T2),v?l 〉 ≥ 1− 1

5
2−2m0 .
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Therefore,∥∥u2l (T2)vl(T2)− (u?l )
2v?l
∥∥
∞ ≤

∥∥u2l (T2)vl(T2)− (u?l )
2v?l
∥∥
2

≤
∥∥(u2l (T2)− (u?l )

2)vl(T2)− (u?l )
2(v?l − vl(T2))

∥∥
2

≤ 2−m0(u?max)
2 + (u?l )

2
√

2− 2〈vl(T2),v?l 〉

≤ 2−m0(u?max)
2 + (u?l )

2 2

5
2−m0

≤ 2ζ.

(9)

Note that the above inequality holds for every l ∈ S such that (u?l )
2 ≥ ζ. For those l such that

ζ ≥ (u?l )
2, we are not able to recover the true signal (u?l )

2. the gradient dynamics on this group
behaves as errors outside group, and bounded by Lemma 14.

For entries outside the support, we know that from Eq. (8),

B =
1

20
(u?min)

2 +

∥∥∥∥ 1nX>l ξ
∥∥∥∥
∞
≤ 1

10
(ζ ∨ (u?min)

2).

By Lemma 14, we have that before T3 ≤ 1
32γB log 1

α4 , ul(T3) ≤
√
α.

When ζ ≤ (u?min)
2, Eq. (9) holds for every l ∈ S. Therefore, a uniform number of iterations T1 and

T2 for all groups is written as

T1 =
log

(u?max)
2

2α2

2 log(1 + γ 1
2 (ζ ∨ (u?min)

2))
,

and

T2 = blog2
(u?max)

2

ζ
c 5

2γ(ζ ∨ (u?min)
2)
.

All we left is to show that T3 ≥ T1 + T2. We observe that

T1 =
log

(u?max)
2

2α2

2 log(1 + γ 1
2 (ζ ∨ (u?min)

2))
≤ 1 + γ 1

2 (ζ ∨ (u?min)
2))

γ(ζ ∨ (u?min)
2))

log
(u?max)

2

2α2

≤ 2

γ(ζ ∨ (u?min)
2)

log
(u?max)

2

2α2

where the first inequality is by log x ≥ x−1
x .

With our choice of small initialization on α, we have T1 ≤ 1
2T3, due to α < 1

(u?max)
8 . We have

T2 ≤ 1
2T3, because of α < ζ4

(umax)8
.

Hence, we obtain that after Tl = T1 + T2 ≥
log

(u?max)2

2α2

2 log(1+γ 1
2 (ζ∨(u

?
min)

2))
+ blog2 (u?max)

2

ζ c 5
2γ(ζ∨(u?min)2)

,

and before Tu = T3 ≤ 5
16γ(ζ∨(u?min)2)

log 1
α4 ,∥∥u2l (t)vl(t)− (u?l )

2v?l
∥∥
∞ .

{∥∥ 1
nX
>ξ
∥∥
∞ ∨ ε, if l ∈ S.

α, if l /∈ S.

D.2 PROOF FOR COROLLARY 1

Here is a standard result for sub-Gaussian noise.
Lemma 15. Let 1√

n
X be a n × p matrix with `2-normalized columns. Let ξ ∈ Rn be a vector of

independent σ2-sub-Gaussian random variables. Then, with probability at least 1− 1
8p3∥∥∥∥ 1nX>ξ

∥∥∥∥
∞

.

√
σ2 log p

n
.
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Proof of Lemma 15. Since the vector ξ are made of independent σ2-sub-Gaussian random variables
and any column of X is `2-normalized, the random variable 1√

n
(X>ξ)i is still σ2-sub-Gaussian.

It is a standard result that for any ε > 0,

P
(∥∥∥∥ 1√

n
X>ξ

∥∥∥∥
∞
> ε

)
≤ 2p exp

(
− ε2

2σ2

)
.

Setting ε = 2
√

2σ2 log(2p), with probability at least 1− 1
8p3 we have∥∥∥∥ 1nX>ξ

∥∥∥∥
∞
≤ 1√

n
2
√
σ2 log(2p) .

