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ABSTRACT

Diffusion models, recognized for their effectiveness as generative priors, have
become essential tools for addressing a wide range of visual challenges. Recently,
there has been a surge of interest in leveraging Denoising processes for Regular-
ization (DR) to solve inverse problems. However, existing methods often face
issues such as mode collapse, which results in excessive smoothing and diminished
diversity. In this study, we perform a comprehensive analysis to pinpoint the root
causes of gradient inaccuracies inherent in DR. Drawing on insights from diffusion
model distillation, we propose a novel approach called Consistency Regularization
(CR), which provides stabilized gradients without the need for ODE simulations.
Building on this, we introduce Hybrid Regularization (HR), a unified framework
that combines the strengths of both DR and CR, harnessing their synergistic po-
tential. Our approach proves to be effective across a broad spectrum of inverse
problems, encompassing both linear and nonlinear scenarios, as well as various
measurement noise statistics. Experimental evaluations on benchmark datasets,
including FFHQ and ImageNet, demonstrate that our proposed framework not only
achieves highly competitive results compared to state-of-the-art methods but also
offers significant reductions in wall-clock time and memory consumption.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020b), celebrated for their ability to model complex
high-dimensional distributions, are increasingly applied across a broad spectrum of fields. These
applications span from image generation (Dhariwal & Nichol, 2021; Saharia et al., 2022b; Rombach
et al., 2022), and video synthesis (Cho et al., 2024; Ho et al., 2022; Rühling Cachay et al., 2024) to
molecular design (Guan et al., 2023; Hoogeboom et al., 2022; Xu et al., 2022), and protein generation
(Wu et al., 2024a; Trippe et al., 2022; Watson et al., 2023). The wealth of knowledge accumulated
within pre-trained diffusion models, derived from vast datasets, empowers their utilization as powerful
prior models. This capability is particularly valuable for reconstructing accurate outputs from
incomplete measurement signals.

Recent research has highlighted the potential of diffusion models as general-purpose posterior sam-
plers in solving inverse problems. For instance, Kawar et al. (2022) pioneered DDRM, innovatively
integrating the observation into the inverse denoising process within the spectral domain through
singular value decomposition. In a similar vein, Wang et al. (2022) introduced DDNM, which method-
ically adjusts the inverse diffusion process to align with the observation’s null space. Despite their
novelty, these approaches are limited to addressing linear degenerations and often result in low-fidelity
images in practical applications. To improve upon these limitations, subsequent innovations like DPS
(Chung et al., 2022) and ΠGDM (Song et al., 2022) have been developed, focusing on approximating
the score of posterior distributions to achieve image restoration. However, their dependence on an
unimodal estimation for clean samples has led to issues with precision. Additionally, the requirement
to compute the Jacobian matrix of the score network with DPS and ΠGDM introduces significant
computational demands and potential instability, posing challenges for efficient implementation.

RED-diff (Mardani et al., 2024) provides a novel perspective to addressing diffusion-based inverse
problems, conceptualizing them within a variational objective framework. This framework employs a
denoising process as a regularization technique to alleviate the ill-posedness of the inverse problem.
Such an optimization-based approach circumvents the necessity for backpropagation through the
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Figure 1: Comparison between RED-diff (Mardani et al., 2024) and our proposed HRDIS for
image inpainting (left), super-resolution (middle) and nonlinear deblurring (right) tasks. RED-diff
adopts the denoising process for regularization, which frequently leads to blurry and detail-lacking
reconstructions, particularly when addressing intricate image inversion challenges. In contrast,
HRDIS consistently outperforms RED-diff, showcasing notably improved results.

score network, facilitating compatibility with existing efficient stochastic optimization methods.
Despite these advantages, RED-diff encounters practical challenges, notably a mode-seek tendency
that often leads inversion results to converge on feature-averaged estimation (see Figure 1).

In this study, we investigate the underlying issues of RED-diff, particularly optimization challenges
caused by gradient inaccuracy, which we attribute to its reliance on single-step denoising estimation as
a bootstrap target. Drawing upon principles for the distillation of diffusion models (Song et al., 2023b;
Song & Dhariwal, 2023), we develop the Consistency Regularization (CR) technique. This approach
enables more stable gradient provision, facilitating the regularization of the target signal for recovery,
and obviates the need for computationally intensive simulation of ordinary differential equations
(ODEs). Building on this foundation, we further introduce a comprehensive Hybrid Regularization
(HR) framework. It provides a unification of RED-diff and CR, amalgamating their benefits to
enhance the performance of inverse problem solving markedly.

We introduce our framework, Hybrid Regularization for Diffusion-based Inverse problem Solving
(HRDIS), which serves as a versatile solution for addressing a wide range of inverse problems. we
evaluate HRDIS across various tasks, encompassing both linear (inpainting, super-resolution, and
compressed sensing) and nonlinear (phase retrieval, high dynamic range, and nonlinear deblurring)
scenarios, using two widely recognized benchmark datasets: FFHQ (Karras et al., 2019) and ImageNet
(Deng et al., 2009). Additionally, we demonstrate the framework’s adaptability to various noise types.
Our results show that HRDIS achieves performance that matches or exceeds state-of-the-art methods,
while significantly reducing wall-clock time and memory usage.

2 BACKGROUND

2.1 SCORE-BASED DIFFUSION MODELS

The diffusion model (Ho et al., 2020; Song et al., 2020b) introduces a forward stochastic differential
equation (SDE), denoted as {xt}t∈[0,1], which gradually perturbs the initial data x0 ∼ pdata into
noise:

dx = f(x, t)dt+ g(t)dw, (1)

where f(·, t) and g(t) represent the drift and diffusion coefficients, respectively, and w is the standard
Wiener process. We denote the marginal probability densities w.r.t xt as pt(·). By selecting appropri-
ate coefficients, we can reparameterize xt = αtx0 + σtϵ, where ϵ ∼ N (0, I) and obtain a standard
Gaussian density at t = 1. The forward SDE above is coupled with a probability flow (PF) ODE,
which can be expressed as:

dx =
[
f(x, t)− 1

2g
2(t)∇x log pt(x)

]
dt, (2)

The above equation introduces a time-dependent score function ∇x log pt(x), which can be approxi-
mated minimizing denoising score matching (Hyvärinen & Dayan, 2005) objectives using a neural
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network ϵθ,
min
θ

Et,x0∼pdata,ϵ∼N (0,I)∥ϵθ(αtx0 + σtϵ, t)− ϵ∥22. (3)

After training, we can approximate ∇x log pt(x) ≈ −ϵθ(x, t)/σt and simulate such ODE in reverse
time to sample from the underlying distribution pdata.

Given that simulating the ODE can be computationally intensive, often requiring hundreds of
iterations, consistency distillation (CD) (Song et al., 2023b) has recently been introduced to learn
a direct mapping from noise to data. This mapping is parameterized as fϕ(·, ·) and is trained to
maintain self-consistency:

min
ϕ
∥fϕ(xt+ε, t+ ε)− sg(fϕ(xt, t))∥22 (4)

where ε > 0, and sg(·) denotes the stop-gradient operator. Here, xt+ε and xt are two adjacent points
on the same PF ODE trajectory. As the model easily learns the cases for small t, this loss function
propagates the endpoint of the trajectory toward t = 1, promoting a one-step approximation of the
ODE solution.

