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Abstract

Machine learning algorithms often struggle to con-
trol complex real-world systems. In the case of
nuclear fusion, these challenges are exacerbated,
as the dynamics are notoriously complex, data is
poor, hardware is subject to failures, and exper-
iments often affect dynamics beyond the experi-
ment’s duration. Existing tools like reinforcement
learning, supervised learning, and Bayesian op-
timization address some of these challenges but
fail to provide a comprehensive solution. To over-
come these limitations, we present a multi-scale
Bayesian optimization approach that integrates a
high-frequency data-driven dynamics model with
a low-frequency Gaussian process. By updating
the Gaussian process between experiments, the
method rapidly adapts to new data, refining the
predictions of the less reliable dynamical model.
We validate our approach by controlling tearing
instabilities in the DIII-D nuclear fusion plant.
Offline testing on historical data shows that our
method significantly outperforms several base-
lines. Results on live experiments on the DIII-
D tokamak, conducted under high-performance
plasma scenarios prone to instabilities, shows a
50% success rate — marking a 117% improve-
ment over historical outcomes.

1. Introduction
Controlling real-world systems is inherently challenging,
even when powerful machine-learning tools are employed:
nonlinearities are often pronounced, data is scarce, and
safety issues impose severe limitations. These challenges
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are especially pronounced when controlling tokamaks, a
form of nuclear fusion reactor. For tokamaks, good models
are unavailable, safety is paramount, and instabilities are
notoriously hard to control. These issues are further compli-
cated by the fact that the dynamics may fluctuate strongly
due to various reasons: tokamaks experience dozens of ex-
periments on any given day, some of which deliberately
change its base configurations, e.g., by introducing impu-
rities into the plasma, potentially affecting the dynamics
of posterior experiments. Moreover, tokamaks frequently
undergo hardware changes or outages, e.g., wall repairs or
beam failures, making any single specific model unreliable.
However, despite these challenges, designing good control
policies for tokamaks is highly desirable due to their promise
to generate abundant clean energy via nuclear fusion.

In many real-world control applications, model-free rein-
forcement learning is a promising solution and has seen
successful applications (He et al., 2024; Kumar et al., 2021;
Lee et al., 2020). However, most of these methods rely on
a prohibitive amount of policy rollouts for training, which
is typically only achievable with reliable simulation envi-
ronments. In complex environments like tokamaks, this is
particularly problematic, as operation costs typically only
permit a handful of rollouts, and existing simulators do not
reflect the true dynamics for many aspects of the plasma
(Char et al., 2023a). Offline RL seeks to overcome these
issues by learning a policy from offline data that conserva-
tively stays within the bounds of the observed data (Levine
et al., 2020). However, the performance of offline RL meth-
ods depends crucially on high-quality expert data that con-
tains advantageous states. If these are not present, then
offline RL can suffer from extrapolation errors (Fujimoto
et al., 2019). This is a major drawback for tokamak con-
trol, where significant exploration and improvement are still
required to achieve energy production.

Alternatively, model-based reinforcement learning offers a
solution where dynamics models are trained from historic
data and rollouts from the model are then used for policy
learning or planning (Deisenroth & Rasmussen, 2011; Chua
et al., 2018; Osinski et al., 2020). In the past, machine learn-
ing algorithms have been used to directly model plasma
dynamics (Char et al., 2023b; Abbate et al., 2021; Boyer
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et al., 2021). Reinforcement learning policies have also
been trained in models trained solely on fusion data (Char
et al., 2023a; Wakatsuki et al., 2023; Degrave et al., 2022).
However, the performance of these approaches crucially
hinges on the assumption that the data faithfully captures
the model at test time. This is problematic in the case of
tokamak dynamics, where time-dependent model changes
cannot be neglected. Though this issue can be potentially ad-
dressed by updating the model with new data, the scarcity of
experiments implies that too little data is typically produced
to reliably update the model.

In low-dimensional settings, the obstacles posed by conven-
tional RL methods can potentially be addressed by Bayesian
optimization (BO). BO is a data-efficient tool for optimizing
black box functions (Garnett, 2023). By quantifying model
uncertainty, BO achieves a tradeoff between exploration and
exploitation, leading to fast convergence in many practical
settings (Shalloo et al., 2020; Shields et al., 2021). In the
case of tokamak control, BO has been used, e.g., to control
the rampdown of a real tokamak (Mehta et al., 2024), and
to control neutral beams in a tokamak simulator (Char et al.,
2019). However, the work of (Mehta et al., 2024) does not
address critical plasma instabilities, whereas (Char et al.,
2019) relies on a simulator. Moreover, these methods use a
poorly specified prior and require an extensive amount of
experiments to perform well.

Motivated by the strengths and shortcomings of existing
machine learning-based approaches for tokamak control,
we design a novel approach that combines a dynamic model
predictor and Bayesian Optimization. Our approach em-
ploys a multi-scale approach: a recurrent probabilistic neu-
ral network models the high-frequency model dynamics,
while a Gaussian process models the effect of low-frequency
marginal statistics on the dynamics. After adequate pre-
processing, we use historical data to train both models,
where the dynamic model serves as a prior for the Gaus-
sian process. Additionally, by leveraging physics-informed
assumptions, we design a low-dimensional state space for
the Gaussian process. This naturally leads to a contex-
tual Bayesian optimization algorithm tailored to the task
at hand, allowing it to find stabilizing actions in a highly
data-efficient manner. Moreover, due to its ability to per-
form fast updates, it allows us to efficiently leverage small
batches of data collected during experiments to best inform
new decisions on the fly.

