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Abstract

Federated Averaging (FedAvg) and its variants are
the most popular optimization algorithms in feder-
ated learning (FL). Previous convergence analyses
of FedAvg either assume full client participation
or partial client participation where the clients
can be uniformly sampled. However, in practical
cross-device FL systems, only a subset of clients
that satisfy local criteria such as battery status,
network connectivity, and maximum participation
frequency requirements (to ensure privacy) are
available for training at a given time. As a re-
sult, client availability follows a natural cyclic
pattern. We provide (to our knowledge) the first
theoretical framework to analyze the convergence
of FedAvg with cyclic client participation with
several different client optimizers such as GD,
SGD, and shuffled SGD. Our analysis discovers
that cyclic client participation can achieve a faster
asymptotic convergence rate than vanilla FedAvg
with uniform client participation under suitable
conditions, providing valuable insights into the
design of client sampling protocols.

1. Introduction

Federated learning (FL) is a distributed learning framework
that enables edge clients (e.g., mobile phones, tablets) to col-
laboratively train a machine learning (ML) model without
sharing their local data (McMahan et al., 2017). In cross-
device FL (Kairouz et al., 2019), millions of mobile devices
are orchestrated by a central server for training, and only a
subset of client devicess will participate in each communi-
cation round due to intermittent connectivity and resource
constraints (Bonawitz et al., 2019).

Federated Averaging (FedAvg) (McMabhan et al., 2017) and
its variants (Reddi et al., 2021; Sahu et al., 2020; Wang
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et al., 2021) are the most popular algorithms in FL. In each
communication round of the generalized FedAvg frame-
work (Reddi et al., 2021; Wang et al., 2021): 1) the server
broadcasts the current model to a subset of clients, 2) clients
update the model with local data and send back the local
model update, and 3) the server aggregates clients’ model
updates and computes the new global model. This algorithm
is popular in practice for various reasons including the com-
patibility with FL system implementation (Bonawitz et al.,
2019) and additional privacy techniques such as differen-
tial privacy (McMahan et al., 2018) and secure aggregation
(Bonawitz et al., 2016).

The convergence of (generalized) FedAvg (also known as
local SGD) has been studied in many recent works (Li et al.,
2020b; Woodworth et al., 2020b; Wang et al., 2022; Karim-
ireddy et al., 2019) due to its popularity in practice. While
these analyses tackle the theoretical challenge of data het-
erogeneity, they assume either full client participation where
all clients will participate every round, or partial client par-
ticipation where the clients are chosen uniformly at random
from the entire set of clients. However, in practical cross-
device FL systems, clients can only participate in training
when local criteria such as being idle, plugged in for charg-
ing, and on an unmetered network are satisfied (Bonawitz
et al., 2019; Hard et al., 2018; Paulik et al., 2021; Huba
et al., 2022). Works like Yang et al. (2018); Eichner et al.
(2019); Zhu et al. (2021) observe client participation to
have a diurnal pattern, and Balle et al. (2020); Kairouz et al.
(2019); Wang et al. (2021) discuss the difficulty of control-
ling the sampling of clients for participation. Motivated
by differential privacy (Kairouz et al., 2021a), McMahan &
Thakurta (2022) seeks to limit the contribution of each client
by allowing it to participate at most once in a large time
window. The client participation control is then widely ap-
plied in training Gboard language models (Xu et al., 2023).
Similarly, concurrent work has also looked into regularized
client participation in FL and its convergence. For these
reasons, clients typically participate in training with a cyclic
pattern in practical FL systems.

In this work, we provide the first (to the best of our knowl-
edge) convergence analysis of federated averaging with
cyclic client participation. We consider that clients are im-
plicitly divided into groups, and the groups become available
to the server in a cyclic order. We show that for a global PL
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objective (Haddadpour et al., 2019), instead of the standard
O (1/T) rate of error convergence achieved by FedAvg,
where T is the number of communicatio~n rounds, cyclic
client participation can achieve a faster O (1 / T2) conver-

gence under suitable conditions, where o (+) subsumes all
log-terms and constants. This key insight is similar to that
obtained by a recent work (Yun et al., 2022) on the conver-
gence of mini-batch and local-update shuffle SGD, which
shows the fast convergence of local data shuffling at clients
under the full (rather than cyclic and partial) client partici-
pation setting (see Section 2.2 for more details).

