
A Complexity Measurements and Generalization Bounds

In this section, we provide additional details on complexity measurements and generalization bounds.

The following lemma bounds the empirical Rademacher complexity of a function class H via the
covering number ofH evaluated at the sample S.

Lemma A.1 (Dudley’s Entropy Integral Theorem [17, 33]). LetH be a function class from X to R.
Then, for any α > 0,

RS(H) ≤ 4α+ 12

∫ ∞
α

√
logN

(
τ,H, L2(PS)

)
n

dτ.

The following theorem provides a uniform generalization bound for a function class via empirical
Rademacher complexity.

Theorem A.2 ([7, 33]). LetH be a function class from X to [0, B]. For any δ > 0, with probability
at least 1− δ over the draw of a sample S with size n according to data distribution D, the following
holds for any h ∈ H:

R(h) ≤ RS(h) + 2BRS(H) + 3B

√
log 2

δ

2n
(A.1)

We can plug the refined Rademacher complexity bounds in Proposition B.1 and Theorem C.1 into
(A.1) to get refined generalization bounds for certain invariant models.

B Proofs

We first prove Theorem 3.4, and then Proposition 3.3.

B.1 Proof of Theorem 3.4

Proof of Theorem 3.4. The general idea of this proof is to show that any cover of a model class
evaluated at a sample cover also generates a same-sized cover of the model class evaluated at the
original sample with some additional approximation error. The covering number inequality in (3.4)
then follows by taking the minimization over all covers of the model class evaluated at the original
sample. Since this proof includes some tedious notations, we first restate the problem setup and then
go to the details.

Problem setup. Let S = {x1,x2, . . . ,xn} be a sample of size n. Let Ŝ ⊆ S be an ε-cover of S
with respect to ρG and has size m. Without loss of generality, we then vectorize S and Ŝ for notation
simplicity. Denote by S = (x1,x2, ...,xn)T the vectorized sample associated with S in some
arbitrary but fixed order. Denote by Ŝ = (x̂1, x̂2, ..., x̂m)T the vectorized sample cover associated
with Ŝ in some arbitrary but fixed order. S and Ŝ thus define a matrix P below indicating how Ŝ
approximately recovers S:

P = (pij) ∈ Rn×m such that pij =

{
1, if xi ∈ S is approximated by x̂j ∈ Ŝ
0, otherwise

.

We use arbitrary tie-breaking rule when a data point x ∈ S can be approximated by multiple x̂ ∈ Ŝ .
Without loss of generality, we also assume that there is no "redundant" element in Ŝ which is not
used in recovering S, since otherwise it can be removed from Ŝ for a strictly smaller cardinality.
Therefore, by definition, P has linearly independent columns and thus represents injective mapping
from Rm to Rn. We denote by S′ the approximately recovered S generated by Ŝ: S′ = PŜ. The
first line in Table 4 shows the relationship among Ŝ, Ŝ′, and S.

Based on the definition of P, we now give the precise definition of p(x) used in defining the
(pseudo)metrics in this theorem.

p(x̂j) =

n∑
i=1

pij , ∀j ∈ [m].
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Ŝ
generates−−−−−−−−→ S′ = PŜ

approximates−−−−−−−−−−→ S

T (H|Ŝ)
generates−−−−−−−−→
step (I)

T (H|S′)
is also−−−−−−−→

step (II)
T (H|S)

Table 4: A diagram of the proof of Theorem 3.4.

Space Vector Vector (in the cover)

(Rm, ρm) h|Ŝ ∈ H|Ŝ ĥ|Ŝ ∈ T (H|Ŝ)

(Rn, ρn) h|S′ ∈ H|S′ ĥ|S′ ∈ T (H|S′)
(Rn, ρn) h|S ∈ H|S ĥ|S ∈ T (H|S)

Table 5: Some notations used in the proof of Theorem 3.4.

We proceed to introduce notations for the model class. Instead of considering the model class
H under the metric induced by the function norm L2(PS) (or L2(PŜ)), we equivalently consider
the evaluation of H at S (or Ŝ) under the metric ρn (or ρm) in this proof for notation simplicity.
We denote the evaluation of H at S as H|S = {(h(x1), . . . , h(xn))T : h ∈ H}, and similarly
its evaluation at Ŝ as H|Ŝ = {(h(x̂1), . . . , h(x̂m))T : h ∈ H}. We define the metric ρn on Rn

as ρn(u, u′) = 1√
n
‖u − u′‖2, and the metric ρm on Rm as ρm(v, v′) = 1√

n
‖(PTP)

1
2 (v − v′)‖2.