We test our approach on a large dataset from past tokamak
experiments, where we can quickly identify stable configura-
tions, outperforming a naive approach based exclusively on
the recurrent neural network model. Furthermore, we apply
our approach in a real-world on the DIII-D Tokamak to find
stabilizing actions for a high performing plasma scenario.
High performing plasma scenarios need to maintain high

temperature and pressures for increased energy, hence, they
are more unstable. Our method was able to find stabilizing
ECH actuator values in four of eight experiments despite
changes to other actuators, a 117% improvement compared
to historical experiments with the same configuration.

Our paper is structured as follows: first, we provide some
necessary background to nuclear fusion, and define our prob-
lem mathematically. Then we discuss our complete pipeline
and methodology, followed by the results and analysis on
offline historical data and live experiments on a Tokamak
reactor. Finally, we provide conclusions and discuss oppor-
tunities for future work. Additional details are provided in
the Appendix.

2. Background and Problem Statement
In this section, we first provide some background on nuclear
fusion and then present the formal problem statement. We
also include more details in the Appendix section.

2.1. Nuclear Fusion

Nuclear fusion is seen as a promising solution for clean,
limitless energy, producing no high-level radioactive waste.
Among the fusion technologies, tokamaks are the most ad-
vanced, using magnetic fields to confine hot plasma to en-
able fusion conditions. Many countries have invested in
tokamak research facilities and currently more 35 nations
are collaborating to build ITER, a global project aiming to
demonstrate the viability of large-scale commercial fusion
reactors (Mohamed et al., 2024; Shimada et al., 2007).

One of the key challenges in tokamak development is plasma
disruptions, which can cause severe damage to reactor walls
and components, particularly in larger reactors like ITER
(Schuller, 1995; Lehnen et al., 2015). These disruptions of-
ten stem from tearing mode instabilities (or tearing modes),
where magnetic islands form, leading to energy loss and
instability. Prior work proposes avoiding tearing instability
with predictive models using real-time control (Fu et al.,
2020) and reinforcement learning (Seo et al., 2024). How-
ever, these methods reduce neutral beam power and add
torque to stabilize the plasma. This is undesirable, as reduc-
ing beam power leads to lower confinement energy, decreas-
ing the total energy output of the tokamak. On the other
hand, adding torque to large tokamaks is itself a challenging
issue.

Electron Cyclotron Heating (ECH) has shown promise in
counteracting tearing instabilities by driving localized cur-
rents at the site of instability (Gantenbein et al., 2000; Kole-
men et al., 2014). These and other findings have motivated
the inclusion of gyrotrons capable of delivering ECH in fu-
ture reactors to potentially control tearing instabilities, e.g.,
ITER will have over 40 gyrotrons. So far, the best results
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for stabilizing instabilities with ECH have been achieved by
keeping the ECH constant over time, as this minimizes the
chance of plasma disruptions. However, how to best deploy
ECH is still an open question, as researchers often struggle
to find ECH profiles to suit their goals. An ECH profile
represents the heating achieved by the gyrotrons across the
cross section of the plasma. This can be seen in Fig 4.

In this work, we aim to find feedforward ECH profiles to
avoid tearing instability (or modes) in high qmin tokamak
scenarios. EC waves from gyrotrons lead to EC heating
(ECH) profiles and EC current drive (ECCD). The amount
of current drive depends on angle of incidence on the plasma.
In all experiments, we set angle to produce both ECH and
ECCD. More details on effect of ECH on plasma are given in
A.1. Pre-emptive suppression of tearing modes with ECCD
has been previously shown in (Bardóczi et al., 2023), where
ECCD was used at q=2 location. Our goal in this work is to
optimize the size and locations of ECH profiles, conditioned
on the state of the plasma. During our experiments we focus
on the High qmin plasma scenario. This is a scenario that
supports long duration steady-state plasma operations, mak-
ing it crucial for future commercial fusion reactors. More
details on High qmin scenario are provided in the Appendix.
We also focus our attention on 2-1 tearing instability, a type
which is the most common and significantly disruptive.

2.2. Problem Statement

We treat the tokamak dynamics as an unknown discrete-time
stochastic system

st+1 ∼ Πst,at
, (1)

with states st ∈ S and actions at ∈ A, and the probability
of a tearing mode occurring follows a Bernoulli distribution,
parameterized by the tokamak states and actions

Tt ∼ Bernoulli(p(st, at)). (2)

Of the state variables describing the plasma, the most im-
portant for our approach is the normalized plasma pressure
βN,t ∈ st. A full description of the state space is given in
the appendix. The action vector can be decomposed into
three different sub-vectors

at :=
[
aft , a

c
t , a

g
t

]
(3)

as follows. The actions aft correspond to feedforward inputs
specified before the experiment. These correspond, e.g., to
gas flows, plasma density, and shape controls. They are
typically picked manually based on the success of previous
experiments. The actions act are part of a feedback control
loop that aims to stabilize the normalized plasma pressure
βN,t ∈ st, arguably one of the most important quantities
since it measures the efficiency of plasma confinement rela-
tive to the magnetic field strength. The third set of actions

agt corresponds to gyrotron angles, operated at constant
power, which we use to keep the tearing instability from
occurring. The gyrotrons operate on the plasma by gener-
ating an ECH profile aech

t = ϕ(agt ). Unlike aft and act , the
number of gyrotrons, i.e., the dimension of agt , potentially
changes between each individual experiment. This is due
to various reasons, e.g., due to hardware issues or because
some gyrotrons might be required for other tasks, such as
elm suppression or density control (Hu et al., 2024; Ono
et al., 2024).