Our analysis framework covers several cases of cyclic par-
ticipation and different client optimizers: 1) it includes the
subsampling of a subset of clients from each group that
becomes cyclically available, 2) it captures how the number
of groups within a cycle or the data heterogeneity char-
acteristics of the client groups affect convergence, and 3)
it covers different client local procedures including gradi-
ent descent (GD), stochastic gradient descent (SGD), and
shuffled SGD (SSGD). As a result of this generality, sev-
eral well-studied FedAvg variants such as standard FedAvg
with partial client participation (Li et al., 2020b; Jhunjhun-
wala et al., 2022) , minibatch RR and local RR (Yun et al.,
2022) can become special cases of our framework. We show
that our bounds match with the bounds from prior works
in these special cases, corroborating the validity of our re-
sults. We also present preliminary experimental results to
demonstrate that cyclic client participation indeed achieves
better performance in terms of test accuracy and training
loss convergence compared to standard FedAvg.

2. Related Work
2.1. Client Participation in FL.

Due to the large total number of clients in cross-device FL,
it is inevitable to select only a subset of clients per train-
ing round. Therefore, there has been a plethora of work
related to client participation in FL (Kairouz et al., 2019;
Li et al., 2020a). Most work has focused on analyzing Fe-
dAvg with unbiased partial client participation (Yang et al.,
2021; Jhunjhunwala et al., 2022) and showing a conver-
gence rate of O (1/T"). While some work in FL has also
considered biased partial client participation for flexible
client participation (Ruan et al., 2020) or loss-dependent
client participation (Cho et al., 2020; Goetz et al., 2019),
cyclic participation patterns have not been considered in
these previous work.

Another related line of work is the analyses on arbitrary
client participation presented in recent work (Wang & Ji,
2022; Avdyukhin & Kasiviswanathan, 2021). Wang & Ji
(2022) proposes classes of different client participation pat-
terns where cyclic client participation goes under the regu-

larized participation class. However, due to the generality
of the formulation, their analysis does not capture important
characteristics such as how the ordering of the clients or
the number of client groups within a cycle affects the con-
vergence. Avdyukhin & Kasiviswanathan (2021) analyzes
FedAvg with clients sending their local updates in an asyn-
chronous manner, where each client has its own-defined
cycle interval for sending its updates. However, such frame-
work does not simulate the cyclic pattern that a realistic
FL system observes where groups of clients sequentially
become available to the server.

Cyclic client participation has only recently been viewed
in FL through the lens of privacy (Kairouz et al.,
2021b; Choquette-Choo et al., 2022) and communication-
efficiency (Zhu et al., 2022). While Kairouz et al. (2021b)
shows that cyclic client participation can improve privacy
guarantees in FL, its convergence properties are not exam-
ined. Zhu et al. (2022) shows that selecting clients based
on their participation frequencies can speed up convergence
with the rate O (1/TV) where V' is a constant depending
on the variance arising from the data heterogeneity with
partial client participation. However, the exact rate of the
convergence speed-up is unclear due to the lack of bounds
for the variable V. In contrast to this prior work, we pro-
vide the convergence for cyclic client participation in FL
where the speed-up rate is clear (at the rate O ( 1/ Tz)) and
the conditions under which it can be achieved are identi-
fied. This speedup relies on analyzing FedAvg with cyclic
participation from the perspective of shuffling-based meth-
ods which we explain in more detail below. A concurrent
work (Malinovsky et al., 2023) has studied the convergence
of regularized client participation where clients participate
only once during a certain number of communication rounds,
showing the best achievable rate of O (1 / T2) similar to our
work. However, the corresponding work does not identify
in which cyclic pattern the O (1/T2) convergence can be
achieved, and how intra-client and inter-client group data
heterogeneity affects the convergence.