2.2 DIFFUSION MODELS FOR INVERSE PROBLEMS

The inverse problem arises in various applications across diverse domains. Formally, the general
model for the inverse problem can be expressed as:

y = A(x0) + η, y,η ∈ Rn,x0 ∈ Rm, (5)

where A(·) : Rm → Rn is the measurement operator and η is the noise in the measurement process.
When it is Gaussian noise, η ∼ N (0, γ2I), then we have p(y|x0) ∼ N (A(x0), γ

2I). In practical
applications, the collection of measurements often results in degradation relative to the original signal.
Notably, when n < m, the problem becomes ill-posed, necessitating the incorporation of a regularizer
or prior for deriving a meaningful solution. Recent research has demonstrated that diffusion models
can serve as plug-and-play generative priors for sampling from posterior distributions, thereby
obviating the need for extensive fine-tuning for specific tasks. To address this challenge, several
classes of methods have been proposed. One widely used approach is the projection-based methods
(Song et al., 2020b; Kawar et al., 2022; Wang et al., 2022), which constrains the reverse-time
denoising process to the subspace of measurements. However, these heuristics often fail to harmonize
the generated samples with the known region (Lugmayr et al., 2022).

Alternatively, guidance-based methods have been proposed (Chung et al., 2022; Song et al.,
2022) . The gradient of the log-likelihood, i.e. ∇xt log p(y|xt), is approximated and integrated
into Eq. 2 for posterior sampling from the measurement y. Specifically, in order to obtain
p(y|xt) =

∫
p(y|x0)p(x0|xt)dx0, DPS (Chung et al., 2022) approximate p(x0|xt) with an Dirac

delta distribution, i.e. p(x0|xt) ≈ δ(x0 − x̂0|t), where x̂0|t ≜ E [x0|xt] = (xt − σtϵθ(xt, t))/αt

represents the single-step denoising estimation by Tweedie’s formula (Robbins, 1992). Thus, we
have the following approximation,

∇xt log p(y|xt) ≈ − 1
γ2∇xt∥y −A(x̂0|t)∥22. (6)

While these methods prove effective and typically produce clear reconstruction results, they are not
exempt from limitations. In particular, the gradient backpropagation process of the network ϵθ is
computationally expensive and prone to instability.

Recently, Mardani et al. (2024) introduced an optimization-based method, RED-diff, with promising
results. They tackle the problem by treating posterior sampling as a variational optimization task,

min
q

DKL(q(x0|y)∥p(x0|y)), (7)

where q ≜ N (µ, ρ2I) is the variational distribution. The aforementioned variational objective can be
further simplified as:

min
µ
∥y −A(µ)∥22︸ ︷︷ ︸

reconstruction

+Et,ϵ[ρt∥ϵθ(µt, t)− ϵ∥22]︸ ︷︷ ︸
regularization

. (8)

where µt = αtµ + σtϵ and ρt is the weighting function that depends on the timestep. The first
term serves as a reconstruction term, ensuring that the reconstruction results align with the observed
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Figure 2: Comparison of intermediate denoised images µ̂0|t between DR and CR (Sec. 3.2). The top
row displays an equally spaced visualization as t progresses from 1 to 0. The bottom row presents µ̂0|t
across 5 consecutive timesteps. CR demonstrates more consistent generation and captures intricate
features at earlier stages than DR. The task is shown 16× super-resolution.

data. Meanwhile, the second term resembles the score matching objective, serving as a form of
regularization to alleviate the ill-posed nature of µ. We designate this technique as Denoising
Regularization (DR). Mardani et al. (2024) also demonstrate that the gradient of DR can bypass the
need for the Jacobian matrix of ϵθ. Consequently, the resulting gradient can be expressed as:

∇µLDR = ∇µ∥y −A(µ)∥22 + Et,ϵ[ωt(ϵθ(µt, t)− ϵ)], (9)

where Mardani et al. (2024) chooses ωt = σt/αt to balance the two terms. At this juncture, we
can integrate the above gradient into an off-the-shelf stochastic optimizer and utilize the optimized
µ as the reconstructed signal. RED-diff boasts memory efficiency, circumventing the need for
backpropagation within the neural network. Also, it offers the advantage of utilizing the degraded
image as an initial point for optimization, eliminating the necessity of starting with Gaussian noise.
However, it is notable that RED-diff encounters challenges related to mode collapse, resulting in
blurry outcomes and limited diversity. Furthermore, the convergence of RED-diff typically requires
thousands of optimization steps.

3 METHODS

In this section, we first address the practical challenges in Denoising Regularization (DR) (Sec. 3.1).
Building on these findings, we introduce Consistency Regularization (CR) as an alternative approach
to overcome the limitations of DR (Sec. 3.2). We then present a unified framework, termed Hybrid
Regularization (HR), which seamlessly integrates DR and CR as complementary techniques. Through
a comprehensive analysis, we demonstrate how HR effectively leverages the strengths of both DR
and CR methodologies to achieve superior performance (Sec. 3.3).

3.1 ANALYSIS OF GRADIENTS IN DR

Mardani et al. (2024) point out that the gradient of the regularization term in Eq. 9 can also be
interpreted as the difference between the predicted clean image and variable µ. By performing
algebraic manipulation, we derive it as follows:

ωt(ϵθ(µt, t)− ϵ) = (µt − σtϵ)/αt − (µt − σtϵθ(µt, t))/αt

= µ− µ̂0|t = ∇µ∥µ− sg(µ̂0|t)∥22, (10)

where µ̂0|t ≜ E[µ|µt] represents the single-step denoising estimate at timestep t. This derivation
clarifies the mechanism of Denoising Regularization (DR), with µ̂0|t serving as a bootstrapped
ground truth. Regularization is achieved by constraining µ to align with µ̂0|t during optimization,
thus ensuring it remains within the distribution of clean data.

Despite the effectiveness of this approach, DR has notable limitations. Firstly, the bootstrapped
ground truth µ̂0|t is highly sensitive to µt, and the stochasticity of noise perturbations introduces
significant uncertainty, as illustrated in Figure 2. This often results in optimization with inconsistent
ground truths, leading to feature-averaged reconstructions. Secondly, it is well established that
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single-step denoising outputs from diffusion models are often suboptimal, typically lacking in detail
and high-frequency components. This limitation further diminishes the performance of RED-diff,
resulting in less precise outcomes.

3.2 SELF-CONSISTENCY FOR INVERSE PROBLEM SOLVING

Given the uncertainty and imprecision of DR, the deterministic process can be employed to achieve
more consistent and accurate regularization. A straightforward approach is applying reverse ODE
inversion (Su et al., 2022) to encode µ into noisy data, eliminating the need for random perturbations.
Alternatively, we can employ a multi-step solver to obtain a more accurate estimate of µ̂0|t (Tang et al.,
2023). While these methods improve estimation accuracy, they come with a significant trade-off in
terms of computational cost. Each iteration of gradient descent requires resource-intensive inversions
and multi-step solver executions, substantially increasing the overall computation time. The added
computational burden can be prohibitive, particularly in applications where efficiency is crucial for
solving inverse problems.

We observe that the above process can draw inspiration from recent advances in consistency distillation
(CD) (Song et al., 2023b), which enable efficient approximation of diffusion ODE without the need
for intensive simulations. CD enhances self-consistency by minimizing the difference of outputs
between two adjacent points (e.g., t and t+ ε) on the ODE trajectory (Eq. 4). Given that the output
at t is more accurate than at t+ ε, the model can iteratively propagate the trajectory endpoint back
to t = 1. Motivated by this concept, we present Consistency Regularization (CR) as the difference
between two adjacent outputs. The gradient of this regularization term is expressed as follows:

∇µLCR = ∇µ∥y −A(µ)∥22 + Et,ϵ[µ̂0|t+ε − µ̂0|t], (11)

where µ̂0|t+ε = E[µ|µt+ε]. The points µt+ε and µt are adjacent, and µt can be computed using the
Euler solver as µt = αtµ̂0|t+ε+σtϵθ(µt+ε, t+ε). The key idea behind Eq. 11 is as follows: the clean
image predicted at t has a higher fidelity compared to that at t+ ε. By progressively incorporating
more complex features through the difference between these two estimates, the optimized variable
incrementally converges toward the real image at t = 0. We can further simplify the regularization
term to operate within the noise domain.

