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A LLM USAGE STATEMENT

Large Language Models (LLMs) were only used in this research for writing optimization and grammar
checking. No part of the theoretical contributions, experimental design, data analysis, or results was
generated by LLMs.

B BROADER IMPACT

The proposed method advances the accuracy of normal map estimation from a monocular image,
which has broad benefits across various applications. More precise geometry understanding can
significantly improve downstream tasks such as 3D reconstruction, augmented reality, robotics, and
digital content creation, enabling more immersive and interactive user experiences.
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C ADDITIONAL CODE AND DATASET RESOURCE

Examples of the inference code, dataset, and the generated normal maps are available in the codes
link and files link (links are anonymous).

D ADDITIONAL IMPLEMENTATION DETAILS

Training details. As stated in the main paper, we build RoSE on top of SV3D (Voleti et al., 2024).
During training, we initialize our model with pretrained SV3D weights (1.5B) and fine-tune the first
convolutional layer as well as all parameters within the self-attention and cross-attention modules
on the MultiShade dataset, which contains 90K objects (3.1M image–normal pairs), and evaluated
on a validation set of 100 objects, each providing 100 image–normal pairs, result in 200M trainable
parameters. Training is conducted for 80,000 steps with a learning rate of 1× 10−5 and a total batch
size of 16. We use the AdamW optimizer with β1 = 0.9, β2 = 0.999, and 1 × 10−8 for weight
decay. Training is performed in float16 precision for efficiency, and we apply gradient clipping with a
maximum norm of 1.0. The model is trained to predict a 9-frame shading sequence, with each frame
at a resolution of 576× 576. End-to-end training takes approximately one day on 8 NVIDIA H100
GPUs (80GB each).

Testing details. We follow the requirements specified in the baselines’ inference code (He et al.,
2024b; Fu et al., 2024; Ye et al., 2024; 2025; Bae & Davison, 2024) to prepare our test dataset,
ensuring compatibility with each setup for a fair comparison. For both the LUCES (Mecca et al.,
2021) and DiLiGenT (Shi et al., 2016) datasets, we use images indexed from 21 to 30 for testing,
as the lights are more centered on the objects. All testing processes are performed on a single RTX
A6000 Ada GPU. The total runtime includes the video diffusion model inference with 25 denoising
steps and the shading to normal computation, the latter adding only a negligible cost of 0.045 seconds
per object. For completeness, we also report the inference time of other methods for reference.

Table 7: Average inference time of monocular normal estimation methods per image (in seconds).

Method GeoWizard DSINE StableNormal Lotus G Lotus D Neural LightRig NiRNE Ours

Time 101.11 0.83 1.52 0.61 0.59 93.73 0.31 10.57

E ADDITIONAL DETAILS ABOUT MULTISHADE

More Details about Material Augmentation. We present a statistical comparison of the proposed
dataset with other related datasets (He et al., 2024b; Ye et al., 2025; Jin et al., 2025; Ikehata, 2022;
2023) in Table 8, including concurrent works (He et al., 2024b; Ye et al., 2025) that are either recently
released or not yet publicly available. We apply material augmentation (MA) with a probability of
0.5 by randomly replacing an object’s material with one sampled from the MatSynth dataset (Vecchio
& Deschaintre, 2024), selecting either equally from metallic (716) or non-metallic (5,040) material
groups. This process yields an additional 42,732 objects that share the same 3D geometry but differ in
material appearance. The resulting MultiShade dataset, enriched with material diversity and rendered
shading sequences, enables our method to achieve state-of-the-art performance on public benchmarks.

Rendering setup. We construct our dataset using the Cycles rendering engine in Blender (Community,
2018), selecting 90,546 filtered objects from Objaverse (Jin et al., 2025). Each object is rendered
from six viewpoints. For each view, we implement one parallel light, one point light, or two HDR
environment maps, selected from a pool of 760 real-world HDR environments (pol, 2025). The
directions of the point and parallel lights are randomly sampled from the upper-front hemisphere
facing the camera (see Fig. 7). The camera is positioned at a random distance τ between 1.5 and 1.8
meters from the object, with a focal length of 35 mm, following the setup in (Liu et al., 2023).
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Table 8: Statistics of representative datasets used for normal estimation under arbitrary lighting. #O
and #v denote the number of 3D models and rendered views, respectively. N.A. indicates that the
corresponding information is not available. ‘env.’, ‘par.’, ‘poi.’ stand for environment light, parallel
lights, and point lights, respectively.