Therefore, the covering number notation N
(
τ,H, L2(PS)

)
is equivalent to N(τ,H|S , ρn), and

N
(
τ,H, L2(PŜG,ε)

)
is equivalent to N(τ,H|Ŝ , ρm). Table 5 shows an overview of these notations.

Summary. The proof has the following steps. (I) Any cover T (H|Ŝ) of a model class evaluated

at the sample cover Ŝ generates a same-sized cover T (H|S′) of the model class evaluated at the
approximated sample S′. (II) The cover T (H|S′) of the model class evaluated at the approximated
sample is also a cover T (H|S) of the model class evaluated at the original sample S. (III) The
covering number inequality follows by taking the minimization over all covers of the model class
evaluated at the original sample S.

Step (I). We first show that any cover T (H|Ŝ) ofH|Ŝ generates a set, denoted as T (H|S′), with the

same cardinality. Given any T (H|Ŝ), we construct T (H|S′) = {Pĥ|Ŝ : ĥ|Ŝ ∈ T (H|Ŝ)}. Since P

represents injective mapping from Rm to Rn, we have |T (H|S′)| = |T (H|Ŝ)| by construction.

Then, we show that T (H|S′) is a τ -cover ofH|S′ with respect to ρn if T (H|Ŝ) is a τ -cover ofH|Ŝ
with respect to ρm. By the definition of P, it holds that h|S′ = Ph|Ŝ for any h ∈ H, and P†P = I

where P† is the Moore–Penrose inverse of P since P has linearly independent columns. Thus, for
any h|S′ ∈ H|S′ , we can project it to H|Ŝ by P†h|S′ . Given that T (H|Ŝ) is a τ -cover of H|Ŝ with

respect to ρm, for any h|S′ ∈ H|S′ , there exists ĥ|Ŝ ∈ T (H|Ŝ) such that ρm(P†h|S′ , ĥ|Ŝ) ≤ τ . It
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follows that

ρm(P†h|S′ , ĥ|Ŝ) =
1√
n
‖(PTP)

1
2 (P†h|S′ − ĥ|Ŝ)‖2

=
1√
n

√
(P†h|S′ − ĥ|Ŝ)T (PTP)(P†h|S′ − ĥ|Ŝ)

=
1√
n

√
(h|S′ −Pĥ|Ŝ)T (h|S′ −Pĥ|Ŝ)

=
1√
n
‖(h|S′ −Pĥ|Ŝ)‖2

= ρn(h|S′ , ĥ|S′) ≤ τ,

where ĥ|S′ = Pĥ|Ŝ is in T (H|S′) by construction and approximates the given h|S′ . Therefore, for

any h|S′ ∈ H|S′ , there exists ĥ|S′ ∈ T (H|S′) such that ρn(h|S′ , ĥ|S′) ≤ τ , which implies that
T (H|S′) is a τ -cover ofH|S′ .

Step (II). We proceed to show that T (H|S′) is also a (τ + κε

√
1− |Ŝ|n )-cover of H|S . Consider

any index i ∈ [n]. Given that Ŝ is an ε-sample cover of S with respect to ρG , we have ρG(xi,x
′
i) =

infγ∈Γ(xi,x′i)

∫
γ
c(r)dr ≤ ε. Moreover, for any ξ > 0, by the definition of infimum there exists a

path γ0 such that
∫
γ0
c(r)dr ≤ ε + ξ. The following result then shows that the evaluations of any

h ∈ H at data points xi and x′i are close (let∇xh ∈ ∂h(x) when h is only subdifferentiable at some
x):

|h(xi)− h(x′i)| =
∫
γ0

∇xh(r) · dr

≤
∫
γ0

‖∇xh(r)‖ ds (ds = ‖dr‖)

=

∫
γ0

‖∇xh(r)‖ c(r)ds (invariance of h)

≤κ
∫
γ0

c(r)ds (Lipschitzness of h)

=κ(ε+ ξ).

Since it holds for any ξ > 0, we have |h(xi)− h(x′i)| ≤ κε.
Thus, the evaluations of any h ∈ H at samples S and S′ are close with respect to ρn:

1√
n
‖h|S − h|S′‖2 =

1√
n

√√√√ n∑
i=1

(h(xi)− h(x̂i))
2 ≤ 1√

n

√
(κε)2(n− |Ŝ|) = κε

√
1− |Ŝ|

n
.