µ̂0|t+ε − µ̂0|t = µ̂0|t+ε − (µt − σtϵθ(µt, t))/αt (Bring in µt)

= ωt(ϵθ(µt, t)− ϵθ(µt+ε, t+ ε)). (12)

Note that the gradient computation outlined above necessitates two network inferences. To reduce
computational costs, we can adopt the descending sampling strategy for timesteps as proposed by
Mardani et al. (2024), using the noise prediction from the previous step ϵθ(µt+ε, t+ ε). As shown in
Figure 2, we observe that CR indeed produces more consistent µ̂0|t compared to DR, and produces
intricate structural features at an early stage of optimization.

3.3 HYBRID REGULARIZATION

Figure 3: Demonstration of the artifacts
and oversaturation present in CR. We
effectively mitigate these artifacts by in-
corporating hybrid noise.

The CR method provides sharper and more diverse restora-
tion results; however, we have observed that it occasion-
ally produces oversaturation and artifacts, as illustrated in
Figure 3. We hypothesize that this issue arises from the
lack of randomness in the noise sampling process within
CR. Unlike DR, which introduces fresh noise during the
optimization process, CR relies on the noise estimation
from previous steps. The importance of random noise in
enhancing the robustness and quality of generation has
been extensively emphasized in the existing literature on
diffusion models (Karras et al., 2022; Xu et al., 2023; Nie
et al., 2023). These findings motivate us to explore the
possibility of devising a unified framework that remains
compatible with these regularization methods, thereby har-
nessing the strengths of both approaches. In the following,
inspired by the study of solvers for diffusion models, we propose a general framework that we dub
Hybrid Regularization (HR).
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The widely used DDIM solver (Song et al., 2020a) can generate sample xt from xt+ε using the
following expression:

xt = αt x̂0:t+ε︸ ︷︷ ︸
predicted x0

+
√

σ2
t − β2

t ϵθ(xt+ε, t+ ε)︸ ︷︷ ︸
deterministic noise

+ βtϵ︸︷︷︸
random noise

(13)

The DDIM procedure begins with estimating x0 using the network, followed by its immediate
projection onto the manifold where the noisy data resides at t, according to the forward noising
process (Chung et al., 2023b). Note that the noise can be categorized into two parts: deterministic
and random noise. Their total variance (

√
σ2
t − β2

t )
2 + β2

t = σ2
t , where βt governs the stochasticity

of the sampling process. Specifically, when βt = 0, the sampling process becomes deterministic.
Returning to Eqs. 10 and 12, we observe that the disparity between the two gradients stems from the
selection of noise: the former utilizes entirely random noise, while the latter employs deterministic
noise predicted by the network. To leverage the benefits of both approaches, we introduce a coefficient
β to generate a hybrid noise ϵhybrid, maintaining constant total variance. Thus, the gradient can be
formulated as follows:

∇µLHR =∇µ∥y −A(µ)∥22 + Et,ϵ[ωt(ϵθ(µt, t)− ϵhybrid)], (14)

ϵhybrid ≜
√

1− βϵθ(µt+ε, t+ ε) +
√
βϵ

We denote the technique described above as Hybrid Regularization (HR), which constitutes a unified
formulation. It is evident that both DR and CR represent extreme cases, where β takes values of
1 and 0, respectively. We assume that there exists a sweet spot that can effectively balance these
two aspects. In the ablation study detailed in Sec. 4.4, we observe that a β value of 0.2 is generally
sufficient for our method to perform well across a wide range of experiments, obviating the need for
task-specific tuning. Unless otherwise specified, we use β = 0.2 as the default setting.

Intuitively, hybrid noise exhibits a stronger correlation with ϵθ(µt, t) compared to entirely random
noise. Consequently, HR demonstrates reduced gradient variance, thereby promoting more efficient
and stable optimization. Meanwhile, incorporating a small degree of stochasticity aids in contract
errors accumulated during the inversion process. Another key parameter is the timestep shift ε, for
which we found that a value around the 10−2 order of magnitude works well (Appendix C.8). Our
final approach, named Hybrid Regularization for Diffusion-based Inverse problem Solving (HRDIS),
is presented in Algorithm 1, with the Adam optimizer (Kingma & Ba, 2014) employed as the default.

Algorithm 1 Sampling procedure for HRDIS.

Input: observation y, measurement operator A(·), number of iterations N , timesteps sampling
strategy {sn}Nn=1, pretrained model ϵθ(·, ·), β, ωt

1: Initialize µ← A−1(y)
2: for n = 1, · · · , N do
3: t← sn
4: if n = 1 then
5: Initialize hybrid noise ϵhybrid ∼ N (0, I)
6: end if
7: Forward perturb µt ← αtµ+ σtϵhybrid

8: Calculate gradient dµ ← ∇µ∥y −A(µ)∥22 + ωt(ϵθ(µt, t)− ϵhybrid)
9: Optimize mean µ← AdamUpdate(µ, dµ)

10: Sample fresh noise ϵ ∼ N (0, I)
11: Calculate hybrid noise ϵhybrid ←

√
1− βϵθ(µt, t) +

√
βϵ

12: end for
Output: µ

3.4 COMPARISON WITH DDS

In this subsection, we discuss the differences between the proposed HRDIS framework and existing
approximate posterior sampling methods, focusing on DDS (Chung et al., 2023b) as a representative
example. We compare the graph model of HRDIS with that of DDS in Figure 4. DDS can be
understood as approximate posterior sampling, achieved by gradually guiding the unconditional
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Figure 4: Comparison of DDS (Chung et al., 2023b) (top) and HRDIS/RED-diff (bottom) graph
models. HRDIS/RED-diff maintains an additional variable that is optimized during the process,
enabling flexible initialization. The superscript (n) denotes the optimization step.

DDIM sampling process. DDS consists of three main steps: 1) Predict x̂0|t from xt. 2) Solve the
optimization problem: minx̂′

0|t
1
2∥y−Ax̂

′
0|t∥

2 + γ
2 ∥x̂

′
0|t− x̂0|t∥2 using the conjugate gradient (CG).

3) Calculate xt−1 using DDIM.Through these steps, DDS iteratively refines the sampling trajectory
xt,xt−1, . . . ,x0 by solving the subproblem in Step 2. In contrast, HRDIS builds on the RED-diff
framework and formulates sampling as a stochastic optimization. A key difference is that HRDIS
introduces and maintains an additional variable µ, initialized asA−1(y), throughout the optimization.
This variable is updated using gradients∇µLHR with an off-the-shelf Adam optimizer.

These fundamental differences result in notably distinct sampling behaviors. DDS gradually transi-
tions from noise to reconstruction. In contrast, HRDIS exhibits an evolution that bridges the degraded
image and the reconstruction, reflecting its unique optimization dynamics.

4 EXPERIMENTS

We structure our experiments to address the following inquiries. Q1: Does our proposed HRDIS
effectively mitigate the issue of generating blurry images, as observed in RED-diff (Mardani et al.,
2024), while simultaneously producing sharp and diverse reconstruction outcomes? Q2: How does
the performance of HRDIS compare to that of state-of-the-art diffusion model-based inverse problem
solvers, such as ΠGDM (Song et al., 2022), FPS (Dou & Song, 2024), among others? Furthermore,
what is the computational efficiency of our approach compared to these alternatives? Q3: What is the
optimal choice for the hyperparameter β in regulating stochasticity within the framework of hybrid
regularization?