√
σ2 log p

n
.

Proof of Corollary 1. Since ξ is made of independent σ2-sub-Gaussian entries, by Lemma 15 with
probability 1− 1/(8p3) we have ∥∥∥∥ 1nX>ξ

∥∥∥∥
∞
≤ 2

√
2σ2 log(2p)

n
.

Hence, letting ε = 2
√

2σ2 log(2p)
n , we obtain that

∥∥(Du(t))2 � v(t)−w?
∥∥2
2
.
∑
l∈S

ε2 +
∑
l/∈S

α ≤ sε2 + (L− s) ε
2

L2
.
sσ2 log p

n
.

D.3 CONVERGENCE FOR ALGORITHM 2

Lemma 16. Consider the update in Eq. (4), choose the step size ηt = η ≤ 4
9(u?)4 , if 〈v(t),v?〉 ≥

1− 1
5τ , |u2(t)− (u?)2| ≤ τ(u?)2 and ‖bt‖ ≤ 1

10τ(u
?)2 for some constant 0 < τ < 1

2 , we have that

〈v(t+ 1),v?〉 ≥ 1− 1

5
τ.

Proof. We first rewrite z(t+ 1) as

z(t+ 1) = ηu2(t)(u?)2v? + (1− ηu4(t))v(t) + ηu2(t)bt.

Therefore,

〈z(t+ 1),v?〉 ≥ ηu2(t)(u?)2 + (1− ηu4(t))〈v(t),v?〉+ ηu2(t)〈bt,v?〉

≥ ηu2(t)(u?)2 + (1− ηu4(t))
(
1− 1

5
τ

)
− ηu2(t) 1

10
τ(u?)2

‖z(t+ 1)‖ ≤ ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t)
1

10
τ(u?)2.

We obtain that

〈v(t+ 1),v?〉 = 〈z(t+ 1),v?〉
‖z(t+ 1)‖ ≥ 1−

1
5τ(1− ηu4(t)) + 2ηu2(t) 1

10τ(u
?)2

ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t) 1
10τ(u

?)2

≥ 1− 1− ηu4(t) + ηu2(t)(u?)2

ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t) 1
10τ(u

?)2
1

5
τ

≥ 1− 1

5
τ.
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Note that compared with Lemma 8, under the condition ‖bt‖ ≤ B(u?)2, we get 〈v(t+ 1),v?〉 ≥
1− B instead of 〈v(t+ 1),v?〉 ≥ 1− B2. Accordingly, we need to a new version for Lemma 12
with a smaller bound on δ to make up the loss in Lemma 16.

Lemma 17. Assume δin ≤
√
τ0(u

?
min)

2

120(u?max)
2 and δout ≤

√
τ0(u

?
min)

2

120s(u?max)
2 , α < 1

2

√
τ0
L u

?
l ,
∥∥ 1
nX
>ξ
∥∥
∞ ≤

1
80τ0(u

?
l )

2 and |(u?l )2−u2l (0)| ≤ τ(u?l )2 for each l ∈ [L] where 0 < τ0 ≤ τ ≤ 1/2. If 〈vl(t),v?l 〉 ≥
1− 1

5τ , then |〈vl(t),bl,t〉| ≤ 1
10τ(u

?
l )

2 and |el,t| ≤ 1
10τ(u

?
l )

2.

Proof. Similarly to Lemma 12, we have that∥∥(u?l )2v?l − u2l (t)vl(t)∥∥ ≤ τ(u?l )2 + u2l (t)
√
2− 2〈vl(t),v?l 〉

≤ τ(u?l )2 +
3

2
(u?l )

2

√
2√
5

√
τ (10)

≤
(
1 + 2

1√
τ0

)
τ(u?l )

2.