Therefore, given any h|S ∈ H|S , we have h|S′ ∈ H|S′ such that ρn(h|S , h|S′) ≤ κε

√
1− |Ŝ|n and

we can find ĥ|S′ ∈ T (H|S′) such that ρn(h|S′ , ĥ|S′) ≤ τ since T (H|S′) is an τ -cover of H|S′ . It
then follows that ĥ|S′ approximates h|S :

ρn(h|S , ĥ|S′) ≤ ρn(h|S , h|S′) + ρn(h|S′ , ĥ|S′) ≤ τ + κε

√
1− |Ŝ|

n
,

which implies that T (H|S′) is a (τ + κε

√
1− |Ŝ|n )-cover ofH|S .

Step (III). The final covering number inequality proceeds as follows. Note that any τ -cover T (H|Ŝ)

ofH|Ŝ generates an (τ + κε

√
1− |Ŝ|n )-cover T (H|S) ofH|S such that |T (H|Ŝ)| = |T (H|S)|. The
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set of all covers ofH|Ŝ then generates a set of covers ofH|S , which further constitutes a subset of all
covers ofH|S . Thus, we have the following covering number inequality:

N(τ + κε

√
1− |Ŝ|

n
,H|S , ρn)

= min{|T (H|S)| : T (H|S) is a cover ofH|S}
≤min{|T (H|S)| : T (H|S) is a cover ofH|S and is generated by T (H|Ŝ)}
= min{|T (H|Ŝ)| : T (H|Ŝ) is a cover ofH|Ŝ}
=N(τ,H|Ŝ , ρm).

Since this inequality holds for any resolution ε and any ε-sample cover, taking the infimum over all
resolutions and sample covers and replacing variables then yields the inequality in (3.4).

B.2 Proof of Proposition 3.3

We first provide a lemma for proving Proposition 3.3. Note that theorem 3.4 directly leads to a refined
empirical Rademacher complexity bound in terms of the covering number of H evaluated at the
sample cover. The following lemma is a weaker but simpler version. We can set ε→ 0 as n→∞ to
further suppress the additional error term on large samples.

Lemma B.1 (Refined Rademacher complexity of G-invariantH). Let S = {xi}ni=1 be a sample of
size n. LetH be a model class such that every h ∈ H is κ-Lipschitz with respect to ‖ · ‖ and invariant
to G. Given any ε > 0, α > 0, let ŜG,ε be an ε-cover of S. Then

RS(H) ≤ 4κε

√
1− |ŜG,ε|

n
+ 4α+ 12

∫ ∞
α

√
logN

(
τ,H, L2(PŜG,ε)

)
n

dτ. (B.1)

Proof. Given any α > 0, let α′ = α+ κε

√
1− |ŜG,ε|n and τ ′ = τ + κε

√
1− |ŜG,ε|n . Plugging (3.4)

into Dudley’s entropy integral theorem (Lemma A.1) yields

RS(H) ≤ 4α′ + 12

∫ ∞
α′

√
logN

(
τ ′,H, L2(PS)

)
n

dτ ′

≤ 4α′ + 12

∫ ∞
α′

√√√√ logN
(
τ ′ − κε

√
1− |ŜG,ε|n ,H, L2(PŜG,ε)

)
n

dτ ′

= 4α′ + 12

∫ ∞
α′−κε

√
1−
|ŜG,ε|
n

√
logN

(
τ,H, L2(PŜG,ε)

)
n

dτ ′

= 4κε

√
1− |ŜG,ε|

n
+ 4α+ 12

∫ ∞
α

√
logN

(
τ,H, L2(PŜG,ε)

)
n

dτ.

Proof of Proposition 3.3. LetH be an invariant model class mapping from X to [−B,B] for some
B > 0. Let ŜG,0 be a sample cover such that |ŜG,0| = N(0,S, ρG) = m.

We construct a τ -cover ofH with respect to L2(PŜG,0) as follows: for every x ∈ ŜG,0, we cover the
output range ofH at x by a set of points

Y = {−B + (2k − 1)τ}d
B
τ e

k=1 .
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Let Ĥ = {ĥ : dom(h) = ŜG,0, ĥ(x) ∈ Y,∀x ∈ ŜG,0}. To see that Ĥ is indeed a τ -cover ofH with
respect to L2(PŜG,0), given any h ∈ H, we choose ĥ ∈ Ĥ such that |h(x) − ĥ(x)| ≤ τ for every

x ∈ ŜG,0 and thus

‖h− ĥ‖L2(PŜG,0 ) =

 ∑
x∈ŜG,0

p(x)

n

(
h(x)− ĥ(x)

)2 1
2

≤

(∑
x∈ŜG,0 p(x)

n
τ2

) 1
2

≤ τ
Therefore, for τ < B, the covering number ofH satisfy

N
(
τ,H, L2(PŜG,0)

)
≤ dB

τ
em ≤

(
B

τ
+ 1

)m
≤
(

2B

τ

)m
,

whereas for τ > B, we have N
(
τ,H, L2(PŜG,0)

)
≤ dBτ e

m ≤ 1.