To address Q1, we examine the inversion results of challenging images within the dataset, assessing
whether HRDIS can effectively restore high-frequency details compared to RED-diff. For Q2, we
conduct a quantitative comparison of quality and efficiency against state-of-the-art algorithms. Lastly,
to explore Q3, we conduct experiments to analyze the hyperparameter β selection.

Experimental Setup: We assess the effectiveness of the proposed HRDIS method across a range
of image restoration tasks, encompassing both linear and nonlinear inverse problems such as image
inpainting, super-resolution, compressed sensing (CS), phase retrieval, high dynamic range (HDR)
tasks, and nonlinear deblurring. Our experiments are conducted on the ImageNet 256× 256 (Deng
et al., 2009) and FFHQ 256×256 (Karras et al., 2019) datasets, with results derived from 1k validation
images, consistent with previous research standards (Chung et al., 2022; Mardani et al., 2024). We
utilize pre-trained diffusion models from (Dhariwal & Nichol, 2021) and (Choi et al., 2021). Our
comparative analysis includes benchmark techniques, namely DDRM (Kawar et al., 2022), DPS
(Chung et al., 2022), ΠGDM (Song et al., 2022), FPS (Dou & Song, 2024) and RED-diff (Mardani
et al., 2024). Additional details on the experimental setup can be found in the Appendix B.2.
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Table 1: Quantitative evaluation (FID, LPIPS, CA (unit:%)) of solving linear inverse problems on
ImageNet 256×256-1k validation dataset. Bold: best, underline: second best.

Inpaint (10-20%) Inpaint (20-30%) SR (×4) CS (25%)

Method LPIPS ↓ FID ↓ CA ↑ LPIPS ↓ FID ↓ CA ↑ LPIPS ↓ FID ↓ CA ↑ LPIPS ↓ FID ↓ CA ↑
DDRM (Kawar et al., 2022) 0.071 13.88 73.3 0.123 26.09 70.2 0.265 47.43 65.3 0.250 59.40 51.7
DPS (Chung et al., 2022) 0.146 27.65 69.0 0.182 36.64 64.6 0.197 37.35 67.7 0.168 34.20 68.2
ΠGDM (Song et al., 2022) 0.073 12.85 73.7 0.118 21.84 72.8 0.150 28.96 71.8 0.075 22.98 73.5
DDNM (Wang et al., 2022) 0.075 14.06 72.0 0.106 26.61 67.9 0.251 47.15 61.9 0.247 53.16 58.4
GDP (Fei et al., 2023) 0.070 13.91 72.5 0.135 27.83 67.3 0.234 44.08 62.4 0.283 60.01 52.3
DDS (Chung et al., 2023b) 0.067 13.12 73.8 0.130 27.64 67.9 0.198 41.62 62.8 0.270 58.41 55.1
FPS (Dou & Song, 2024) 0.065 13.07 73.9 0.121 24.90 70.5 0.189 34.88 67.8 0.124 32.76 67.0
RED-diff (Mardani et al., 2024) 0.067 13.20 73.6 0.117 24.67 69.5 0.249 44.16 65.8 0.108 29.90 69.3
HRDIS (Ours) 0.054 10.94 74.7 0.096 20.10 71.3 0.137 33.01 68.8 0.059 22.04 72.3

4.1 LINEAR INVERSE PROBLEMS

Figure 5: Diversity of reconstructions generated
by HRDIS (Columns 2-4).

We begin our experiments with image inpaint-
ing, using the freeform masks provided by (Sa-
haria et al., 2022a). Specifically, we apply 10%-
20% and 20%-30% masks on the ImageNet
dataset and employ the more challenging 30%-
40% mask on FFHQ. For the super-resolution
experiments, we utilize average pooling to per-
form 4× downsampling on ImageNet and 16×
downsampling on FFHQ. In the compressed
sensing (CS) task, we adopt an orthogonal sam-
pling matrix applied to the image blocks, with
a sampling rate of 25% for ImageNet and 10%
for FFHQ. We evaluate our results using two
widely adopted metrics: Learned Perceptual Im-
age Patch Similarity (LPIPS) (Zhang et al., 2018) and Fréchet Inception Distance (FID) (Heusel et al.,
2017), computed on the test images. Additionally, for the ImageNet dataset, we report classifier
accuracy (CA) using a pre-trained ResNet50 (He et al., 2016).

Tables 1 and 2 present the quantitative outcomes of linear inverse problem solving on ImageNet
and FFHQ, respectively. It is evident that HRDIS consistently ranks within the top two across all
metrics and significantly outperforms other methods in numerous instances. Particularly noteworthy
is HRDIS’s exceptional performance in the inpainting and CS task, where it outshines all other
techniques. While ΠGDM demonstrates superiority in the super-resolution task, HRDIS closely
follows as the runner-up. Following the quantitative analysis, we present a visual comparison with
RED-diff in Figure 5. It is evident that RED-diff frequently converges to the blurry images, which
may not always align with the desired inversion result. In contrast, HRDIS exhibits the ability to
generate diverse and plausible restored images across various random seed settings, offering a more
flexible and robust solution to the image restoration task. Figures 6 and 7 provides a qualitative
comparison with other state-of-the-art inversion methods. Our observations indicate that DDRM
tends to generate less realistic results and struggles to guide the reverse diffusion process toward
achieving globally harmonious outcomes. Additionally, ΠGDM occasionally exhibits instability,
particularly evident in challenging samples, attributed to the necessity of backpropagating through the
score network, resulting in failures in certain instances. In contrast, HRDIS can effectively recognize
context and produce better restorations. See Appendix C.9 for more visualizations.

The wall-clock time and GPU memory of the different algorithms for the inpainting are reported in
Table 3. Our observations reveal that the optimization step of our method can be an order of magnitude
fewer than that of RED-diff and FPS. In comparison to state-of-the-art guidance-based methods (DPS,
ΠGDM), our approach demonstrates exceptional lightweightness and memory efficiency. Although
DDRM is also efficient, its applicability is limited to linear operator A(·), and its efficiency is not
guaranteed in scenarios where fast singular value decomposition is not feasible.

4.2 NONLINEAR INVERSE PROBLEMS
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Figure 6: Comparison of the proposed HRDIS with alternatives for inpainting (left) and super-
resolution (right) on ImageNet 256× 256 and FFHQ 256× 256.

Table 2: Quantitative evaluation (FID, LPIPS)
of solving linear inverse problems on FFHQ
256×256-1k validation dataset.

Inpaint (30-40%) SR (×16) CS (10%)

Method LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓
DDRM 0.099 23.91 0.324 91.44 0.535 130.2
DPS 0.138 44.75 0.220 42.31 0.228 68.50
ΠGDM 0.084 15.84 0.188 39.33 0.091 33.25
DDNM 0.103 19.72 0.210 41.50 0.154 56.15
GDP 0.112 24.38 0.237 43.51 0.267 91.84
DDS 0.109 22.12 0.213 41.81 0.256 85.96
FPS 0.093 21.15 0.228 45.90 0.179 60.73
RED-diff 0.086 17.38 0.286 73.39 0.184 62.19
HRDIS (Ours) 0.082 15.42 0.213 40.97 0.088 35.27

Table 3: Comparison of wall-clock time and
memory consumption, measured on a single
RTX 3090 GPU.

ImageNet FFHQ

Method Time (s/img) Memory Time (s/img) Memory

DDRM 10 4.4G 4 2.5G
DPS 274 8.7G 56 6.0G
ΠGDM 33 8.8G 6 6.1G
DDNM 13 4.6G 5 2.7G
GDP 84 4.3G 33 2.4G
DDS 13 4.6G 5 2.7G
FPS 95 5.2G 35 3.3G
RED-diff 82 4.3G 32 2.4G
HRDIS (Ours) 14 4.3G 5 2.4G

Table 4: Quantitative evaluation (FID, LPIPS) of solving
nonlinear inverse problems on FFHQ 256×256-1k validation
dataset.