By Assumption 1, we have that∣∣∣∣∣∣v>l (t)
(
1

n
X>l Xl − I

)
((u?l )

2v?l − u2l (t)vl(t)) + v>l (t)
∑

l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2l′(t)vl′(t))

∣∣∣∣∣∣
≤
(
1 + 2

1√
τ0

)
δinτ(u

?
max)

2 +

(
1 + 2

1√
τ0

)
sδoutτ(u

?
max)

2 ≤ 1

20
τ(u?l )

2,

where δ ≤
√
τ0(u

?
min)

2

60s(u?max)
2 . The other two terms follows exactly what we did in Lemma 12. Therefore,

|el,t| = |〈vl(t),bl,t〉| ≤
1

20
τ(u?l )

2 +
1

80
τ(u?l )

2 +
1

80
τ(u?l )

2 ≤ 1

10
τ(u?l )

2.

Proof to Theorem 4. The proof is similar to that of Theorem 3. For the first stage, we apply
Lemma 10, as nothing is changed from Theorem 3. For the second stage, instead of applying
Lemma 11 and Lemma 12, we apply Lemma 16 and Lemma 17 iteratively. To apply these lemmas,
we first observe that

ζ ≤ τ0(u?max)2 ⇐⇒
ζ

(u?max)
2
≤ τ0.

Therefore the requirement on δ’s becomes δin ≤
√
τ0(u

?
min)

2

120(u?max)
3 and δout ≤

√
τ0(u

?
min)

2

120s(u?max)
3 . The number

of iterations and convergence results follow from the proof of Theorem 3.

The criterion for switching time. We provide some motivation for the practical criterion. We first
note that, the criterion in Theorem 4 actually indicates a lower bound of switching time. With more
derivations, our results still hold if one choose to switch after the time when the criterion is first
satisfied (instead of switching right at that time.) Let us focus on the entries on the support. In the
proof of Theorem 3, one can also obtain the convergence on ul(t) as the positiveness of ul(t) can be
ensured with a small step size γ (since the power-parametrization will recast the gradient updates
into a multiplicative sequence). Therefore, with an appropriate choice of τ , the practical criterion
max
l∈S
{|ul(t+ 1)− ul(t)|/|ul(t) + ε|} < τ would imply the theoretical criterion ul(t)2 ≥ 1

2u
?
l (t)

2

on the support, and therefore would indicate a possibly later switching time than what the theoretical
criterion determines. For gradient updates outside the support, we observe slow growth rate and
hence the practical rule is likely satisfied on the non-support entry, which we observe in the numerical
experiments. Note that the switching only happens when both the support and non-support entries
fulfill the criterion.
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E MORE NUMERICAL RESULTS

E.1 STABILITY ISSUE OF ALGORITHM 1 AND STANDARD GD
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(a) Numerical instability in direction estimations.
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Figure 6: Numerical instability of algorithm 1

Stability issue of Algorithm 1. Figure 6 presents the recovered entries and direction parameters v(t)
under the same setting as Figure 2. Because of the large learning rate on v, the algorithm may not
show a convergent result in the latter stage due to the irreducible error (perturbations). Although the
parameter estimation is still reasonable with normalization on each vl, l ∈ [L], we still aim to get a
stable algorithm, which motivates our algorithm 2.
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Figure 7: Gradient descent without weight normalization.

Standard gradient descent. To further understand how weight normalization affects the gradient
dynamics, we conduct experiments using standard gradient descent without weight normalization.
For that, we use the same setting as in Figure 4 and show the result in Figure 7. The left and middle
figures are based on zero initialization on v. We see a numerically convergent result, and the inner
product between learned and true directions starts to grow from 0. As the directions guide the
magnitude to grow, there is an extra stage for the directions to become roughly accurate. The choice
of this initialization is necessary and subtle. The figure on the right is for small initialization 10−3,
where the entries outside support get significant magnitudes, and the algorithm fails.
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E.2 AUTOENCODER WITH GROUPING LAYER

The grouping layers have been used in grouped CNN and grouped attention mechanisms (Wu et al.,
2021; Xie et al., 2017; Lee et al., 2018), which usually leads to parameter efficiency and better
accuracy. To demonstrate the practical value of such grouping layers, we conduct the following
experiment about learning good representations on MNIST.