Note that Proposition B.1 holds for any model class if we set ε = 0. Plugging N
(
τ,H, L2(PŜG,0)

)
into Proposition B.1 and setting ε = 0, α = 0, we have

RS(H) ≤ 12

∫ ∞
0

√
logN

(
τ,H, L2(PŜG,0)

)
n

dτ

≤ 12

∫ B

0

√
m log

(
2B
τ

)
n

dτ

= 24B

√
m

n

∫ 1
2

0

√
log

(
1

t

)
dt

≤ 24B

√
m

n

∫ 1

0

√
log

(
1

t

)
dt

= 24B

√
m

n
·
√
π

2

≤ 24B

√
m

n

B.3 Binary Coding Constructions of Data Transformations in Proposition 3.5

In Proposition 3.5, given K sets of group-structured data transformations {G(1),G(2), ...,G(K)}, we
provide a uniform bound for any h in model class and any set of data transformations. Here, we
extent it to any set of combinatorial data transformations. Given a pool of L types of group-structured
data transformations {G(1),G(2), ...,G(L)} (e.g., rotation, flipping), we construct the combinatorial
data transformations selection Gk indexed by k as follows: fix an arbitrary order of the power set
of [L] and denote the k-th element as Ik. For any k ∈ [2L], let Gk be the direct product of the
data transformations selected by Ik: Gk = Πi∈IkG(i). Note that Gk is also group-structured since
direct product preserves the group structure. Proposition 3.5 also applies to these combinatorial data
transformations {Gk}2

L

k=1.

C Refined Complexity Analysis for Linear Models

This subsection shows a more interpretable generalization benefit of model invariance by considering
linear model class and linear data transformations (e.g., rotation). The following theorem provides a
refined model complexity result for the invariant Linear model class.
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Theorem C.1 (Refined Rademacher complexity of A-invariant HLinear). Let S = {xi}ni=1 be a
sample of size n. Let A be the matrix representation of any linear data transformation. Consider the
Lp-norm-bounded linear model class H = {x 7→ 〈w,x〉 : w ∈ Rd, ‖w‖p ≤ W} for some p ≥ 1
and constant W > 0. LetHLinear = {h ∈ H : h(x) = h(Ax),∀x ∈ Rd} be the subset ofH that is
invariant under transformation A. Then

RS(HLinear) =
W

n
Eσ

[
inf
η∈Rd

‖uσ + (A− I)η‖q

]
, (C.1)

where uσ =
∑n
i=1 σixi and {σ1, . . . , σn} are i.i.d. Rademacher random variables.

Proof. The linearity of the model classH allows us to translate the model invariance to an explicit
model class constraint and then precisely compute the Rademacher complexity.

To see that the model invariance, 〈w,x〉 = 〈w,Ax〉 for all x ∈ Rd, is equivalent to an explicit
model class constraintw = ATw, we can choose x to be elements in the standard basis of Rd and
conclude that corresponding entries in w and ATw are equal.

Then we precisely compute the Rademacher complexity ofH. Let uσ =
∑n
i=1 σixi, we have

RS(H′) =Eσ

 sup
‖w‖p≤W

(AT−I)w=0

1

n

n∑
i=1

σi〈w,xi〉



=
1

n
Eσ

 sup
‖w‖p≤W

(AT−I)w=0

〈w,uσ〉


=

1

n
Eσ

[
sup

‖w‖p≤W
inf
η∈Rd
〈w,uσ〉+ 〈w, (A− I)η〉

]

=
1

n
Eσ

[
inf
η∈Rd

sup
‖w‖p≤W

〈w,uσ + (A− I)η〉

]
(?)

=
W

n
Eσ

[
inf
η∈Rd

‖uσ + (A− I)η‖q

]
, (Dual norm)

where the equality in (?) holds by the von Neumann-Fan minimax theorem, since {η : η ∈ Rd} is
convex, {w : ‖w‖p ≤ W} is compact and convex, and 〈w,uσ + (A− I)η〉 is bi-linear in w and
η.

Remark C.2. As a comparison, the Rademacher complexity of the general linear model class H
is RS(H) = W

n Eσ

[
‖uσ‖q

]
. Note that we always have the model complexity gap RS(H) −

RS(HLinear) ≥ 0 in Theorem C.1 (as one can check by taking η = 0 in (C.1)) and the gap can also
be made strict in many cases.