This paper considers the case where the gyrotron angles
agt are kept fixed throughout each experiment rollout, i.e.,
ag0 = ag1 = ... = agτ =: ag, where τ is the length of the
rollout horizon. This is a common operating mode and also a
design choice, which we make because we need to search as
efficiently as possible within the action space, an impossible
task if its dimension is too large. Thus, the feedforward
actions aft and the target normalized plasma pressure β̄N ,
which defines the set-point for act , are specified beforehand
and can change between rollouts. Our goal, is to then select
ag separately for each experiment such that the probability
of encountering a tearing mode Tt = 1 is minimized over
the full rollout horizon.

3. Methodology
We now introduce our method, DynaBO, which aims to find
stationary feedforward ECH profiles that mitigate tearing
instabilities. Our complete pipeline is illustrated in Fig. 1.
On a high level, the process is as follows - We model the
system at two different time scales to inform the choice of
actuator commands for each experiment. At a smaller, more
granular time scale, we use a recurrent probabilistic neu-
ral network model (RPNN) to estimate the high-frequency
behavior during each experiment. The coarser model corre-
sponds to a Gaussian process model and is trained to predict
the behavior of the system based on marginal statistics from
experimental observations and RPNN predictions of the ob-
jective function, which act as a prior mean. In this case, the
objective function is the time-to-tearing instability. Given
the target normalized plasma pressure β̄N , we leverage the
Gaussian process to select actions (ECH profiles) in a low-
dimensional space via Bayesian optimization. The desired
profile is then converted to gyrotron angles and applied to
the tokamak. Finally, we update our model with the result-
ing time-to-tearing instability and actual ECH profile and
repeat the procedure. We update the model with the mea-
sured ECH profile because it can diverge significantly from
the desired one. In the following sections, we discuss the
individual components of our method - the high-frequency
RPNN and instability predictor, the Gaussian Process model,
and action selection by Bayesian optimization.
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Figure 1. DynaBO Pipeline to generate feedforward trajectory actions. Initial conditions and feedforward actuators are first used by the
RPNN to generate rollouts through which we compute the prior mean of the objective function (time to tearing instability). Our Bayesian
optimization algorithm uses this to optimize for actions (ECH). Noisy outputs from the Tokamak are then used to update the Gaussian
process model used for Bayesian optimization.

3.1. Recurrent Probabilistic Neural Networks and
Instability Prediction

We employ a Recurrent Probabilistic Neural Network
(RPNN) (Char et al., 2023b) to model the high-frequency
behavior of the tokamak. An RPNN has a Gated Rectifier
Unit (GRU) cell, which stores information about past states
and actions. We use this network as a state transition model
which takes current state and action and outputs a probabil-
ity distribution over the next state. Given st and at as inputs,
the RPNN outputs a multivariate normal distribution with
mean η and variance Σ2, which we employ to approximate
the system dynamics:

N (η(st, at),Σ
2(st, at)) ≈ Πst,at

. (4)

To bypass the issue that the number of gyrotrons differs
for each rollout in the training dataset, we assume that the
resulting heating profiles aech

t can be controlled directly,
allowing us to disregard agt both in training and testing.
Moreover, to facilitate optimization, we approximate the
ECH profile with a stationary Gaussian curve aq, yielding
the approximate ECH profile aq ≈ aech

t for all t. When
carrying out experiments, we then project aq onto agt , which
can be done for an arbitrary number of gyrotrons, i.e., for
an arbitrary dimension of agt .

In addition to the RPNN, we train a binary classifier, which
we call the tearing mode predictor h to predict the proba-
bility of a tearing mode occurring based on input state and
actuator.

h(st, at) ≈ Bernoulli(p(st, at)). (5)

3.2. Gaussian Process Model

Using RPNN rollouts exclusively for experimental design is
challenging for various reasons. Although the RPNN accu-
rately captures some of the tokamak behavior, the resulting

predictions often exhibit significant errors, largely due to the
sim2real gap caused by time-dependent fluctuations in the
environment variables, e.g., due to maintenance or hardware
changes provoked by previous experiments. Furthermore,
retraining the RPNN between experiments and using it to
select ECH profiles aq is virtually impossible because the
newly collected data is too small and we only have a few
minutes between experiments.

We address the above-mentioned issues by employing a
Gaussian process (GP) model, a nonparametric model that
is very data-efficient, especially in low-dimensional spaces
(Deisenroth & Rasmussen, 2011). A GP corresponds to an
infinite collection of random variables, of which any finite
number is jointly normally distributed. To fully leverage the
strengths of GP models, we need to carefully summarize the
information collected between experiments before training
the GP. This is done as follows.