Phase retrieval HDR Nonlinear deblurring

Method LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓
DPS 0.387 54.64 0.407 84.64 0.279 52.58
RED-diff 0.462 62.47 0.063 18.20 0.329 80.13
HRDIS (Ours) 0.089 38.34 0.044 13.78 0.236 52.36

We evaluate the nonlinear inverse
problem on the FFHQ dataset, begin-
ning with phase retrieval. Given the
inherent instability of phase recovery,
we follow the strategy employed by
Chung et al. (2022), utilizing an over-
sampling rate of 2.0 and reporting the
best results under four random seeds.
Next, we address the High Dynamic
Range (HDR) task, which incorpo-
rates a truncation function to crop pixel values, represented as A(x) = Clip(2x,−1, 1). we adopt a
pre-trained network to simulate the blurring degradation operator as described in Tran et al. (2021).
Since methods such as DDRM, ΠGDM, and FPS are not scalable to these nonlinear challenges, we
compare our approach exclusively with DPS and RED-diff.

Figure 7: Comparison of the proposed HRDIS with alternatives for compressed sensing (left) and
phase retrieval (right) on ImageNet 256× 256 and FFHQ 256× 256.
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Figure 8: Comparison of the proposed HRDIS with alternatives for HDR task (left) and nonlinear
deblurring (right) on FFHQ 256× 256.

Table 4 presents the quantitative metrics for various solvers applied to the nonlinear inverse problem.
Notably, the LPIPS scores for phase retrieval are significantly higher than those of the baseline,
demonstrating a substantial improvement. Figures 7 and 8 provide qualitative results. We can see that
in the phase retrieval task, HRDIS generates reconstructions that closely match the reference image,
whereas DPS and RED-diff yield unrealistic outputs. Additionally, DPS encountered challenges with
the HDR task, failing to reconstruct the original image accurately. For the nonlinear deblurring task,
the RED-diff method exhibited significant gradient variance, leading to a pronounced loss of detail
and reduced fidelity. In contrast, our observations indicate that HRDIS consistently generates highly
realistic samples, even in these more challenging nonlinear scenarios.

4.3 HANDLING VARIOUS NOISE STATISTICS

As an optimization-based framework, HRDIS is adept at managing various types of noise. In this
subsection, we empirically evaluate HRDIS’s performance under noisy conditions. To assess its
robustness, we apply a freeform mask for inpainting and introduce three types of noise: Gaussian,
Poisson, and speckle, into the observations. The results, detailed in Appendix C.2, show that HRDIS
consistently outperforms other methods in most scenarios. This demonstrates the framework’s
robustness and adaptability in handling various measurement statistics.

4.4 ABLATIONS: INFLUENCE OF β
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Figure 9: Quantitative results for varying values of β ∈
{0, 0.1, 0.2, 0.5, 1}.

We conduct an ablation analysis to
investigate the impact of the param-
eter β within the HRDIS method,
focusing on inpainting and super-
resolution using the ImageNet dataset,
as well as nonlinear deblurring on
the FFHQ dataset. The quantitative
results in Figure 9 indicate that a
β value of 0.2 consistently achieves
lower LPIPS and FID scores across
different tasks. As shown in Figure
11 (Appendix C.1), excessively high
values of β result in over-smoothing, while very low values introduce noticeable artifacts. Notably,
β = 0.2 strikes an optimal balance, effectively reconstructing plausible high-frequency details.

5 CONCLUSION

This paper addresses the challenges associated with solving diffusion-based inverse problems using
Denoising Regularization (DR). To tackle these challenges, we introduce the Consistency Regu-
larization (CR) method, which effectively mitigates the issue of inaccurate gradient estimations.
Additionally, we explore the integration of hybrid noise, resulting in the development of a unified
HRDIS framework that fosters synergy between the two regularization techniques. The proposed
framework is versatile, making it applicable to both linear and nonlinear inverse problems, as
well as accommodating diverse measurement statistics. Comprehensive experimental evaluations
demonstrate that HRDIS not only surpasses current state-of-the-art methods but also maintains high
computational efficiency.
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A DISCUSSION

A.1 IMPACT STATEMENT

Our proposed framework presents a novel approach to addressing inverse problems by applying
diffusion models. Given its versatility and computational efficiency, we anticipate that our framework
will benefit the relevant research community. However, it is crucial to acknowledge the potential
misuse of our approach in generating deceptive or malicious content. Additionally, reliance on
generative techniques like diffusion models raises concerns regarding inherent biases present in the
vast datasets utilized for training. These biases have the potential to manifest in the generated outputs.
It may be necessary to establish ethical guidelines and regulations to ensure responsible development
and deployment of relevant technologies.

A.2 LIMITATIONS AND FUTURE WORKS.

While our proposed framework demonstrates efficacy in addressing both linear and nonlinear sce-
narios, its primary limitation arises from the requirement to ascertain the form of the measurement
operator or the computational procedure. Consequently, an enticing avenue for future exploration
is the extension of our approach to tackling blind inverse problems (Chung et al., 2023a; Murata
et al., 2023), where such prior knowledge is unavailable. We provide a preliminary experiment
in Appendix C.7. Furthermore, considering the prevalence of diffusion models operating within
latent spaces (Rombach et al., 2022), a promising direction for advancement involves extending
our methodology to encompass latent diffusion models. Finally, since HRDIS involves stochastic
optimization for non-convex problems, its convergence behavior remains an open theoretical question
and warrants further investigation.

A.3 RELATED WORKS

Recent research has delved into the utilization of diffusion generation for solving inverse problems
preemptively. Earlier studies (Song & Ermon, 2019; Song et al., 2020b; Lugmayr et al., 2022)
focused on substituting observational components within the generation process to facilitate tasks like
image inpainting. (Song et al., 2021) applied this technique to medical image reconstruction, while
DDRM (Kawar et al., 2022) extended it to address more general degeneracies through singular value
decomposition. Meanwhile, ILVR (Choi et al., 2021) achieved reference-based generation using a
low-pass filter. DDNM (Wang et al., 2022) tackled inverse problem-solving by refining only the zero
space during generation. Despite these advancements, these methods often remain confined to linear
degeneracies and struggle with producing highly realistic generation results.

Subsequent research, such as DPS (Chung et al., 2022) and ΠGDM (Song et al., 2022), has aligned
the generation process with observations by incorporating a guidance term of likelihood, resulting
in clearer predictions. However, a drawback of these approaches is the computational expense and
instability associated with backpropagating through the score network. Additionally, Zhu et al. (2023)
combined diffusion modeling with Half-Quadratic-Splitting for plug-and-play image restoration.
There has also been a series of works (Trippe et al., 2022; Wu et al., 2024b; Dou & Song, 2024;
Cardoso et al., 2023) has also linked a posteriori sampling of diffusion models to sequential Monte
Carlo. These methods typically maintain multiple particles during the generation process and therefore
require more memory. PSLD (Rout et al., 2024) and ReSample Song et al. (2023a) explored the
use of latent diffusion to solve the inverse problem. More recently, RED-diff (Mardani et al., 2024)
offers a new perspective on diffusion-based inverse problem solving by modeling it as a variational
problem. Despite its efficacy, RED-diff suffers from mode-collapse. In response to this limitation,
we introduce the HRDIS framework in this paper, building upon RED-diff to significantly enhance
the accuracy and efficiency of image inversion. Xu et al. (2024) discusses the use of consistency
models to improve DPS, although this approach may be limited by the fact that consistency model
checkpoints are not widely available.