The following proposition gives a more interpretable result by further considering the L2-norm-
bounded linear model class.

Proposition C.3 (Refined Rademacher complexity of L2-norm-bounded A-invariantHLinear). Let
HLinear be the L2-norm-bounded linear model class that is invariant under transformation A for some
constant W > 0 (i.e., p = 2 in Theorem C.1). Then

RS(HLinear) =
W

n
Eσ [‖Puσ‖2] , (C.2)

where P = I− (A− I)(A− I)† and (A− I)† is the Moore–Penrose inverse of A− I.

Proof. Proposition C.3 follows from the least square solution to Theorem C.1 (with p = 2).
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Remark C.4. Proposition C.3 shows that the improvement in model complexity (and thus the gener-
alization bound) for linear invariant models depends both on the sample and on data transformations.
The matrix P in (C.2) is essentially the orthogonal projection matrix that projects the weighted sum
of data uσ onto the null space of (A− I)T . Intuitively, the linear data transformation A separates
each input x into two orthogonal components: Px that is A-invariant, and x−Px that is A-variant.
Linear models that are invariant to A will ignore the A-variant component and only capture the
A-invariant component (otherwise they will not be A-invariant). Suppose that the data distribution
has zero mean and bounded variance, then the Rademacher complexity ofHLinear is upper-bounded by
the variance of the A-invariant component in x. Therefore, if the data transformation captures most
of the data variance, the corresponding invariant models will have much smaller model complexity
and thus better generalization performance. We give some examples in Example C.5.

Example C.5. Suppose the data x ∈ Rd have Gaussian distribution N (0, σ2I). Let H be the
L2-norm-bounded linear model class. Then we have the following Rademacher complexity [33]
bounds:

(a) Rn(H) ≤
√
d · Wσ√

n
for the generalH;

(b) Rn(H′) ≤
√
dd2e ·

Wσ
2
√
n

for the flipping-invariantH′ ⊆ H;

(c) Rn(H′′) ≤ 1 · Wσ
n for the circular-translation-invariantH′′ ⊆ H. The fast convergence rate of

O( 1
n ) guarantees small generalization gap.

D Empirical Estimation of Sample Covering Numbers

Detailed steps to estimate sample covering numbers are as follows.

Step 1. Compute (or approximate) the direct orbit distance between any two examples in S. The
direct orbit distance between any two examples xi,xj ∈ S is

dG(xi,xj) = ‖G(xi)− G(xj)‖ = min
g1,g2∈G

‖g1(xi)− g2(xj)‖.

Step 2. Compute the ρG distance between any two examples in S . Given results in step 1, Computing
the ρG distance between any two examples can be formulated as a shortest path problem on a complete
graph, where each node represents an example and the cost of each edge is the direct orbit distance
computed in step 1. The shortest path problem is as follows.

ρG(xs,xt) = min
∑

(i,j)∈[|S|]

dG(xi,xj)zij

s.t.
∑

j∈δ+(i)

zij −
∑

j∈δ−(i)

zji =


1, if i = s

−1, if i = t

0, o.w.
, ∀i ∈ [|S|]

∑
j∈δ+(i)

zij ≤ 1, ∀i ∈ [|S|]

zij ∈ {0, 1}, ∀i, j ∈ [|S|]

where zij is the binary variable indicating whether the path from G(xi) to G(xj) belongs to the
shortest path, and δ+(i), δ−(i) are the sets of indices of outgoing and incoming nodes. For each pair
of examples, this problem can be solved by shortest path algorithms (e.g., Dijkstra’s algorithm) in
polynomial time (e.g., O(n3)).

Step 3. Construct the pairwise distance matrix D ← [ρG(xi,xj)]i,j and approximate the sample
covering number. In experiments, we use modified k-medoids [35] clustering method to find the
approximation of N(ε,S, ρG). Since the k-medoids algorithm requires the number of clusters as an
input, we can assign one heuristically or greedy search it as in Algorithm 1.
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Algorithm 1 Distance2SampleCoveringNum: sample covering number approximation based on
pairwise distances

Input: distance matrix D ∈ R|S|×|S|, resolution ε
Output: N̂(ε,S, ρG), an empirical estimation of sample covering number N(ε,S, ρG)
Algorithm:

Set k = |S|
Set scn = |S|
while k > 0 do
N = k
clusters = KMedoids(D, k) # split S into k clusters according to D
for every cluster do

for every point do
if D(point, center) > ε then
N = N + 1

end if
end for

end for
scn = min{N, scn}
k = k − 1

end while
return scn

E Experimental Details and Extended Experiments

E.1 Datasets

We perform our empirical analysis on CIFAR-10, ShapeNet in Section 6 and on CIFAR-100 as well
as Restricted ImageNet in Appendix E.5.1.