First, we assume the achieved normalized plasma pressure
βN is independent of the ECH profile aq. This is a rea-
sonable assumption because βN is largely determined by
neutral beams, which are controlled through the feedback
variables act . We then approximate the feedforward and
feedback control actions af1 , . . . , a

f
τ and ac1, . . . , a

c
τ by as-

suming that they are uniquely specified by the target normal-
ized plasma pressure, denoted by β̄N . This choice is partly
justified because the feedforward and feedback control ac-
tions are often primarily informed by a target normalized
plasma pressure. Finally, we employ the GP to predict the
time-to-tearing mode tTM, which we use as a proxy for the
probability of a tearing mode occurring. The rationale be-
hind this choice is twofold. First, a scenario where a tearing
instability occurs late implies a higher degree of stability
than a scenario where it occurs earlier. Moreover, this al-
lows us to use the GP in a regression setting, where GPs are
strongest and best understood. The GP inputs are thus β̄N

and aq , whereas the output is tTM.
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The GP is fully specified by a prior mean function m and a
kernel k that specifies the similarity between training inputs.
In this work, we employ a squared-exponential kernel k,
which is appropriate for approximating most continuous
functions. The prior mean m corresponds then to the aver-
age time-to-tearing mode t̂TM predicted by autoregressive
rollouts of the RPNN and tearing mode predictor:

t̂TM(β̄N , aq) := E

(
argmin

t
t

∣∣∣∣∣ Tt ≥ 0.5, Tt ∼ h(st, at),

st+1 ∼ N
(
η(st, at),Σ

2(st, at)
)
, β̄N =

1

τ

τ∑
t=1

βN,t

)

The dataset used to train the GP has the form

Dn = {β̄(i)
N , a(i)q , t

(i)
TM}i=1,...,n.

We use it to compute the posterior distribution of tTM for
arbitrary test inputs β̄∗

N , a∗q , which corresponds to a normal
distribution with mean and covariance

µn(β̄
∗
N , a∗q) = t̂TM(β̄

∗
N , a∗q) + k⊤∗ (K + σ2I)−1∆n, (6)

σ2
n(β̄

∗
N , a∗q) = k∗∗ − k⊤∗ (K + σ2

noI)
−1k∗ + σ2

no, (7)

respectively. Here σ2
no is the noise variance, [k∗]i =

k(β̄∗
N , a∗q , β̄

(i)
N , a

(i)
q ), [K]ij = k(β̄

(i)
N , a

(i)
q , β̄

(j)
N , a

(j)
q ),

k∗∗ = k(β̄∗
N , a∗q , β̄

∗
N , a∗q). The vector [∆n]i = t

(i)
TM −

t̂TM(β̄
(i)
N , a

(i)
q ) contains the difference between the observed

and the predicted time-to-tearing mode. In practice, the
posterior variance σ2

n is typically small when evaluated in
distribution and larger when out of distribution. Hence, in-
tuitively, the posterior GP mean µn can be viewed as the
predictive model, whereas σ2

n quantifies model uncertainty.
This distinction is important for understanding Bayesian
optimization, which we introduce in the next section.

3.3. Contextual Bayesian Optimization with Noisy
Inputs

Contextual Bayesian optimization is a data-efficient tool
that leverages GPs to optimize black-box functions. Given
a context that specifies the environment, it optimizes an
acquisition function that carefully balances exploration ver-
sus exploitation. By recursively updating the acquisition
function after every observation, it gradually becomes more
confident about its predictions, resulting in convergence. In
every experiment, we treat the target normalized plasma
pressure β̄

(n+1))
N , specified before the experiment, as the

context and choose the ECH profile by optimizing the so-
called upper confidence bound (UCB) acquisition function

aBO
q = argmax

aq

µn(aq, β̄
(n+1))
N ) + ασn(aq, β̄

(n+1)
N ), (8)

where α balances exploration and exploitation. In con-
ventional BO methods, the next step consists of setting
a
(n+1)
q = aBO

q , measuring the time-to-tearing mode t
(i+1)
TM ,

and updating the GP accordingly. However, in our setting
there is the added challenge that the target plasma β̄N and
the desired ECH profile corresponding to aBO

q are not repro-
duced exactly. This is due to various reasons, including a
changing number of available gyrotrons, hardware failures,
actuator noise, and unmodeled disturbances. To alleviate
this issue, we measure the ECH profile and β̄N obtained dur-
ing the experiment and treat them as the true inputs a(n+1)

q

and β̄
(n+1)
N used to update the GP model. Formally, this is

equivalent to standard contextual BO where the GP inputs
aq and context β̄N in equation 8 are perturbed by unknown
noise.

4. Results
This section presents results from offline tests using his-
torical data and results from experiments at the General
Atomics DIII-D Tokamak Fusion Facility. We use a fixed
RPNN in all experiments, trained using 15, 000 one-step
state transition observations collected between 2010 and
2019 at the DIII-D tokamak. More details on the dataset
can be found in A.2.

Through our analysis of offline and online experiments, we
aim to answer the following questions:

1. How does DynaBO compare to other baselines? How
robust is it in terms of the choice of kernel?

2. Can DynaBO find heating profiles that avoid tearing
instabilities altogether using only a handful of trials?
If not, can it prolong the stable operation time of the
plasma?

We address question 1 by conducting simulated experiments
from offline data and comparing performance across all
methods. We then address question 2 with results from live
experiments on the DIII-D Tokamak. As we show in the
following, both questions have an affirmative answer.