Dataset # O # v Light Compose Material
PS-Wild (Ikehata, 2023) 410 1 env.(31) /par. /poi. AdobeStock (926)
PS-Mix (Ikehata, 2023) 480 1 env.(31) /par. /poi. AdobeStock (897)
LightProp (He et al., 2024b) 80K 5 env.(24) /area /poi. Objaverse
RelitObjaverse (Jin et al., 2025) 90K 16 env.(1,870) /area Objaverse
DetailVerse (Ye et al., 2025) 700K 40 N.A. N.A.

Ours 90K 6 env.(780) /par. /poi. Objaverse + MatSynth (5,657)

Figure 7: Image rendering setup.
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F RESULTS ON WEB IMAGES

We present qualitative comparisons with state-of-the-art methods (NiRNE (Ye et al., 2025) and Neural
LightRig (He et al., 2024b)) on additional images sourced from public resources, including the project
page of StableNormal (Ye et al., 2024) and Google Images, as shown in Fig. 8 and Fig. 9. The surface
reconstruction from normals is performed using the method from (Cao et al., 2022).

Figure 8: Qualitative comparison of normal maps on web images.
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Figure 9: Qualitative comparison of normal maps on web images.
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G ADDITIONAL EXPERIMENT RESULTS ON POPULAR DATASETS

G.1 RESULTS ON DILIGENT

We present a qualitative comparison of different methods for normal estimation. To avoid excessive
redundancy, we select the normal map whose MAE is closest to the average MAE as a representative
example for reference.

Figure 10: Qualitative comparison on normal maps and error maps for the GOBLET, BEAR, POT1,
CAT, COW from the DiLiGenT (Shi et al., 2016) benchmark.
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Figure 11: Qualitative comparison on normal maps and error maps for the BALL, HARVEST,
BUDDHA, POT2, READING from the DiLiGenT (Shi et al., 2016) benchmark.
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G.2 RESULTS ON LUCES

We present a qualitative comparison on LUCES (Mecca et al., 2021) of different methods for normal
estimation. To avoid excessive redundancy, we select the normal map whose MAE is closest to the
average MAE as a representative example for reference.

Figure 12: Qualitative comparison on normal maps and error maps for the OWL, QUEEN, SQUIRREL,
TOOL from the LUCES (Mecca et al., 2021) benchmark.
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Figure 13: Qualitative comparison on normal maps and error maps for the CUP, DIE, HIPPO, HOUSE,
and JAR from the LUCES (Mecca et al., 2021) benchmark.
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Figure 14: Qualitative comparison on normal maps and error maps for the OWL, QUEEN, SQUIRREL,
TOOL from the LUCES (Mecca et al., 2021) benchmark.
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Qualitative analysis on shading sequence.

Figure 15: Qualitative comparison on shading sequence prediction for the BALL from LUCES (Mecca
et al., 2021) benchmark.

Figure 16: Qualitative comparison on shading sequence prediction for the TOOL from LUCES (Mecca
et al., 2021) benchmark
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Figure 17: Qualitative comparison on shading sequence prediction for the BELL from LUCES (Mecca
et al., 2021) benchmark

Figure 18: Qualitative comparison on shading sequence prediction for the BOWL from LUCES (Mecca
et al., 2021) benchmark
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Figure 19: Qualitative comparison on shading sequence prediction for the BUNNY from
LUCES (Mecca et al., 2021) benchmark
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Figure 20: Qualitative comparison on shading sequence prediction for the CUP from LUCES (Mecca
et al., 2021) benchmark
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Figure 21: Qualitative comparison on shading sequence prediction for the DIE from LUCES (Mecca
et al., 2021) benchmark

Figure 22: Qualitative comparison on shading sequence prediction for the HIPPO from
LUCES (Mecca et al., 2021) benchmark

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 23: Qualitative comparison on shading sequence prediction for the HOUSE from
LUCES (Mecca et al., 2021) benchmark
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Figure 24: Qualitative comparison on shading sequence prediction for the JAR from LUCES (Mecca
et al., 2021) benchmark
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Figure 25: Qualitative comparison on shading sequence prediction for the SQUIRREL from
LUCES (Mecca et al., 2021) benchmark
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Figure 26: Qualitative comparison on shading sequence prediction for the OWL from LUCES (Mecca
et al., 2021) benchmark
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Figure 27: Qualitative comparison on shading sequence prediction for the QUEEN from
LUCES (Mecca et al., 2021) benchmark

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

G.3 RESULTS ON LIGHTPROP

We report quantitative results on the LightProp dataset (He et al., 2024b). Our method achieves
the second-best overall performance in terms of mean and median angular errors for normal map
estimation. We re-ran the entire evaluation, as we observed discrepancies between our results and
those reported in the original paper (He et al., 2024b). The metric computation scripts used in our
evaluation follow the implementation in (Bae & Davison, 2024)1. We also include them in the
anonymous codes link.