CIFAR-10 dataset [29] consists of 60000 32x32 colour images in 10 classes, with 6000 images per
class. There are 50000 training images and 10000 test images. The categories in CIFAR-10 are:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

ShapeNet5 [10] is a large-scale 3D model repository. In our experiments, we use a subset of it
which contains 10 classes and we resize every image to 32x32. There are 30834 training images and
7709 test images. The categories in this dataset are: sofa, cabinet, chair, display, loudspeaker, lamp,
airplane, table, car, watercraft. 3D-view transformations could be done by 3D object reconstruction
methods, e.g., R2N2 [12], or rendering tools, e.g., PyTorch3D6. We use pre-rendered images provided
by R2N27 to approximate the random perturbations of 3D-view.

CIFAR-100 [29] consists of 60000 32x32 colour images in 100 classes, with 600 images per class.
There are 500 training images and 100 testing images per class.

Restricted ImageNet [44] is a subset of ImageNet. It has 8 classes, and each of which is made by
grouping a subset of existing, semantically similar ImageNet classes into a super-class. All images
are preprocessed into a 64x64 resolution.

E.2 Data Transformations

In this paper, we consider flipping, cropping, rotation and 3D-view as data transformations in Section
6. We apply them respectively on one image from ShapeNet dataset and illustrate the original and
transformed images in Figure 3. For flipping, we only consider the horizontal flipping. For cropping,
there are two hyper-parameters, the padding number and the cropping size, that determine a random
cropping operation. A image is first padded with the last value at the edge, and then randomly
cropped to the certain size. For rotation, we only consider rotating an image around its center. There
is one hyper-parameter, degree, that determines a rotation operation. For 3D-view transformations,

5https://shapenet.org/
6https://PyTorch3D.org/
7http://3d-r2n2.stanford.edu/
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Figure 3: An illustration of data transformations

Transformation Hyper-parameters

Flip horizontal flip
Rotate degree ∈ [−30, 30]
Crop padding = 4, cropping size = 32x32
3D-view distance ∈ [0.65, 1], elevation ∈ [25, 30], azimuth ∈ [0, 360]
Cutout value=0.5, scale=0.05, ratio=1
ColorJitter brightness∈ [0.75, 1.25], contrast∈ [0.75, 1.25], saturation∈ [0.75, 1.25]

Table 6: Data transformations used in our experiments.

there are three hyper-parameters, distance, elevation and azimuth, that together determine a specific
3D-view. We can interpret the 3D-view as a specific position of the camera which is determined by
the distance away from the target point, the elevation angle, and the azimuth angle. As long as the
camera’s position is determined, we would have the 2D image rendered from that specific viewpoint
via R2N2 or PyTorch3D. We also evaluate cutout and color jitter in Appendix E.5.2. Cutout [15]
is a data augmentation method that randomly removes contiguous sections of input images. There
are three hyper-parameters that control the size, ratio and pixel values of the rectangle that mask the
images. Color jitter is a type of image data transformation where we randomly change the brightness,
contrast and saturation of an image which can be controlled by three hyper-parameters.

E.3 Details on Estimating Sample Covering Numbers

In this paper, we estimate the sample covering numbers induced by different transformations on
CIFAR-10, ShapeNet, CIFAR-100 and Restricted ImageNet. Table 6 provides the hyper-parameter
settings that we use for data transformations in this paper. These settings are typically used to preserve
labels after data transformations in object classification tasks. Continuous data transformations, such
as rotation, cropping and 3D-view, contains infinite numbers of elements in the transformation set. To
approximate the orbit, we do sampling every 1 degree for rotation and random sampling (50 times)
for cropping, cutout and color jitter. We use the set of 24 random multi-view images rendered by
R2N2 method to approximate the orbit induced by 3D-view transformations.

E.4 Details on Evaluating Generalization Benefit

In Section 6.2, we evaluate the generalization benefit of learning model invariance to different data
transformations. We consider the object classification task and use ResNet18 model architecture
on both datasets. To learn the invariant models, we use two methods: data augmentation and
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Sample covering number Generalization

Model ε = 5.7 ε = 7.5 ε = 9.4 acc (%) gap

Base 1000 990 950 60.06± 0.39 39.91± 0.40
Flip 1000 984 945 66.49± 0.46 33.48± 0.45
Rotate 1000 976 921 67.79± 0.46 32.17± 0.47
Crop 995 965 863 72.44± 0.16 27.53± 0.16

Table 7: Sample covering numbers, classification accuracy and generalization gap (the difference
between training and test accuracy) for ResNet18 on CIFAR-100.

regularization. In the test phase, we evaluate models on clean test sets without applying any data
transformations.