4.1. Offline Data Analysis

This section employs historical data from the DIII-D toka-
mak to compare DynaBO with several baselines. Specifi-
cally, we employ data from 281 past experiments carried
out at the DIII-D tokamak between 2012 and 2023. We
selected the data points based on their similarity with our
live experiment, particularly the range of β̄N and the high
qmin specification. Appendix A.2.2 provides a detailed
description of the selection procedure.

We employ the historical data to emulate our live experiment
from Section 4.2. This is achieved as follows. At every
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time step, we sample the target plasma pressure β̄N from
a uniform distribution corresponding to the range of the
historical data and condition DynaBO on β̄N . We then select
a subset from the historical data with plasma pressure values
within the interval [β̄N−ϵ, β̄N+ϵ], where ϵ = 0.04, and use
DynaBO to select ECH profile values corresponding to an
element of that subset. After selecting an ECH profile, we
treat the historical data point corresponding to that particular
ECH profile as a new observation, which we use to update
our GP model.

We compare our approach to four different baselines and
ablations: the setting where we fully trust the RPNN to
predict tearing modes without updating it, a vanilla GP with
a zero-mean prior, a vanilla GP with a prior value which
represents mean of the past data and our approach using
a time-dependent kernel. The motivation for the latter ap-
proach is that one could naively trust older data less than
that closer to present-day experiments, attempting to model
changes made due to deliberate hardware changes and re-
pairs. In addition, we consider a linear kernel, Gaussian
kernels, and Matérn kernels with different hyperparameter
configurations to analyze our approach’s robustness under
varying model specifications.

In Fig.2, we depict the cumulative regret

Cumulative Regret(N) =

N∑
i=1

(τmax − t
(i)
TM), (9)

where τmax = 10s is the maximal shot length. As can be
seen, DynaBO and DynaBO with time dependency achieve
the highest performance in all settings except the linear
kernel setting. By contrast, the RPNN-based method and
vanilla BO (with both zero and mean value priors) cannot
consistently find good solutions despite performing more
steps than the total number of data. This indicates that Dyn-
aBO does not become overconfident and is robust to the
choice of kernel and hyperparameters except when the ker-
nel is clearly misspecified, e.g., when using a linear kernel.
While including time as an input to the GP performs com-
petitively, overall, the improvement seems only marginal.
One possible explanation is that the reliability of the data
depends on multiple factors, many of which cannot be ex-
plained exclusively as a continuous function of time, e.g.,
sensor and actuator upgrades, particle absorption and re-
lease by the tokamak wall, and the presence of impurities
which may have been used in preceding experiments.

We note that the vanilla GP does converge after more than
500 steps, i.e., after the plots in Fig. 2 end. However, such
a long convergence time is unacceptable for our setting
since fusion experiments are very costly, and we only get a
handful of experiments to explore.

To compare exploration, in Fig. 3, we display the ECH
profiles queried by the different baselines using a Gaussian

kernel. DynaBO and DynaBO+time exhibit more variety
in the queried ECH profiles than in the vanilla GP and the
RPNN baseline. This corresponds to better exploration,
resulting in lower regret for our approach. We observed
similar trends using all other kernels except the linear one.

We additionally tested different acquisitions functions for
our problem setup A.4. However, we finally chose Upper
Confidence Bound (UCB) as our acquisition function be-
cause it allows easy tuning of exploration vs exploitation
during the actual experiment.

4.2. DIII-D Tokamak Experiments

We tested our algorithm at the DIII-D Tokamak hosted by
General Atomics during a two-hour time window allocated
to us during the FY24 campaign. Each experiment run at
DIII-D is known as a ‘shot’. Each shot is then assigned a
unique shot number.

To make the most of our time and make significant state-
ments about results, we opted for a pre-specified set of
feedforward actuators aft that represents high performance
experiments in high qmin scenario.

In addition to our dynamics model which is trained on larger
set of historical data, we further conditioned our GP on 125
historic high qmin experiments. Appendix A.2.2 provides
an overview of the data used to train the GP. Our experiment
consisted of 8 BO iterations with DynaBO.

After each run of DynaBO, the selected heating profiles
aBO
q were converted to gyrotron angles and entered into

the Plasma Control System, the interface that controls the
tokamak. After a few seconds of maintaining the plasma,
we ramped down the actuators and terminated the shot.

We started our experiments by recreating a high-performing
historical high qmin experiment with a tearing instability.
For this, we recreated the conditions in shot 180636, a
plasma shot executed previously at DIII-D. Once this shot
with positive tearing instability was recreated, we ran addi-
tional shots where we varied the ECH using DynaBO while
keeping the remaining settings identical. The details for
each of the 8 shots carried out using DynaBO are shown in
Table 1. As can be seen, our algorithm was able to avoid tear-
ing instabilities in 4 out of 8 shots successfully. Moreover,
we maintained a stable plasma for 3339 milliseconds on
average. Although this number of shots is too low to be sta-
tistically significant, we stress that the chosen configuration
is very challenging. For reference, there were 61 historical
experiments at DIII-D with very similar settings (high qmin

experiments that maintain high normalized plasma pressure
βN > 3.0). Of those experiments, 47 reported tearing insta-
bilities, corresponding to a tearing instability rate of 77%.
This set of experiments is selected as a baseline considering
that these experiments also use ECH with current drive (sim-
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Figure 2. Cumulative Regret (log scale) achieved by DynaBO (green), DynaBO with a time-dependent kernel (gray), the RPNN only
(blue), vanilla GP with a zero-mean prior (red) and vanilla GP with mean value as prior (orange) using six different kernels.

ilar to our experiment), however, they use manual methods
for selecting ECH profiles. The average time to tearing insta-
bility in these experiments is 2424 milliseconds, well below
our average of 3339 milliseconds. More details on identifi-
cation of tearing mode instabilities in our experiments from
raw signals is shown in Section A.5.