Some text-to-3D techniques (Poole et al., 2022; Shi et al., 2023; Liang et al., 2024; Wang et al., 2024)
are also pertinent to our work, as they commonly optimize the score distillation loss to generate 3D
assets from a 2D prior. This loss bears resemblance to RED-diff. However, our approach diverges in
its objective. While text-to-3D efforts focus on lifting a 2D prior to 3D, our focus lies in leveraging a
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diffusion prior to solving inverse problems. Thus, our methodology differs fundamentally in purpose,
despite similarities in the optimization paradigm.

B ADDITIONAL METHOD DETAILS

B.1 ADDITIONAL JUSTIFICATION FOR CR

We aim to leverage deterministic probability flow to enhance Eq. 10, where the objective is closely
linked to the distillation of diffusion models, as both tasks involve fitting the endpoint of the PF ODE
provided by the pre-trained diffusion model. However, a nuanced distinction exists between them:
Eq. 10 optimizes the image µ, whereas the distillation process involves optimizing the parameters
φ of the distillation network fφ(·, ·). Specifically, the typical procedure for distilling a pre-trained
diffusion model involves simulating an inverse PF ODE to collect x0 ∼ pdata, which yields training
data for distillation. Subsequently, the following loss function is employed for distillation:

min
φ
∥fφ(xt, t)− x0∥22. (15)

To circumvent the need for extensive simulation, Song et al. (2023b) introduces an innovative
alternative approach termed Consistency Distillation (CD). Their study reveals the self-consistency
property within the ODE trajectories of the diffusion model, wherein points along the same trajectory
correspond to identical initial points at t = 0 (Figure 10 (a)). Therefore, they propose an indirect
distillation method by minimizing predictions at adjacent times (e.g., t and t + ε) for single-step
generation,

min
φ
∥fφ(xt+ε, t+ ε)− sg(fφ(xt, t))∥22, (16)

where fφ(xt+ε, t+ ε) and fφ(xt, t) can be viewed as student and teacher predictions, respectively.
Since the boundary condition fφ(x0, 0) = x0 is satisfied, the prediction fφ(xt, t) is closer to the
ground truth than that at t+ ε. Through iterative propagation, the model aligns the endpoint of the
trajectory such that, for any t, fφ(xt, t) ≈ x0.

In the context of diffusion-based inverse problem solving, we aim to penalize ∥µ− x0∥22 for regu-
larization (Figure 10 (b)). However, obtaining the ideal x0 is often challenging, as it may require
inversion and solving the ODE (Su et al., 2022; Liang et al., 2024). Notably, adjacent points of µt

are easier to obtain. Thus, we incorporate insights from CD, which rely on the difference between
outputs at two points along the same trajectory to iteratively refine µ. This process enables us to
indirectly align µ with the endpoint of the ODE.

Data Noise

X0 XT

Forward Process

Reverse Process

f𝜑(𝐱𝑡+𝜀 , 𝑡 + 𝜀)

f𝜑(𝐱𝑡 , 𝑡)

f𝜑(𝐱𝑇 , 𝑇)

Consistency Distillation (CD) Consistency Regularization (CR)

Self-consistency property

Original objective

Simulation-free objective

𝐱0

||f𝜑(𝐱𝑡+𝜀 , 𝑡 + 𝜀) − sg(f𝜑(𝐱𝑡, 𝑡))||2
2

||f𝜑(𝐱𝑡, 𝑡) − 𝐱0||2
2

Original objective

Simulation-free objective

sg( Ƹ𝜇0|𝑡+𝜀 − Ƹ𝜇0|𝑡)
⊺𝜇

||𝜇 − 𝐱0||2
2

(a) Diagram for Self-consistency property in CD (b) Comparison between CD and  CR (Sec. 3.2)

Optimize 𝝋 Optimize 𝜇

Figure 10: Schematic illustrating the motivation for Consistency Regularization (CR). (a) Consistency
Distillation (CD) (Song et al., 2023b) is trained to map points on any ODE trajectory (gray dashed
line) of diffusion models to the trajectory’s origin in a single step, ensuring the self-consistency
property is maintained. (b) CR and CD share the same concept of transforming the original objective
into a simulation-free objective based on self-consistency. However, they differ in that the former
optimizes µ while the latter optimizes parameter φ.
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Table 5: Hyperparameter choice for the proposed method.

Problem Inpainting SR CS Phase retrieval HDR Nonlinear deblurring

N 150 100 300 500 100 100
λ1 1 1 1 0.5 1 0.02
λ2 0.25 0.20 0.20 0.25 0.25 0.25
learning rate 0.1 0.5 0.5 0.7 0.1 0.1

B.2 EXPERIMENTAL SETUP

All experiments, including time and memory calculations, were conducted on a single NVIDIA RTX
3090 GPU. We employed the Adam optimizer (Kingma & Ba, 2014) with momentum parameters
set to (0.9, 0.99). The parameter β, utilized in synthesizing the hybrid noise, remained fixed at 0.2
throughout our experiments. We also chose descending timestep from t = 1 to t = 0 as in (Mardani
et al., 2024). The denoiser weight ωt is determined as the inverse signal-to-noise ratio (SNR), σt/αt.

In practice, we introduce two coefficients to balance the reconstruction and regularization terms,

∇µLHR = λ1∇µ∥y −A(µ)∥22 + λ2Et,ε,ϵ[ωt(ϵθ(µt, t)− ϵhybrid)], (17)

For most tasks, optimizing the number of steps in the range of N = 100 ∼ 150 produces satisfactory
results. For more challenging degenerations, such as compressed sensing and phase retrieval, we
use more steps to improve performance further. In addition, for the phase retrieval task, which is
particularly sensitive to initial noise, we found that starting with random noise for the first 250 steps,
followed by hybrid noise for the remaining 250 steps, significantly improves performance. Table 5
details the selected hyperparameters of our proposed method.

Below, we give the Pytorch-style pseudocode for our HRDIS implementation.

# Add noise to perturbation ’mu’
noise_xt = torch.randn_like(mu)
if step == 0:

hybrid_noise = noise_xt
else:

# Synthesize hybrid noise
hybrid_noise = (1 - beta).sqrt() * deter_noise + beta.sqrt() *
noise_xt

xt = alpha_t.sqrt() * mu + (1 - alpha_t).sqrt() * hybrid_noise

# Call the denoising model to get the noise ’et’
with torch.no_grad ():

et = model(xt, t).detach ()

# Compute reconstruction and regularization terms
e_obs = y_0 - A(mu)
loss_obs = (e_obs **2).mean() / 2
loss_noise = torch.mul((et - hybrid_noise).detach (), mu).mean()

# Compute the weights of two items
snr_inv = (1 - alpha_t).sqrt() / alpha_t.sqrt()
v_t = lambda_1
w_t = lambda_2 * snr_inv
loss = w_t * loss_noise + v_t * loss_obs

# Adam step for ’mu’
optimizer.zero_grad ()
loss.backward ()
optimizer.step()

# Store the noise ’et’ for the next iteration
deter_noise = et.clone()
step += 1

Listing 1: Pseudocode of HRDIS for performing one optimization step.
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For the implementation of baseline methods, including DDRM (Kawar et al., 2022), DPS (Chung
et al., 2022), DDNM (Wang et al., 2022), GDP (Fei et al., 2023), DDS (Chung et al., 2023b), FPS
(Dou & Song, 2024), and RED-diff (Mardani et al., 2024), we utilized the official repositories
provided by the respective authors. However, since no official implementation of ΠGDM (Song et al.,
2022) was available, we faithfully reproduced it using the pseudo-code provided by the authors. For
the hyperparameters, we primarily adhered to the original configurations, with slight fine-tuning
to achieve optimal performance. DDRM and ΠGDM were configured with 100 steps, while DPS,
FPS, and RED-diff required 1000 steps for effective performance. Additionally, we observed that
increasing the number of particles in FPS yielded only marginal improvements, so we set it to 1 for
our experiments.