Data augmentation method. The taining loss for data augmentation method is Laug(x) =
L(f(g(x))), where f(·) denotes the model and g(x) denotes a randomly sampled example in
x’s orbit induced by transformation G. We use the cross-entropy loss function for L. In each epoch,
we randomly sample transformed images as input and preserve ground truth labels. We use SGD
optimizer with an initial learning rate of 0.01 and decay the learning rate by 0.1 every 50 epochs.
We train each model for 110 epochs and select the best model according to test accuracy. We run
independent experiments four times and report the results in Table 1 and 2.

Regularization method. The training loss for regularization method is Lreg = Lcls + Linv =
L(f(x)) + λKL(f(x), f(g(x))). Specifically, in addition to minimize the classification loss on the
original image, we also regularize the model by minimizing the KL divergence between model’s logit
outputs on the original image and on the transformed one. The loss function and optimization settings
are the same as those in data augmentation method except for the case when λ = 100. We use learning
rate of 0.001 without weight decay and train the model for 500 epoch in that experiment. At test time,
we use two metrics to evaluate the model invariance under 3D-view transformations. The first one
is the invairance loss, namely Linv(x) = Eg1,g2∈G [KL(f(g1(x)), f(g2(x)))]. We approximate the
expectation by averaging the KL divergence over the 24 pre-rendered random multi-view images
for each original image. The second metric is Ainv, namely the consistency accuracy under the
worst-case transformation. We have Ainv(x) = 1 if model’s outputs on data points in x’s orbit are
consistent, and Ainv(x) = 0 otherwise. We also use the 24 pre-rendered multi-view images of x to
approximate its orbit. We run independent experiments four times and report the results in Table 3.

E.5 Extended Experiments

E.5.1 Experiments on Additional Datasets

To better show the consistency between our theory and practice, we conduct additional experiments on
CIFAR-100 [29] and Restricted ImageNet [44]. We randomly sample 1000 examples in training set
to evaluate sample covering numbers induced by different data transformations. The settings of data
transformations are the same as that in Table 6. We train a ResNet18 with different data augmentations
for three times and report results in Table 7 and 8. The results on CIFAR-100 and Restricted ImageNet
both support that small sample covering number correlates with small generalization gap.

E.5.2 Normalization of Sample Covering Numbers

As discussed in Section 5, the proposed sample covering number is a model-agnostic measure that
does not consider the potential Lipschitz constant increase induced by data transformations. For
example, darken all the images leads to a small sample covering number since the values of all images
decrease. However, the Lipschitz constant required for the model is increased to classify closer
classes. To mitigate this limitation, we can do normalization for sample covering numbers. Intuitively,
the minimum inter-class distance among all class-pairs gives us a clue for the required Lipschitz
constant. Therefore, we use the ratio between the minimum inter-class before and after applying
data transformations to normalize sample covering numbers. In Table 9, we evaluate 5 types of data
transformations including cutout and color jitter. The sample covering number of color jitter is quite
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Sample covering number Generalization

Model ε = 14.6 ε = 18.4 ε = 21.6 acc (%) gap

Base 1000 990 955 82.85± 0.42 17.14± 0.42
Flip 999 986 941 88.07± 0.39 11.92± 0.39
Rotate 998 967 883 88.61± 0.16 11.14± 0.28
Crop 995 947 793 91.38± 0.26 8.37± 0.26

Table 8: Sample covering numbers, classification accuracy and generalization gap (the difference
between training and test accuracy) for ResNet18 on Restricted ImageNet.

SCN Normalized SCN Generalization

Model ε = 4.9 ε = 6.2 ε = 7.6 ε = 4.9 ε = 6.2 ε = 7.6 acc (%) gap

Base 1000 992 954 1000 992 954 85.43± 0.35 14.57± 0.35
ColorJitter 927 710 372 1000 994 963 85.82± 0.33 14.18± 0.33
Cutout 999 974 902 1000 993 963 87.24± 0.23 12.75± 0.23
Flip 999 990 946 1000 995 964 89.67± 0.24 10.33± 0.24
Rotate 999 976 909 1000 988 939 89.91± 0.13 10.05± 0.16
Crop 996 961 863 999 985 909 92.52± 0.08 7.48± 0.08

Table 9: Sample covering number (SCN) without and with normalization and generalization perfor-
mance of ResNet18 on CIFAR-10.

small because it shrinks all the values of images. After normalizing with the minimum inter-class
distance, it is larger than that of cropping which align with the actual generalization benefits. This
is a heuristic normalization that take potential Lipschitz constant change into consideration. It has
limitations such as the normalized sample covering number could exceeds the base one. We leave a
better normalization for future work.