Table 9: Quantitative comparison in terms of Mean and Median Angular Errors of the normal map
on LightProp test set, and the percentage of objects below a specific error bound. Bold (underline)
numbers indicate the best (second-best) results among single-view normal estimation methods.

Method Mean ↓ Median ↓ 3◦(%) ↑ 5◦(%) ↑ 7.5◦(%) ↑ 11.25◦(%) ↑ 22.5◦(%) ↑ 30◦(%) ↑
GeoWizard 21.03 13.07 9.94 20.29 31.63 44.87 68.23 76.97
DSINE 22.16 14.02 9.48 18.00 28.31 41.85 66.99 76.12
StableNormal 19.66 12.98 3.78 10.64 23.15 42.50 73.85 82.37
Lotus-D 19.10 12.26 10.26 20.97 32.51 46.83 71.83 80.45
Lotus-G 19.19 12.15 10.91 22.06 33.91 47.35 71.12 79.70
Neural LightRig 15.29 8.84 20.13 32.33 44.68 57.99 78.99 85.79
NiRNE 17.87 12.38 7.21 16.69 29.13 45.68 75.01 84.02

Ours 17.40 11.00 17.15 26.49 37.33 50.79 75.29 83.10

1https://github.com/baegwangbin/DSINE/blob/main/projects/dsine/test.py
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G.4 RESULTS ON NATURAL LIGHT PHOTOMETRIC STEREO DATASET

We conduct quantitative comparison results on a synthetic dataset (NaPS) proposed in (Li et al., 2024),
which contains a series of rendered images based on objects selected from (Shi et al., 2016), under
varying environment lighting, material properties, and object shapes. The dataset is organized into four
groups: (1) the light group, which evaluates performance on a single object under different lighting
conditions; (2) the shape group, which compares different object geometries; (3) the reflectance
group, which assesses performance on diffuse and specular materials; and (4) the spatially varying
material group, which poses a challenging scenario with complex, spatially varying materials. During
testing, we select the 10 images with the highest average brightness for evaluation. Our method
achieves either the best or second-best performance in each group and ranks first in terms of overall
average performance (11.35◦, ours vs. 12.32◦, NiRNE, the second best method).

Table 10: Results on the NaPS (Li et al., 2024) dataset for normal estimation under natural lighting.
‘L., A., S., U.’ denote four types of environment maps, Landscape, Attic, Studio, and Urban, covering
both outdoor and indoor settings. ‘D., S.’ in the reflectance and spatially varying material groups
refer to diffuse and specular materials, respectively. Numbers indicate the MAE (↓) of the estimated
normal maps. Bold (underline) numbers indicate the best (second-best) results.

Method
Light Group Reflectance Group

Cow (L.) Cow (A.) Cow (S.) Cow (U.) AVG Pot2 (D.) Pot2 (S.) Reading (D.) Reading (S.) AVG

GeoWizard 10.24 10.59 12.24 11.52 11.15 12.11 11.43 16.09 14.18 13.45
DSINE 14.41 15.65 14.41 13.43 14.48 15.86 14.63 17.03 17.23 16.19
StableNormal 14.58 12.49 16.11 16.61 14.95 10.44 11.24 14.87 13.54 12.52
Lotus-D 8.43 9.34 10.82 10.00 9.65 10.00 10.03 14.53 13.14 11.92
Lotus-G 11.66 11.28 12.48 10.29 11.43 12.00 11.51 15.93 13.67 13.28
Neural LightRig 9.25 9.90 11.98 11.21 10.59 10.54 10.22 13.73 12.63 11.78
NiRNE 9.89 10.66 12.72 10.55 10.95 7.66 8.66 11.21 10.81 9.58
Ours 9.85 10.06 10.51 10.09 10.13 10.74 9.77 11.73 11.07 10.83