(Jing et al., 2020) proposed implicit rank-minimizing autoencoder (IRMAE), which is a deterministic
autoencoder with implicit regularization. The idea is to apply more linear layers between encoder
and decoder to penalize the rank of latent representation. A graphical illustration of the architecture
is shown in Figure 8, where we explicitly show the last convolution layer and the linear layers in the
latent space, which are absorbed into the last layer of the encoder in practice. This design is related
to the power parametrization (Schwarz et al., 2021) trick to promote sparsity/low-rankness. One
major advantage is that IRMAE produces a more interpretable latent representation, and the linear
interpolation in the latent space gives a natural transition between two images.

x Enc CNN Dec XZ

latent layers

Figure 8: Implicit rank-minimizing autoencoder.

X Enc Dec XZ

grouped latent layers

Figure 9: Implicit rank-minimizing autoencoder with grouping layers.

Inspired by our DGLNN, we design a CNN analog of it, which we call grouped autoencoder
(GAE). The architecture is shown in Figure 9. The channels feed into the last convolutional layer of
encoder is separable into g groups. The linear layers (power-parametrization) are applied within each
group. Grouping channels of convolutional layers is a common practice to improve the parameter
efficiency. With these grouping and power layers in the latent space, we expect it learns a better latent
representation as IRMAE does.
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Figure 10: Linear interpolations between data points on the MNIST dataset. GAE4/8 stands for
grouped autoencoder with 4/8 groups.

The linear interpolations between data points in the latent space are shown in Figure 10. We compare
the grouped autoencoder (GAE) with autoencoder (AE), variantional autoencoder (VAE) and implicit
rank-minimizing autoencoder (IRMAE). We see that GAE outperforms AE and VAE, and gives
comparable results with IRMAE. However, GAE achieves a better parameter efficiency as shown in
Table 2.

# of params
IRMAE 786K
GAE4 196K
GAE8 98K

Table 2: Number of parameters of hidden layers in latent space.

E.3 EXPERIMENTS WITH GAUSSIAN MEASUREMENTS

Besides the numerical results shown in Section 5, we conduct the following experiments with
sampling each entry of X from a standard normal distribution.

The effectiveness using Gaussian design. We follow the same setting with that Figure 3 except
changing Rademacher random variables to Gaussian random variables. The convergence of Algo-
rithm 2 is shown in Figure 11. We see that the recovered entries, group magnitudes and directions
successfully converge to the true ones.
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Figure 11: Convergence of algorithm 2 with Gaussian measurements

Comparisons with explicit regularization methods. We compare Algorithm 2 with proximal
gradient descent implemented in (Carmichael et al., 2021) and primal-dual procedure (Molinari et al.,
2021). Each entry of X is sampled from a standard Gaussian distribution. We set n = 150 and
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p = 300, and the number of non-zero entries is 10, divided into 3 groups with size 4. We vary the
variance in the noise to achieve different signal-to-noise ratios (SNR). The experiment is repeated 30
times at each noise level. The average and standard deviation of the estimation error are depicted
in Figure 12. Our algorithm is consistently better than explicit regularization methods, whereas the
primal-dual procedure has a comparable performance when SNR is large.
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Figure 12: Comparisons with proximal gradient descent and iterative regularization.

To further discover the potential applications of our findings, we use a gene expression dataset from
the Microarray experiments of mammalian eye tissue samples (Scheetz et al., 2006). The dataset
consists of 120 samples with 100 predictors that are expanded from 20 genes using 5 basis B-splines,
as described in (Yang & Zou, 2015). The goal is to predict the gene expression level of TRIM32,
which causes Bardet-Biedl syndrome. We randomly split the data equally, and use the validation
dataset for hyperparameter tuning and early stopping. We compare our approach with the commonly
used proximal gradient descent and a primal-dual approach. The result is shown in Table 3. Our
approach achieves the best performance among these three methods.

Test error PGD Primal-Dual Our approach
MSE 0.03096 0.02868 0.02477

Table 3: Comparisons of MSE (mean squared error) on test set.
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