2.2. Shuffling-based methods.

The initial progress on shuffling-based methods was made
by (Gurbuzbalaban et al., 2019; Giirbiizbalaban et al., 2021)
for strongly-convex quadratics. The general idea in these,
and subsequent works is that since shuffling-based methods
involve using each component function exactly once in each
epoch, the progress made by these methods within an epoch
approximates that of full-batch gradient descent.

The literature on shuffling-based methods mainly focuses on
three kinds of epochs: (i) random reshuffling (RR), where
the data is shuffled after every epoch, (ii) shuffle once (SO),
where the data is shuffled just once at the beginning, and (iii)
incremental gradient (IG) method, in which the data is not
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Figure 1. Illustration of cyclic client participation (CyCP) with
M = 12 clients divided into K = 3 groups. In each communica-
tion round, N = 2 clients are selected for training from the client
group available at that time. All groups are traversed once in a
cycle-epoch consisting of K communication rounds.

shuffled at all, and follows a predetermined order in each
epoch. We shall see in Section 3 (and more so in Theorem 1)
that cyclic client participation essentially approximates an
incremental gradient method at the level of the server, with
each client interpreted as a sample.

Recent work has established upper and lower bounds for
shuffle SGD under these shuffling schemes. For RR (and
SO), (Safran & Shamir, 2020) showed a lower bound of
O(s25%= + 75) for strongly convex quadratic (K is the
number of epochs, n is the number of samples), while (Ra-
jput et al., 2020) showed O(—=) lower bound for gen-
eral strongly-convex F' with smooth { f;}. Matching upper
bounds have been achieved in the large epoch regime by
(Ahn et al., 2020; Mishchenko et al., 2020) for smooth PL
functions and (Nagaraj et al., 2019) for smooth strongly
convex functions. For IG, (Nguyen et al., 2021) showed
O(1/k?) rate for strongly-convex F' with smooth { f;}. The
improved dependence on K in all these works requires K
to be larger than O(k*), where £ is the condition number of
the problem, and a € [1, 2]. This large epoch requirement
has been shown to be essential in (Safran & Shamir, 2021).

3. Problem Formulation

System Model and Objectives. Consider a cross-device FL.
setting where we have M total clients. Each client m € [M]
has its local training dataset B,,, and its corresponding lo-
cal empirical loss function F,, (w) = ﬁ > een, {(w,8),

where £(w, £) is the loss value for the model w € R? at data
sample £. The optimization task is identical to that of stan-
dard FL (McMabhan et al., 2017; Kairouz et al., 2019) where
the global objective is F(w) = = S-M_| F,,(w) and the
server aims to find the model that achieves miny, F'(w).
Throughout the paper, all vector and matrix norms are Eu-
clidean and spectral norms, respectively.

Cyclic Client Participation (CyCP). We consider that the
M clients are divided into K non-overlapping client groups
such that each group contains M /K clients, as illustrated
in Fig. 1. The client groups are denoted by o(3), i € [K],
where each (i) contains the associated clients’ indices.
The groups and the order in which they are traversed by the

server (say, o(1), ... ,0(K)) are pre-determined and fixed

throughout training to simulate a cyclic structure of client
participation. In each communication round, once a client
group o (%) becomes available, the server selects a subset of
N clients from o (%) uniformly at random without replace-
ment. As a result of the cyclic structure, and subsampling
within each available client group, once selected, a client
cannot participate in training at least for the next K — 1
rounds. For brevity, we call this cyclic client participation
framework as CyCP throughout the paper.

Observe that the CyCP framework reflects several practical
FL scenarios mentioned in Section 1. Each client can partic-
ipate at most once in K consecutive communication rounds
in CyCP, which satisfies the privacy requirements (Kairouz
et al., 2021b; Choquette-Choo et al., 2022). A timer on each
client can be used to enforce that clients can only partici-
pate in training again after a certain period, and this period
corresponds to K. Even without enforcing the timer-based
criterion, CyCP captures the natural participation pattern
due to clients coming from different time zones or prefer-
ence of charging their devices (Paulik et al., 2021; Huba
et al., 2022; Yang et al., 2018).