Method
Shape Group Spatially Varying Material Group

Ball Bear Buddha Reading AVG Pot2 (D.) Pot2 (S.) Reading (D.) Reading (S.) AVG

GeoWizard 3.93 9.71 21.52 15.36 12.63 14.42 14.15 22.82 22.32 18.43
DSINE 27.68 9.85 24.22 16.45 19.55 23.92 20.19 22.81 21.22 22.04
StableNormal 8.33 8.04 16.77 13.64 11.69 15.71 15.10 19.77 18.90 17.37
Lotus-D 8.71 9.30 16.15 13.50 11.91 13.18 13.54 21.95 17.86 16.63
Lotus-G 11.18 9.51 16.64 14.46 12.95 16.20 15.27 24.59 18.15 18.55
Neural LightRig 3.11 9.18 17.37 13.88 10.89 13.72 14.30 23.85 24.23 19.03
NiRNE 8.57 9.45 18.37 11.92 12.08 14.04 14.42 19.11 19.10 16.67
Ours 5.25 8.71 17.56 11.23 10.69 11.98 11.87 16.06 15.05 13.74
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G.5 OVERALL PERFORMANCE COMPARISON

In this paper, we conduct a comprehensive analysis across multiple benchmark datasets, including
two real-world datasets (DiLiGenT (Shi et al., 2016) and LUCES (Mecca et al., 2021)) and three
synthetic datasets (MultiShade, NaPS (Li et al., 2024), and LightProp (He et al., 2024b)). According
to Table 11, our method achieves the best average performance in terms of MAE and overall ranking.
This demonstrates the strong generalization ability of the proposed RoSE across diverse scenarios,
lighting conditions, and object types.

Table 11: Quantitative comparison over all five datasets. We report the MAE (↓) over all objects and
the rank (↓) among methods at specific dataset for comparison.

Method
DiLiGenT LUCES MultiShade LightProp NaPS AVG

MAE(↓) Rank(↓) MAE(↓) Rank(↓) MAE(↓) Rank(↓) MAE(↓) Rank(↓) MAE(↓) Rank(↓) MAE(↓) Rank(↓)

GeoWizard 21.79 5.00 22.49 8.00 20.46 6.00 21.03 7.00 13.91 5.00 19.94 6.20
DSINE 23.25 7.00 21.82 7.00 22.53 8.00 22.16 8.00 18.06 8.00 21.56 7.60
StableNormal 20.44 3.00 20.34 5.00 19.71 5.00 19.66 6.00 14.13 7.00 18.86 5.20
Lotus-D 22.94 6.00 18.56 4.00 18.48 2.00 19.10 4.00 12.53 3.00 18.32 3.80
Lotus-G 21.41 4.00 17.44 2.00 18.76 3.00 19.19 5.00 14.05 6.00 18.10 4.00
Neural LightRig 29.10 8.00 20.95 6.00 20.59 7.00 15.29 1.00 13.07 4.00 19.80 5.20
NiRNE 17.27 2.00 17.88 3.00 19.57 4.00 17.87 3.00 12.32 2.00 16.98 2.80

Ours 16.36 1.00 14.48 1.00 15.37 1.00 17.40 2.00 11.35 1.00 14.99 1.20
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H CASE ANALYSIS

We conduct a detailed analysis across variations in lighting, textures, and BRDFs through three groups
of controlled experiments. The first group examines how different lighting conditions, including
simple light, parallel light, point light, and challenging light, influence performance, with texture and
BRDF fixed. The second group evaluates the impact of texture complexity by comparing a simple
texture with three spatially varying textures, while holding lighting and BRDF constant. The third
group isolates material effects by varying the BRDF under simple lighting and texture settings. The
results (see Fig. 28-Fig. 30) show that our method consistently produces high-quality normal maps
relative to other approaches. However, performance does degrade under highly complex textures,
challenging lighting conditions, or difficult material properties.

Figure 28: Analysis of each method’s performance across different texture settings on BUNNY.

Figure 29: Analysis of each method’s performance across different BRDF settings on BUNNY.
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Figure 30: Analysis of each method’s performance across different light settings on BUNNY, where
“Paral” indicate parallel lights, “Env” stands for environment light.
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I ADDITIONAL DISCUSSION

I.1 ANALYSIS ON LATENT’S DISTRIBUTION

We analyse the latent representations of RGB images, corresponding normal maps, and shading maps
from the MultiShade after encoding them with the Stable Diffusion (Rombach et al., 2022) VAE,
in order to examine whether shading maps lie closer to RGB images than the normal map in latent
space. Specifically, we randomly sample 1000 objects from the dataset. For each object, we randomly
select one RGB image under a random viewpoint and lighting condition, retrieve its corresponding
normal map, and randomly choose one shading map computed under 9 ring lights setup, giving us
3000 samples in total. Each sample has size 72 × 72 × 8. We average each latent across the 72 ×
72 spatial dimensions and apply t-SNE to obtain a 3D embedding for each sample. This results in
three sets of 1000 × 3 vectors, which we visualize in Fig. 31. As shown, the shading latents exhibit a
tendency to cluster closer to RGB image latents.