E.5.3 Estimating Sample Covering Numbers with Different Sample Sizes

In Section 6.1, we estimate the sample covering numbers on randomly chosen subsets of the whole
training datasets. The sample sizes are 1000 for CIFAR-10 and 800 for ShapeNet. To investigate
the impact of sample sizes on estimation, we further estimate the sample covering numbers with
different sample sizes on ShapeNet. The results, shown in Figure 4 (a)-(c), show consistent trends and
comparisons among different data transformations in all sample size settings. Notably, the 3D-view
transformation outperform other type of transformations by a large margin (and indeed yields better
generalization benefit as shown in Table 2). Therefore, for guiding the data transformation selection,
these results suggest that it suffices to estimate the sample covering number on a small subset of the
whole dataset for efficiency.

In addition, Figure 4 (d) shows that the normalized sample covering number decreases as the sample
size n increases for fixed ε. This result also suggests that we can keep a fixed ratio between the
sample covering number and the sample size but gradually shrink the resolution ε as the sample size
n grows. For sufficiently large sample size, it is possible to use a very small resolution ε to get a
sample covering number that is much smaller than the sample size.

E.5.4 Influence of Model Class’s Implicit Bias on Generalization Benefit

Our proposed sample covering number is a model-agnostic metric to measure the potential gener-
alization benefit of being invariant to certain data transformations. Thus, a natural question is: do
all models enjoy the same benefit? To investigate the influence of model class’s implicit bias on the
generalization benefit, we repeat our experiments using MLP. Different from the ResNet architecture
which contains a lot of human priors and engineering work, the 2-layer MLP is among the simplest
neural network architectures that better eliminates the influence of architecture’s implicit bias. We use
the 2-layer MLP which contains 2 hidden layers, each of which has 10000 hidden units. We use ReLU
activation for the two hidden layers and do not use common techniques such as batch-normalization
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(a) n = 100 (b) n = 800

(c) n = 10000 (d) 3D-view

Figure 4: (a)-(c): Estimated sample covering numbers induced by different data transformations on
ShapeNet. n denotes the total sample size. (d): The normalized sample covering number (=sample
covering number /n) of 3D-view transformations estimated with different sample sizes.

n = 100 n = 1000 n = all

Model acc (%) gap acc (%) gap acc (%) gap

Base 64.25± 1.87 20.88± 2.00 77.50± 0.48 21.70± 0.49 86.67± 0.37 12.23± 0.37
Flip 65.00± 2.00 13.84± 1.90 78.15± 0.50 16.26± 0.50 87.22± 0.32 9.21± 0.32
Rotate 63.50± 2.14 4.88± 2.15 76.70± 0.58 8.98± 0.55 87.00± 0.34 5.12± 0.36
Crop 54.56± 1.96 −4.00± 1.80 69.60± 0.42 2.20± 0.42 83.55± 0.32 1.58± 0.36
3D-View 64.75± 1.88 2.25± 1.88 79.20± 0.45 3.18± 0.43 88.28± 0.28 2.00± 0.30

Table 10: Classification accuracy and generalization gap (the difference between training and test
accuracy) for MLP on ShapeNet. The number n denotes the sample size per class.
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or dropout. We use data augmentation method to train the invariance for the model. The loss function
and optimization settings are the same as that used in ResNet18. We run independent experiments
four times and report the results in Table 10.

The decreased generalization gaps shown in Table 10 suggest that MLP also benefits from being
invariant to data transformations. Moreover, comparisons of the generalization gaps between different
transformations are similar to those on ResNet18, indicating the effectiveness and applicability of
our proposed metric. Despite the reduced generalization gap, however, MLP trained with invariance
suffers from decreased test accuracy in some cases, especially for cropping. This may be due to the
limited model capacity of 2-layer MLP learned by SGD. In summary, our proposed sample covering
number shows empirical effectiveness in predicting the generalization benefit in a model-agnostic way.
Based on our results, we advocate for data transformations that has small sample covering numbers
(e.g., 3D-view transformation) and suggest learning the invariance under those data transformations
for better generalization performance.
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