We introduce the term “cycle-epoch” to refer to the inter-
val in which the server goes through all the client groups
{o(i), i € [K]} once sequentially. In other words, each
cycle-epoch consists of K communication rounds. Formally,
we set k as the index for the cycle-epoch, and i € [K]| as the
index for the currently available client group within a cycle-
epoch. The server sends the global model w(%*~1) to the
set S of N clients, selected from the client group o (i),
to perform local training. We consider three different types

of client local updates which we explain in detail below.

Client Local Update. Each client m € S+ initializes its
local model as w$,’f”‘1’°) = wki=1) and performs local

update(s). The global model is updated as:
wkd) = wlki=1) L A(ki=1) )

where A(*:=1) is the aggregate of local updates from clients
in S We consider three different client local update
procedures for our CyCP framework.

(i) Local Gradient Descent (GD): Selected clients perform
a single GD step to update their local model. Therefore,

A(k,i—l):_% Z Y Fyp (wki— D)
meS (ki)

The resulting global algorithm is referred to as FedSGD
in (McMahan et al., 2017).

(i) Local Stochastic Gradient Descent (Local SGD): To
avoid the cost of computing full gradients, each client

performs 7 local updates to its model using stochastic

(k,i—1,1

gradients VF,, (W, N ’iil’l)) computed using
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a minibatch gffi A=LD) sampled uniformly at random
from client m’s local dataset B3,,,. Thus, the client’s
model update is

Aki=1)_ _ n Z ZVF (1”11) gnkzll)
mes(’m)l 0
w1thw<]” 1,141) :st,i—l,l)7nVFm(W£717c,i—l,l) 1(111@,2'—1,

Local Shuffled SGD (SSGD): Recent works in FL
(Yun et al., 2022; Malinovsky et al., 2021) propose
the use of local SSGD, where clients partition their
local datasets into B disjoint components, that is, the
local loss at client m can be expressed as F,(w)
% F:Bl F,,.1(w). We define Pp to be the set of all
permutations of {0, ..., B — 1}. In each round, the
client performs local updates by going over all the
components in an order decided by the random permu-
tation 7%~ Unif(Pp). The resulting model update
is

A(k’iil) = 7% Z Z VF, m,

meSk.i) 1=0

(iii)

oL (wikr=th)

m

(ki=1,141) _

. kyi—1,0
with w,,, (k;i—1,1)

m

k,ai—1,1
m,mk, 1)(W’£" b >)

—nVF,
Further details of our framework of FL with CyCP are
shown in Algorithm 1.

Special Cases of CyCP. The CyCP framework covers differ-
ent algorithms such as standard FedAvg with partial client
participation or minibatch RR and local RR presented in
(Yun et al., 2022). When K =1, the CyCP setting becomes
standard FedAvg with partial client participation where in
each round, N clients are sampled from the same entire
client population. When K = 1 and N = M, CyCP with
local GD becomes identical to minibatch RR (Yun et al.,
2022) with M clients, each with a single component. Both
converge exponentially fast to the optimum. Another special
case is when we have K = 1 with N = M but for local
SSGD, in which case we have local RR (Yun et al., 2022)
with B components at each client, with synchronization of
the updates happening for every B components. We show
in Section 4 that our theoretical results match the bounds
accordingly for these special cases.

4. Convergence Analysis

In this section, we provide and compare the convergence
bounds for CyCP in FL for the three client local update
methods described above, and provide insights into how the
achieved complexities with CyCP (K > 1) compare with
standard FedAvg (K = 1). All the proofs are deferred to
Appendix A-C.