We use the default code and settings of each competitor from their official homepages as below.

• DDRM (Kawar et al., 2022): https://github.com/bahjat-kawar/ddrm

• DPS (Chung et al., 2022): https://github.com/DPS2022/diffusion-posterior-sampling

• DDNM (Wang et al., 2022): https://github.com/wyhuai/DDNM

• GDP (Fei et al., 2023): https://github.com/Fayeben/GenerativeDiffusionPrior

• DDS (Chung et al., 2023b): https://github.com/HJ-harry/DDS

• FPS (Dou & Song, 2024): https://github.com/ZehaoDou-official/FPS-SMC-2023

• RED-diff (Mardani et al., 2024): https://github.com/NVlabs/RED-diff

C ADDITIONAL RESULTS

C.1 IMPACT OF β FOR HYBRID NOISE

We present the effect of varying β on the outputs of different inverse problems in Figure 11. When β
is set to 0, corresponding to the CR described in Sec. 3.2, we observe the generation of high-frequency
information, albeit accompanied by severe artifacts. When β is set to 1, the result aligns with the DR
used in RED-diff (Mardani et al., 2024), producing a blurry solution. Notably, when β is set to 0.2,
we identify a sweet spot that effectively balances the two aforementioned aspects, thus unlocking
their potential for synergy.

Figure 11: Restoration results for various inverse problems under different β.
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C.2 NOISY INVERSE PROBLEMS

In this section, we empirically verify the performance of HRDIS under noisy observation conditions.
Specifically, we simulate four types of noise: Gaussian noise with standard deviations of 0.05 and
0.1, Poisson noise with the noise level set to 1.0, and speckle noise with a standard deviation of 0.1.

As an optimization-based framework, HRDIS accommodates noise without requiring modifications
to the algorithm. For Gaussian noise with a standard deviation of 0.05, we set the weight λ1 of
the reconstruction term to 0.1, and for other noise types, we reduce λ1 to 0.05. The ablation study
in RED-diff (Mardani et al., 2024) indicated that the method performs optimally when the time-
dependent parameter ωt is set to 1

SNRt
:= σt/αt. While this configuration is effective for HRDIS

under noiseless conditions, it presents challenges in noisy settings, as the decreasing ωt tends toward
0, leading to insufficient regularization and potential overfitting to noisy data. To address this issue,
we implemented a clipping mechanism for ωt (i.e., torch.clip

(
1

SNRt
,min = 2.0

)
), ensuring that the

regularization term remains effective throughout the optimization process.

The quantitative results presented in Tables 6 and 7 demonstrate that HRDIS consistently outperforms
other methods across most scenarios. Furthermore, qualitative comparisons in Figures 7 to 15
reveal that ΠGDM is particularly susceptible to noise, whereas DDRM, though effective at noise
removal, often results in blurred reconstructions. Additionally, DPS exhibits instability and is prone
to producing artifacts in the presence of Poisson and speckle noise. Overall, our method exhibits
strong robustness to various types of noise, confirming its effectiveness across different measurement
statistics.

Table 6: Quantitative evaluation (FID, LPIPS, CA (unit:%)) of solving inpainting problems under
Gaussian noise on ImageNet 256×256 and FFHQ 256×256 validation dataset. Bold: best, underline:
second best.

ImageNet 256×256 FFHQ 256×256

Method LPIPS ↓ FID ↓ CA ↑ LPIPS ↓ FID ↓

γ = 0.05

DDRM (Kawar et al., 2022) 0.109 30.1 70.1 0.138 45.1
ΠGDM (Song et al., 2022) 0.203 35.9 66.3 0.236 44.7
RED-diff (Mardani et al., 2024) 0.143 30.8 66.8 0.187 55.9
HRDIS (Ours) 0.129 29.4 70.4 0.153 31.1

γ = 0.1

DDRM (Kawar et al., 2022) 0.173 50.2 63.4 0.179 59.3
ΠGDM (Song et al., 2022) 0.412 62.8 52.0 0.440 69.6
RED-diff (Mardani et al., 2024) 0.278 47.9 60.3 0.340 91.5
HRDIS (Ours) 0.192 38.3 65.4 0.159 31.5

Table 7: Quantitative evaluation under Poisson and speckle noise on FFHQ 256×256-1k validation
dataset. Bold: best, underline: second best.

Poisson Speckle

Method LPIPS ↓ FID ↓ LPIPS ↓ FID ↓
DPS Chung et al. (2022) 0.226 73.09 0.240 85.41
RED-diff Mardani et al. (2024) 0.192 58.96 0.232 78.72
HRDIS (Ours) 0.148 29.13 0.152 30.75
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Figure 12: Comparison of the proposed HRDIS with alternatives under Poisson noise, including DPS
(Chung et al., 2022), RED-diff (Mardani et al., 2024) and HRDIS (Ours).

Figure 13: Comparison of the proposed HRDIS with alternatives under speckle noise, including DPS
(Chung et al., 2022), RED-diff (Mardani et al., 2024) and HRDIS (Ours).
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Figure 14: Comparing methods for inpainting problem with Gaussian noise (γ = 0.05), including
DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2022) and HRDIS (Ours).

Figure 15: Comparing methods for inpainting problem with Gaussian noise (γ = 0.1), including
DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2022) and HRDIS (Ours).
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C.3 ABLATION FOR COMBINATION OF DR AND DDIM SOLVER

A straightforward approach is to incorporate existing DDIM solvers (Song et al., 2020a) using hybrid
noise to enhance DR. In this subsection, we evaluate this approach. The quantitative results, presented
in Table 8, indicate that incorporating DDIM into DR improves the performance of RED-diff, aligning
with the conclusions from Sec. 3.1. While the random perturbations in RED-diff introduce uncertainty,
the DDIM solver mitigates this issue to some extent. However, DR+DDIM still falls short compared
to HRDIS. By providing a smooth interpolation between DR and CR, HRDIS forms a more flexible
and synergistic framework. Figure 16 illustrates qualitative comparisons that further highlight the
advantages of HRDIS.

Table 8: Ablation for combination of DR and DDIM across these tasks: ImageNet256×256-Inpainting,
ImageNet256×256-Super Resolution, and FFHQ256×256-Nonlinear Deblurring.

Inpainting Super Resolution Nonlinear Deblurring

Method LPIPS ↓ FID ↓ CA ↑ LPIPS ↓ FID ↓ CA ↑ LPIPS ↓ FID ↓

DR 0.117 24.6 69.5 0.249 44.2 65.8 0.329 80.1
DR+DDIM 0.113 23.5 70.4 0.141 35.6 65.7 0.295 73.7
HRDIS (Ours) 0.096 20.1 71.3 0.138 33.0 68.8 0.236 52.4

Figure 16: Ablation for combination of DR and DDIM solver.

C.4 COMPARISON WITH DDS

Here we show some qualitative comparisons with DDS to demonstrate the advantages of the proposed
HRDIS. Among them, Figure 17 shows the evolution of the two methods during the inversion process.
Figure 18 shows the results of three linear tasks.