5. Limitations and Future Work
While our method is shown to preemptively suppress tearing
instabilities, it is mainly data-driven, and potential improve-
ments are possible by incorporating physics knowledge.
One possible solution is to develop physics-informed neu-
ral network models, such as incorporating elements of the
Rutherford equation to improve interpretability. Another

shortcoming is that our current method is only applicable
to feedforward control scenarios. This means the algorithm
cannot adapt to unexpected real-time changes in the plasma,
such as MHD activity or impurity changes. In future work,
we aim to extend our learning to feedback control systems.

6. Conclusion
In this work, motivated by the challenges of tokamak control,
we develop a multi-scale modeling approach for decision
making on complex real world systems with limited avail-
ability of data. Our pipeline leverages a high-frequency
neural network model of the system dynamics and a Gaus-
sian process that makes predictions based on marginal statis-
tics. Together, both models form a Bayesian optimization
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Figure 3. ECH Profiles queried by different methods during simulated offline runs using a Gaussian kernel. We see that DynaBO and
DynaBO with a time-dependent GP explore the most, highlighting the importance of our dynamic model prior mean.

Experiment ID Target β̄N Tearing Instability Stability Time
(Shotnumber) Avoided (ms)

199599 3.37 Yes 4566
199601 3.27 Yes 4632
199602 3.27 No 2107
199603 3.27 No 2149
199604 3.27 Yes 4592
199605 3.14 No 1512
199606 3.45 No 3512
199607 3.43 Yes 3654

Table 1. Results from two-hour experiments at DIII-D Tokamak : DynaBO avoids tearing modes in 4/8 runs in a high-performance
configuration with a historical rate of occurrence of the tearing instabilities of 77%. The mean time under stability with DynaBO is 3339
ms while the historical time under stability is 2424 ms corresponding to a 914 ms improvement in stability duration. Generally, for stable
experiments at DIII-D, the plasma stability is maintained for 4-5s.

algorithm tailored to the task at hand that can quickly iden-
tify stabilizing control actions. This is achieved by making
decisions on the fly based on newly collected data. On a
historical data set, our method outperforms vanilla BO and
a naive baseline that relies exclusively on neural network
predictions. This is mainly due to our approach having
better exploration capability. Moreover, our method shows
promise in live experiments on the DIII-D Fusion reactor.
During the experiments, our approach successfully avoided
tearing instability in 4/8 runs despite highly unstable condi-
tions, representing an improvement of over 117% compared
to past experiments.
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Impact Statement
Our work illustrates the potential of combining complex
high-frequency and low-frequency models to address chal-
lenges of complex real world systems like Tokamaks. Solv-
ing nuclear fusion is one of the most important goals of our
time and our work aims to utilize machine learning research
methods to advance this field. The need for such methods
in this area will increase in the future, as new and larger
reactors such as ITER become operational, and a significant
gap between existing and new models needs to be bridged
with very little data. This is the case not only for the stabi-
lization setting considered in this paper but also for settings
such as ramp-up design, where a different set of actuators is
considered. Moreover, we believe this approach could be of
interest to several other applications where the discrepancy
between past and present data is considerable, e.g., complex
physical systems with changing dynamics.
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A. Appendix
A.1. Additional Fusion Background

Effect of ECH on Plasma : Electron cyclotron heating waves released by gyrotrons interact with the plasma by being
absorbed by electrons whose gyrofrequency matches the frequency of the ECH wave. This absorption is highly localized,
making electron cyclotron heating (ECH) a powerful tool for precise plasma control. ECH increases the electron temperature
at the absorption point and often reduces electron density, a phenomenon known as density pump-out (Wang et al., 2017).
As density decreases, plasma rotation tends to speed up due to reduced inertia. By adjusting the toroidal injection angle of
the EC wave, different effects can be achieved. When injected perpendicular to the toroidal direction, EC waves primarily
heat the plasma. When injected parallel, they drive electron acceleration in the direction of the plasma current, a process
called electron cyclotron current drive (ECCD). While the injection angle can be switched between shots, it cannot be
actively adjusted during a single shot. In this experiment, the toriodal angle is set, such that we get both ECH and ECCD
profiles which are of similar shape.