Algorithm 1 CyCP Framework in FL

1: Input: Global Model w(:9), Client groups o(i),
(K]

2: Output: Global Model w’+1.0

3: For k € [K] cycle-epochs do:

For i € [K] do: #T = KK comm. rounds

Sample N clients from client set o(7) uniformly
at random w/o replacement to get client set S+,
Send global model w**~1) to clients in S+,
Clients m € S*%) in parallel do:
WS,If—H’O) < LocalUpdate(m, wki=1) case)
wiki) — L S nesn wikt1,0)
wk+1,0) — o (kK)

(S

# Cyclic Participation

LocalUpdate(m, w, case):
Set local model w,,, = w

12: if case == Local GD:

13: Update w,,, < W, — NV F, (W)

14:  elif case == Local SGD:

15: For j € [7] do:

16: Sample mini-batch & from local dataset B,
17: Update W, < Wi, — NV E (Wi, &)

18: elif case == Shuf fledSGD:

19: Sample 7F, ~ Unif(Pg)

20: For j € [B] do:

21: Update wy,, <= Wy, — )V, 2k (5-1)(Win)

4.1. Assumptions

First, we present the assumptions used for the convergence
guarantees in this work.

Assumption 1 (Smoothness of F,,(w), V m). The clients’
local objective functions Fy(w), ..., Fps(w), are all L-
smooth, that is, ||V E,,(w) — VF,(w')| < L|lw — w/||
for all m, w and w'.

Assumption 2 (u-Polyak-Eojasiewicz F'(w)). For some
p > 0, the global objective satisfies ||V F(w)]?
w(F(w) — ming, F(w')) for all w.

Assumption 1, 2 are common in the optimization and FL
literature (Haddadpour & Mahdavi, 2019; Karimi et al.,
2020; Haddadpour et al., 2019; Gower et al., 2021). While
we restrict ourselves to PL functions for brevity and for
ease of comparison with prior work (Yun et al., 2022), the
analyses can be generalized to general nonconvex functions
using techniques proposed in (Li et al., 2021).

Next, we present the assumptions over the client groups
o(l),...,0(K).

Assumption 3 (Intra-group & Inter-Group Data Heterogene-
ity). There Exist constants v, « > 0, such that for all w,
for all ¢ € [K|] and for all m € o(3),
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HVFm(W) - ﬁ Zméa(i) VFWL(W)H <7, and
Hm Zm@a(i) VFm(W) - VF(W)” <o

Assumption 3 bounds the data heterogeneity across clients
within a group by ~y and the data heterogeneity across groups
by a. Assumption 3 also implies the commonly used data
heterogeneity assumption used in previous FL literature (Yu
et al., 2019; Koloskova et al., 2020; Wang et al., 2020a;b;
Reddi et al., 2021) as follows:

Lemma 1. If Assumption 3 is true, there exists v = y+a >
0 such that HVF,,L(W) _ LM VF,»(w)H < v for all
clients m € [M)|, and for all w.

Using Assumption 3 instead of the standard assumption
allows us to derive tighter convergence bounds in terms
of v and «, and separate the effect of the two kinds of
heterogeneity, as we discuss in subsequent sections.

4.2. Convergence for CyCP with Local GD

First, we start with providing the convergence of the global
model in CyCP with local GD.

Theorem 1 (Convergence with CyCP+GD). With As-
sumptions 1, 2, 3, the choice of step-size n =
log(MT? /Fz)/ uNT, and number of communication
rounds T > Tk K log (MTQ/FZ) where k = L/u:

K (F(w©0) - F¥)

T? 2
~ HQ(K—1)2042) ~ (K,‘w2 (M/K—N))
+O( T2 Ot \ R =1))

where (’5() subsumes all log-terms and constants.

E[F(w(50)] - F* <

Although it might appear that the bound becomes worse
with increasing K due to it appearing in the numerators of
the terms, since T' = KK (see Algorithm 1), a large K has
no adverse impact on the convergence.

Convergence Dependence on 2 and a. Theo-
rem 1 shows that CyCP+GD converges at the rate of

o (ﬁ;ﬁ; (2%%1?)) which depends on +2, the intra-
group data heterogeneity. Consequently, a large intra-group
data heterogeneity v leads to worse convergence. Con-
versely, if 7 ~ 0, CyCP+GD can achieve O (1 /T 2) conver-
gence, due to the O (1/T") domintnat term becoming zero.
Hence, in the CyCP settings where clients within the same
group have similar data distributions (i.e., 7y is close to 0),
CyCP+GD can yield a faster convergence rate compared to
standard FedAvg (K = 1). An example of a setting where
this can naturally occur in realistic FL scenarios is when
the cyclic patterns follow the diurnal-nocturnal pattern, also
shown in (Zhu et al., 2021). It is also worth noting that the

term with inter-group data heterogeneity « in Theorem 1
decays at the rate of O (1 / T2). Therefore, in CyCP settings,
the intra-group data heterogeneity « has a more significant
contribution to the convergence error than the inter-group
data heterogeneity a.