C.5 ABLATION FOR REGULARIZATION WITH CONSISTENCY MODELS

In this subsection, we present an ablation study, exploring the use of the output from the Consistency
Model (CM) (Song et al., 2023b) as a regular bootstrap target for regularization. Due to the lack of
available checkpoints for benchmark datasets such as ImageNet or FFHQ at a resolution of 256, we
conducted experiments using a checkpoint trained on the LSUN bedroom dataset (Yu et al., 2015).
Figure 19 provides qualitative results from these experiments. Our findings indicate that incorporating
the CM output as a bootstrap target slightly enhances the restoration of high-frequency details, as it
offers a more reliable target for regularization.
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Figure 17: Visualization of evolution in DDS (Chung et al., 2023b) and HRDIS (Ours) for image
inversion.

Figure 18: Qualitative comparison with DDS (Chung et al., 2023b).
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Figure 19: Qualitative results on inpainting using the output of the CM (Song et al., 2023b) as a
regularization term.

C.6 FURTHER EXPERIMENTAL EESULTS

We provide quantitative evaluations based on the standard PSNR and SSIM metrics in Table 9,
Table 10 and Table 11.

Table 9: Quantitative evaluation (PSNR, SSIM) of solving linear inverse problems on ImageNet
256×256-1k validation dataset. Bold: best, underline: second best.

Inpaint (10-20%) Inpaint (20-30%) SR (×4) CS (25%)

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DDRM (Kawar et al., 2022) 26.79 0.919 23.74 0.860 26.00 0.743 24.34 0.656
DPS (Chung et al., 2022) 24.35 0.812 21.86 0.765 24.81 0.710 24.53 0.673
ΠGDM (Song et al., 2022) 22.98 0.896 20.18 0.825 25.23 0.731 28.58 0.740
DDNM (Dou & Song, 2024) 22.58 0.894 22.54 0.865 21.39 0.529 23.39 0.588
DDS (Dou & Song, 2024) 22.02 0.807 19.26 0.815 22.25 0.580 23.02 0.569
FPS (Dou & Song, 2024) 24.81 0.845 20.76 0.793 24.90 0.703 25.77 0.690
RED-diff (Mardani et al., 2024) 26.60 0.921 23.45 0.869 25.89 0.746 26.01 0.669
HRDIS (Ours) 25.65 0.913 22.12 0.835 25.54 0.708 28.79 0.807

Table 10: Quantitative evaluation (PSNR, SSIM) of solving linear inverse problems on FFHQ
256×256-1k validation dataset.

Inpaint (30-40%) SR (×16) CS (10%)

Method PSNR ↑ SSIM↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DDRM 23.58 0.862 22.94 0.676 24.34 0.656
DPS 22.97 0.804 20.76 0.529 25.60 0.707
ΠGDM 21.85 0.833 21.63 0.614 27.49 0.779
DDNM 20.43 0.816 20.83 0.574 25.13 0.708
DDS 20.07 0.810 20.77 0.570 22.39 0.609
FPS 22.17 0.828 20.95 0.553 25.86 0.715
RED-diff 23.78 0.867 22.64 0.654 26.58 0.761
HRDIS (Ours) 23.06 0.837 21.75 0.622 27.85 0.802

Table 11: Quantitative evaluation (PSNR, SSIM) of solving nonlinear inverse problems on FFHQ
256×256-1k validation dataset.

Phase retrieval HDR Nonlinear deblurring

Method PSNR ↑ SSIM↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DPS 19.64 0.507 21.19 0.780 21.65 0.563
RED-diff 17.97 0.488 25.97 0.869 19.59 0.484
HRDIS (Ours) 30.08 0.814 27.51 0.891 23.06 0.597

C.7 BLIND INVERSE PROBLEM ON REAL-WORLD SAMPLES

In this subsection, we initially explore the utilization of the proposed HRDIS for blind inverse
problem-solving on real-world images. To address the challenge of degradation, we conducted
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additional experiments by incorporating a learnable degradation model. Inspired by the approach
presented in GDP (Fei et al., 2023), we assume a simple degradation model defined as:

y = fx+M =: Af,M(x),

where f is a scalar andM is a mask, both of which are initially unknown. These parameters, along
with the image x, are optimized alternately using HRDIS. The optimization is performed as follows:
1. Update f andM: These parameters are updated using the gradient:

∇f,M∥y −Af,M(µ)∥2.
2. Update µ: The image is updated using the gradient:

∇µ∥y −Af,M(µ)∥2 + E[ωt(ϵθ(µt, t)− ϵhybrid)].

We performed preliminary experiments on real-world low-light images from the LOL dataset
(Wei et al., 2018). The results in Table 12 demonstrate that HRDIS achieves superior performance
compared to GDP-xt/x0 (Fei et al., 2023), with the added advantage of reduced computational
cost. Specifically, HRDIS requires only about 300 NFE, compared to 1000 NFE for GDP. Figure 20
provides qualitative results that illustrate the effectiveness of HRDIS in reconstructing high-quality
images from degraded inputs. These findings highlight HRDIS’s potential in addressing blind inverse
problems effectively and efficiently.

Figure 20: Qualitative comparison of blind reversal problems.

Table 12: Quantitative evaluation of blind inverse problem on the LOL dataset.

Method PSNR ↑ SSIM↑ FID ↓
GDP-xt 7.32 0.57 238.92
GDP-x0 13.93 0.63 75.16
HRDIS (Ours) 14.25 0.65 74.89

C.8 ABLATION OF ε

To investigate the influence of ε in the CR term, we conducted an ablation study focusing on inpainting
and super-resolution tasks using the FFHQ dataset. The diffusion model operates over a normalized
time interval [0, 1], and we evaluated the performance of ε across several magnitudes.
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The quantitative results of the ablation study are presented in Figure 21. We observed that ε performs
optimally when it is around the order of 10−2. Key observations include:

• When ε is too small (10−3), the CR effect diminishes, resulting in blurred outputs.
• When ε is too large (10−1), the resulting image quality degrades due to the discretization

error.

These findings highlight the importance of carefully selecting ε to achieve optimal performance.
Figure 22 provides qualitative visualizations of the ablation study. These examples clearly demonstrate
the impact of different ε values on the final output.
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Figure 21: Quantitative results for varying values of ε ∈ {0.001, 0.005, 0.007, 0.01, 0.02, 0.05, 0.1}.

Figure 22: Visualization of the output of different ε.
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C.9 ADDITIONAL FIGURES

In this subsection, we show additional qualitative results for HRDIS.

Figure 23: Comparing methods for the image inpainting problem on ImageNet 256× 256, including
DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2022) and HRDIS (Ours).
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Figure 24: Comparing methods for the image inpainting problem on FFHQ 256 × 256, including
DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2022) and HRDIS (Ours).
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Figure 25: Comparing methods for the image super-resolution problem on ImageNet 256 × 256,
including DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2022) and HRDIS (Ours).
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Figure 26: Comparing methods for the image super-resolution problem on FFHQ 256×256, including
DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2022) and HRDIS (Ours).
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Figure 27: Comparing methods for the compressed sensing problem on ImageNet 256 × 256,
including DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2022) and HRDIS (Ours).
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Figure 28: Comparing methods for the compressed sensing problem on FFHQ 256× 256, including
DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2022) and HRDIS (Ours).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 29: Comparing methods for the phase retrieval problem on FFHQ 256× 256, including DPS
(Chung et al., 2022), RED-diff (Mardani et al., 2024) and HRDIS (Ours).
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Figure 30: Comparing methods for the nonlinear HDR problem on FFHQ 256× 256, including DPS
(Chung et al., 2022), RED-diff (Mardani et al., 2024) and HRDIS (Ours).
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Figure 31: Comparing methods for the nonlinear deblurring problem on FFHQ 256× 256, including
DPS (Chung et al., 2022), RED-diff (Mardani et al., 2024) and HRDIS (Ours).
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