Figure 31: Visualization of the distribution of the downsampled latents of normal maps, RGB images,
and shading maps from MultiShade, shown from three orthogonally projected views.

I.2 DISCUSSION ON SHADING SEQUENCE’S ROBUSTNESS

We conduct a 5-run experiment to evaluate how perturbations in the shading sequence affect the
final normal estimation. In each run, identical Gaussian noise of varying magnitudes is added to
one or multiple shading maps and the surface normal. The results on BUNNY from LUCES (Mecca
et al., 2021) show that the shading sequence is noticeably robust to the perturbations. When noise
is injected into a single shading map, the change in mean angular error over 5 runs remains small
(1.537◦ to 5.233◦), and is substantially lower than perturbing the normal map directly (3.235◦ to
24.421◦), even under the strongest disturbance. A larger deviation emerges only when 9 shading
maps are perturbed simultaneously (3.612◦ to 20.713◦), yet the shading-sequence formulation still
remains more robust than directly perturbing normals. These observation confirm that predicting
normals from shading sequences provides an inherent degree of robustness to noise.

Table 12: Quantitative analysis of how perturbations to shading sequences and normal maps affect
the mean angular error relative to the clean version. ‘x shading maps’ indicates that x frames in the
shading sequence are perturbed by Gaussian noise. The first row specifies the noise magnitude.

Perturbed Frames 0.050 0.100 0.200 0.300 0.400

1 Shading Map 1.537 2.405 3.479 4.452 5.233
5 Shading Maps 2.907 4.766 7.514 10.868 14.033
9 Shading Maps 3.612 5.745 10.468 15.727 20.713
Normal Map 3.235 6.454 12.764 18.825 24.421
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I.3 DISCUSSION ON DIFFERENT SHADING-BASED PARADIGM

To compare the two paradigms, i.e, (1) first estimating normals and then computing a shading loss,
and (2) our proposed paradigm that directly predicts the shading sequence and then derives normals,
we evaluate the effect of incorporating a rendering-based shading loss into an image diffusion model.
Specifically, we apply the shading loss to Lotus-G (He et al., 2024a), where the loss is defined
as the L1 distance between the predicted shading sequence and the ground truth sequence. Each
shading map is computed as the dot product between the predicted surface normal and the preset
ring-light path, with negative values clamped to 0. This variant (“Lotus w/ shad.”) is trained on the
MultiShade dataset. The results show that Lotus w/ shad achieves improved performance (16.20◦

MAE on the LUCES benchmark). However, it still falls short of our method (14.48◦). This supports
the effectiveness of our framework: estimating the entire shading sequence with a video diffusion
model allows the network to capture the interrelationships among shading maps that contains rich
geometric information, thereby improving the quality of the estimated shading sequence and enabling
more accurate normal estimation.

Table 13: Comparison between “Lotus w/ shad.” and the proposed RoSE on the LUCES benchmark.
Numbers indicates MAE (↓) in degree. Bold number indicate the best results.

Method BALL BELL BOWL BUDDHA BUNNY CUP DIE HIPPO HOUSE JAR OWL QUEEN SQUIRREL TOOL Mean

Lotus w/ shad. 19.65 7.66 9.76 14.95 9.43 20.45 12.43 11.00 36.54 13.06 23.16 18.01 18.07 12.64 16.20
Ours 9.09 5.94 6.84 17.58 12.70 13.80 8.26 14.14 36.79 5.93 19.60 19.99 21.34 10.66 14.48

I.4 COMPARISON WITH MULTI-VIEW NORMAL ESTIMATION METHODS

We have conducted an additional comparison with multi-view normal estimation methods, including
Era3D and Unique3D, results are shown in Table 14. On the LUCES benchmark, Era3D and
Unique3D achieve mean angular errors of 43.33° and 23.00◦, respectively, both substantially worse
than the proposed RoSE. Particularly, although Unique3D produces visually high-contrast normal
maps, the underlying geometric details are inaccurate, and its performance degrades significantly on
objects with complex shadow patterns, which is consistent with our observations of 3D misalignment.