Convergence Dependence on K. Theorem 1 also shows
that even for v # 0, CyCP+GD can gain a o (1 / T2) con-
vergence rate when K = M/N. This is a faster rate than
the standard FedAvg (the setting with K = 1) which has
O (1/T) rate. While the convergence rates for the cases
of K = 1and K = M/N are clear from Theorem 1,
it is yet unclear what happens in the middle regime of
1< K< M /N. For this, we compare the total cost of
CyCP+GD and standard FedAvg to achieve e error. We
define the total communication and computation cost in one
communication round of GD (which involves computing N
gradients and communicating N vectors to the server) as
cgp- Then taking into account only the dominant term in
(2), the total cost Cgp to achieve an € error is

ot =0 (52 (ME))

We compare Cgp(€) with K > 1 and K = 1 denoted
as Cgp(>1(€), Copyre—1 (€) respectively and derive the
following result:

Corollary 1. For the total cost defined as (3), for K <
M/N, we have that Cp 5.1 (€) > Copre—y (€)-

Corollary 1 shows that with the number of groups set to the
middle range, i.e., 1 < K < M/N, CyCP does not incur a
smaller cost compared to standard FedAvg (K = 1). Hence,
for CyCP+GD to incur a lower cost compared to standard
FedAvg, the necessary condition is having K = M/N.
There may be some scenarios in which K is a naturally
occurring quantity that the server does not have control over.
It is worth noting that in these cases, N which is the number
of selected clients per round, can be chosen accordingly by
the server to pay a lower cost than standard FedAvg.

Matching Bounds with Minibath RR (Yun et al., 2022).
Recall that with K = 1 and N = M, CyCP+GD in Algo-
rithm 1 becomes analogous to the minibatch RR algorithm
with M clients where each client has a single component. In
this case, our bound in Theorem 1 is only left with the first
term that decays with the rate O (1 /M T2) which exactly
matches minibatch RR’s bound in [Theorem 1] (Yun et al.,
2022) which shows exponential convergence.

4.3. Convergence for CyCP with Local SGD

Next, we present the convergence for CyCP with local SGD.
Local SGD introduces additional technical challenges com-
pared to GD for deriving the convergence analysis and re-
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quires the following additional assumption over the stochas-
tic gradients:

Assumption 4 (Bounded Variance). For local objective
F,,(w), the local stochastic gradient VF,,(w,¢&,,) com-
puted using a mini-batch &,,, sampled uniformly at random
from B,,,, has bounded variance, that is, E[||V F,, (W, &, ) —
VFE,(w)|? < o2, forallm € [M].

Assumption 4 is commonly used in the stochastic optimiza-
tion literature (Stich, 2019; Basu et al., 2019; Li et al., 2020b;
Ruan et al., 2020). Now we present the convergence bound
for local SGD.

Theorem 2 (Convergence with CyCP+SGD). With
Assumptions 1, 2, 3, and 4 and step-size n =
1og(MT2/f2)/TuNT, for T > 10kK log (MTQ/FQ)
communication rounds where k = L/, the convergence
error is bounded as:

?2(F(w(0’0)) _FY)

E[F(wE)] - F* <

- MT?
L6 (KJQK(K— 1)a2) L6 (waz (M/K—N))
ui? uNT \ M/K — 1
~ ( Kro? ~ (K31 — 1)v?
+O<MTNT> +O< uTN2T? > @)

where @() subsumes all log-terms and constants.

Again, although it might appear that the bound becomes
worse lvith increasing K, since T' = K K in Algorithm 1, a
large K has no adverse impact on the convergence.