Details on high qmin plasma scenario : The high qmin scenario refers to a group of scenarios related with elevated values
of qmin, the minimum value of the safety factor profile. Under this umbrella of scenarios, there are three main groups:
qmin = 1.4, qmin = 1.5− 2, and qmin > 2. The lowest of the range with qmin = 1.4 has shown promise as being stable to
TMs, but did not have the greatest confinement, while the highest of qmin > 2 was stable to TMs but had lower energy
confinement. The middle range of qmin = 1.5− 2 has very desirable confinement but is very susceptible to TMs (Holcomb
et al., 2014). The purpose of this experiment is to work in that middle range of qmin, referred to as the elevated qmin

scenario, to stabilize TMs and achieve higher confinement than either of the other similar scenario options. In the elevated
qmin scenario, 2/1 TMs are the most prevalent mode because they require the least energy to perform magnetic reconnection
and form a magnetic island. Other lower order modes like 3/1 or 5/2 can sometimes occur but are significantly less frequent
as they require more energy to form a magnetic island. Stabilizing TMs in the elevated qmin scenario would show a path
forward for this high-confinement scenario as a possible operating scenario for a fusion power plant.

A.2. Dataset

Plasma trajectories on a Tokamak consists of three phases. The ramp-up phase, where the gases are heated and pressure is
increased to generate the plasma state where fusion occurs. During this phase, the normalized plasma pressure βN rises.
Then, we enter the flat-top phase, where the plasma pressure βN is sustained, allowing fusion to occur. In this phase, βN is
mostly constant and the aim to maintain this state without instabilities. Finally, the actuators are gradually ramped down and
the plasma is safely terminated as the shot concludes. In this paper, we stay in the flat top phase and aim to stabilize it. To
create our dataset, we hence use only flat top data and only control actuators during this phase of the experiment.

Our complete dataset consists of ∼ 15000 plasma trajectories from historical experiments at DIII-D Tokamak. The data
contains signals from different diagnostics have different dimensions and spatial resolutions, and the availability and target
positions of each channel vary depending on the discharge condition. Therefore, the measured signals are preprocessed
into structured data of the same dimension and spatial resolution using the profile reconstruction and equilibrium fitting
(EFIT). These shots contain many different signals, some of which are described below. The dataset consists of scalar
signals defined at every timestep and profile signals which are defined along 33 or 200 points along the radius of the plasma
cross-section. These consist of temperature, ion temperature, pressure, rotation, safety (Q) factor and density. For these
signals we first convert them into PCA components and select the top components which are able to explain 99% of the
variance in data. The Electron Cyclotron Heating (ECH) profile we choose to control, is also defined at 200 points along the
plasma radius. PCA is unable to describe ECH profiles, however they can be described well by a Gaussian curve and are
hence parameterized by the center, width and amplitude of the curve. These 3 parameters form our parameterization aq of
the ECH profiles. The model state space st is shown in table 2 while the actuator space at is shown in table 3.

A.2.1. DATASET FOR DYNAMICS MODEL

For training the RPNN, we utilize this data set with data points every 20 ms in time intervals with trajectories having an
average length of 5 seconds. The RPNN is trained to predict ∆st+1 given (st, at). We add tearing mode labels to this dataset
and train a random forest classifier to predict the probability of tearing modes at every time step. We tried incorporating
tearing mode predictions inside the RPNN; however, this did not yield good results.. This is likely due to the formation of
spurious correlations and causality issues formed by introducing tearing modes into the dataset.
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State Variables Dimensions
Normalized Plasma Pressure βN Scalar

Line averaged density Scalar
Loop voltage Scalar

Confinement Energy Scalar
Temperature Profile Decomposed to 4 PCA components

Ion Temperature Profile Decomposed to 4 PCA components
Density Profile Decomposed to 4 PCA components
Rotation Profile Decomposed to 4 PCA Components
Pressure Profile Decomposed to 2 PCA components

q Profile (safety factor) Decomposed to 2 PCA components

Table 2. Plasma Features used as state space for RPNN model.

Actuator Variables Dimensions
Power Injected Scalar
Torque Injected Scalar
Target Current Scalar
Target Density Scalar
Magnetic Field Scalar

Gas Puffing Scalar
Shape Controls 6 Scalars

ECH Profile Decomposed to Gaussian curve with mean, stddev, amplitude (µ, σ, w)

Table 3. Plasma Features used as actuator space of the RPNN model.

A.2.2. DATASET FOR GAUSSIAN PROCESS

To create the dataset for offline testing DH , we first limit ourselves to High qmin trajectories which achieve a high normalized
plasma pressure βN > 3.0. This constraint follows our experiment conditions. This leaves us with 281 trajectories. We
subsequently convert this data from a time-step scale to a trajectory level scale. We take average βN of the flat-top phase of
the trajectory. For ECH profile aq, we take a mean of all profiles in the flat-top phase of the experiment. This is the phase
where the high-energy plasma state is maintained. We thus get the dataset DH where DH

i consists of triplet (βN
i, aiq, t

i
TM)

i.e. the normalized plasma pressure, parameterized ECH profile and the observed time-to-tearing mode. This dataset is used
for offline testing.

For online testing, we subset this dataset further by only keeping whose ECH profiles are lie in the achievable parameter
space as per experiment configuration, which leaves us with 125 training points. This is used as a training set for the
Gaussian Process before testing on the real tokamak.

A.3. Training Details for Recurrent Probabilistic Dynamics Model (RPNN)

Network Architecture:

• Encoder:

– Fully Connected (FC) layer: input dim × 512
– FC layer: 512 × 512

• Memory Unit:

– Gated Recurrent Unit (GRU) block: 512 × 256

• Decoder (with residual connections between FC layers):

– FC layer: 256 × 512
– FC layers: 512 × 512 (repeated 8 times)
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Gyrotron

Tokamak Cross-section Tokamak Top View

Gyrotron

Figure 4. Gyrotron action on the Plasma inside the Tokamak. The bottom 2 curves indicate the power absorbed (heating profile) and
current driven in the plasma from the centre to outer region of the plasma.