Table 14: Quantitative comparison with multi-view normal estimation methods on the LUCES
benchmark. Bold number indicates the best results.

Method BALL BELL BOWL BUDDHA BUNNY CUP DIE HIPPO HOUSE JAR OWL QUEEN SQUIRREL TOOL Mean

Era3D 73.02 29.53 90.85 27.85 22.82 67.50 49.73 28.32 48.87 38.92 27.86 32.24 32.13 37.03 43.33
Unique3D 14.89 13.52 13.76 24.68 16.00 34.76 19.10 16.52 44.74 15.80 28.66 26.02 26.01 27.48 23.00
Ours 9.09 5.94 6.84 17.58 12.70 13.80 8.26 14.14 36.79 5.93 19.60 19.99 21.34 10.66 14.48

I.5 ANALYSIS ON 3D RECONSTRUCTION

We further evaluate the quality of the reconstructed surfaces obtained from both the predicted
and ground truth normal maps on the DiLiGenT and LUCES datasets, using the reconstruction
method of (Cao et al., 2021). The results are reported in Table 15 and Table 16. By measuring
the RMSE (Cao et al., 2021) between the reconstructed and groundtruth surfaces (obtained by
reconstruction from the groundtruth normal map), we observe that our method consistently achieves
state-of-the-art performance across both benchmarks. These results demonstrate that RoSE not only
produces accurate normal maps but also preserves high-fidelity geometric structures after surface
reconstruction, further validating the effectiveness of the proposed method.
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Table 15: Quantitative comparison of surface normal RMSE (↓) on the DiLiGenT dataset. Results
reported with values ×10. Bold number indicates the best results.

Method BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG

Lotus-G 1.08 1.31 0.55 1.19 1.58 0.84 1.83 1.96 0.84 1.18 1.24
Lotus-D 2.37 0.63 0.52 1.02 1.30 0.76 2.25 1.91 1.01 1.02 1.28
Neural LightRig 1.07 0.88 1.51 2.69 1.35 1.26 5.75 2.40 0.91 1.38 1.92
NiRNE 1.46 0.94 0.48 0.77 1.47 2.12 1.54 0.98 0.88 1.63 1.23
Ours 0.79 0.88 0.33 0.92 0.65 1.16 1.24 1.35 0.75 1.33 0.95

Table 16: Quantitative comparison of surface normal RMSE (↓) on the LUCES dataset. Results
reported with values ×10. Bold number indicates the best results.

Method BALL BELL BOWL BUDDHA BUNNY CUP DIE HIPPO HOUSE JAR OWL QUEEN SQUIRREL TOOL AVG

Lotus-G 0.89 0.36 1.33 1.12 0.72 1.18 0.67 1.23 1.23 0.57 0.83 0.55 1.30 0.34 0.88
Lotus-D 0.89 0.38 1.09 1.13 0.73 1.82 0.75 1.09 1.54 0.56 0.89 0.46 0.86 0.31 0.89
Neural LightRig 0.31 0.51 3.02 0.57 0.69 0.98 1.71 1.51 1.28 1.88 1.05 0.45 0.60 0.65 1.09
NiRNE 0.77 0.76 2.12 0.70 0.64 1.10 1.02 1.71 1.12 0.75 1.93 0.75 0.71 0.71 1.05
Ours 0.34 0.19 0.80 0.69 0.53 0.72 0.54 0.79 0.67 0.42 1.22 0.25 0.54 0.22 0.57

I.6 PERFORMANCE ON NORMAL ESTIMATION USING VIDEO DIFFUSION MODEL

We have conducted an additional comparison with the variant that using SV3D to directly predict the
single-frame surface normal (noted as “SVD-nml”), the results are shown in Table 17. The average
result on LUCES benchmark dataset is 20.61◦, indicating that the dense information geometrically
encoded in the video model does not play a critical role in this setting, and the model also loses its
ability to make use of temporal information.

Table 17: Quantitative comparison with “SVD-nml” on the LUCES benchmark. Bold number
indicates the best results.

Method BALL BELL BOWL BUDDHA BUNNY CUP DIE HIPPO HOUSE JAR OWL QUEEN SQUIRREL TOOL Mean

SVD-nml 17.20 9.96 19.69 22.28 14.77 18.32 11.47 18.23 49.74 10.49 26.95 25.04 26.03 18.29 20.61
Ours 9.09 5.94 6.84 17.58 12.70 13.80 8.26 14.14 36.79 5.93 19.60 19.99 21.34 10.66 14.48
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