– FC layer: 512 × 128

• Output Heads:

– Mean head: 128 × output dim

– Log-variance head: 128 × output dim

The network predicts the parameters of a probability distribution, and is trained using a log-likelihood loss. We use the
Adam optimizer with a learning rate of 3× 10−4 and a weight decay of 1× 10−3. Early stopping is applied with a patience
of 250 epochs based on performance on a validation set comprising 10% of the total data.

A.4. Comparing Different Acquisition Functions for Offline Experiments

We tested different acquisitions functions for this problem setup. We tested Expected Improvement, Thompson Sampling,
and Upper Confidence Bound (UCB). There results of running the offline experiments are shown below. All acquisitions
functions gave similar order cumulative regret at the end of 500 epochs. We finally chose UCB as our acquisition function
because it allows easy tuning of exploration vs exploitation during the actual experiment.

Acq. Fun. RBF (ls = 0.1) RBF (ls = 1) Matern (ν = 2.5)

Mean STD Mean STD Mean STD

UCB 14418.2 8038.94 10726.4 3717.18 10223.0 3997.86
Thompson Sampling 11184.0 2835.95 15696.6 4091.07 18139.6 5818.07
EI 8201.0 10183.31 10342.6 9859.99 10231.8 9582.02

Table 4. Cumulative regret values at the end of 500 epochs under offline testing setup for different acquisition functions across different
kernels and length scales. The orders of cumulative regret are similar across all acquisitions functions.

A.5. Details about Online Experiment Results

In this section, we analyze the signals from our experiment runs at DIII-D. The results are shown in Fig. 5 and Fig. 6. We
show the n1rms signal which measure the n=1 magnetic perturbations. We also show the normalized plasma pressure βN , a
quantity which directly corresponds to energy confinement levels in the plasma. For experiments 199606-199607, it is tricky
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to detect a tearing instability, hence we also add power injected. A sustained high value in n1rms along with drops in βN

usually denotes tearing modes. However, βN drops may vary depending on severity.

((a)) Shots 199599 & 199601 : No tearing modes were observed in these shots

Tearing Mode

Decrease in 
plasma pressure

Tearing Mode

Decrease in 
plasma pressure

((b)) Clear Tearing mode happens in 199602 which leads to loss in normalized plasma pressure βN . In 199603 we see a
tearing mode form however its difficult to spot as the loss in βN is minor.

Tearing Mode

Decrease in 
plasma pressure

((c)) No tearing mode happens in 199604. A tearing mode happens in 199605

Figure 5. Identifying Tearing modes from Raw signal data. We use n1rms signal (denotes magnetic perturbations) and normalized plasma
pressureβN to identify tearing modes. A sustained high n1rms signal denotes tearing modes. We label the drop in βN due to tearing mode
formation. Note that in all experiments, βN drops towards then end as power injected is dropped to safely end the experiment
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Tearing Mode

Figure 6. In this figure we also include the power injected (pinj) along with n1rms and βN . in 199606, we see a very late tearing mode
which occurs just before power injected is dropped. Very low loss in βN is seen due to the tearing mode. Finally, in 199607 no tearing
modes are seen.

A.6. Approximating the Prior

The historical data used to train the RPNN and the GP does not contain the target normalized plasma pressure β̄N . Instead,
it only contains the actions at achieved during the shot. Similarly, the RPNN is trained exclusively on the actions, and not
on β̄N , hence a direct mapping from β̄N does not take place in the RPNN. In the experiments, we address these issues as
follows. In the historical data, we set β̄N to be equal to the average normalized plasma pressure, i.e.,

β̄
(i)
N ≈

τ∑
t=1

βN,t
(i). (10)

This is a reasonable assumption since the target β̄N is mostly achieved in practice. We then approximate the time-to-tearing
mode t̂TM(β̄N , aq) predicted by the RPNN given β̄N and aq as follows. We first use aq to compute the actions aech

t . We
then compute the remaining actions act and aft by sampling full rollouts from the historical data and setting act and aft equal
to the corresponding actions. We then look at the resulting average normalized plasma pressure and set it equal to β̄

(i)
N . We

do this for all ECH actions aq within a 10× 10× 10 grid within the space of ECH parameters, specified by the historically
largest and smallest parameter values in the historical data set. We then separate the results into bins that have the same
value of β̄(i)

N up to a margin of ϵ = 0.04, and average over all tearing modes within that bin, yielding t̂TM(β̄N , aq). At test
time, we project all points to the closest point on the grid, both when performing queries and before updating the GP model.

A.7. Conversion of ECH Profile to Gyrotron Angles

Even though we selected ECH profiles as our action space, the Plasma Control System (PCS) at DIID tokamak expects the
output to be Gyrotron angles, which denote locations where they will be aimed. To make this conversion, we used OMFIT
software (Meneghini et al., 2015). We selected ECH profiles as our action space instead of gyrotron angles because at
experiment time one does not know how many gyrotrons are available. With this choice of action space, we ensure our
method is agnostic of number of gyrotrons.
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