Convergence Dependence on »? and . In Theorem 2,
the dominant O (1/7') terms are dependent on two factors:
the intra-group data heterogeneity 2 (which also appeared
for local GD) and the stochastic gradient variance o2. Due
to this, for o > 0, even with K = M/N or 'yQ ~ (0, we do
not achieve the O (1 / T2) convergence rate, as we did in
the local GD case. Hence, even with CyCP, the best we can
achieve when using local SGD is the convergence rate of
O (1/T). Seeing this result, one might wonder if there is
any advantage at all of performing Local SGD with CyCP.
We answer this question below by comparing the cost of
CyCP with Local SGD to that of standard FedAvg.

Does CyCP (K > 1) with Local SGD Ever Help for FL?
At first glance of Theorem 2 one may think that CyCP does
not improve the convergence rate with local SGD case due
to stochastic gradient variance appearing in one of the domi-

Kro? A (Kry? ( M/K-N
WNT) +0 (“NT ME1)) However,

we show in Corollary 2 that this is not always the case.
Similar to how we defined cgp in the previous section, we
definte the total communication and computation cost in one
communication round with Local SGD as cggp. Formally,
taking into account only the dominant terms in (4), the total

nant terms (5 (

cost to achieve an € error for the local SGD case is:

A CSGDF’YQ M/F - N ~ CSGDU2F
Csan(€)=0O ( eN ( M/K —1 +O eNT

&)

We denote the costs for CyCP and standard FedAvg as
CSGD\X:D OSGD|?>1 respectively. Now we show the con-
ditions to have CSGD\?>1 < CSGD\?:P i.e., have CyCP
incur a lower cost than standard FedAvg.

Corollary 2. Suppose we have N = M /K, and the intra-
group data heterogeneity vy satisfies > > Mo? /NT. Then,

we get Coopie < Cogpire—r-

Corollary 2 shows that CyCP +SGD can indeed incur a
lower cost to achieve e error compared to standard FedAvg
(K = 1) when the intra-group data heterogeneity is suffi-
ciently larger than the stochastic gradient variance divided
by the number of local iterations. Note that the condition
42 > Mo? /N in Corollary 2 can be satisfied by increas-
ing the minibatch size b (which decreases the variance o2)
or increasing the number of local iterations 7.

Matching Bounds with Standard FedAvg. For K =1,
CyCP+SGD recovers Standard FedAvg with Local SGD,
and our bound in (4) with full client participation follows the
order of O (k%12 /uMT?) + O (ko?/uTMT). We show
that this bound matches the last iterate bound in (Qu et al.,
2020) which assumes full client participation, and bounded
norm of the stochastic gradient with parameter G that reads
O (k*G?/uT?) + O (ko? /urT) where their learning rate
doesn’t decay with M as our case, leading to the lack of the
1/M in their bounds. The difference in the first term is due
to their work assuming the bounded norm of the stochastic
gradient G while we assume only the bounded variance of
the stochastic gradient.

4.4. Convergence for CyCP with Local SSGD

For the last scenario of CyCP, we present results on the
convergence properties of the global model with local SSGD.
We slightly modify the local loss definition of each client
as Fp(w) = & ZB:?)l F,1(w) so that each client has B
loss components. For local SSGD, clients perform local
updates sequentially over F,,, . y(w), I € [0,...,B —
1] where 7, ~ Unif(Pg) is a random permutation over
the B components and 7, (l) denotes the [-th element of
this permutation. For SSGD, in lieu of Assumption 4, we
need the following intra-client component heterogeneity
assumption, which is commonly used in the shuffled SGD
literature (Yun et al., 2022; Malinovsky et al., 2021):

Assumption 5 (Intra-Client Component Heterogeneity).
There exists a constant 7 > 0 such that for each client
m € [M], and each component ! € [0, ..., B — 1] of its local
dataset, ||V E,, (W) — VF,(w)|| <7, for all w.



On the Convergence of Federated Averaging with Cyclic Client Participation

Now we present our convergence results for the SSGD case.

Theorem 3 (Convergence with CyCP+SSGD). With As-
sumptions 1, 2, 3, and 5, and n = log(MBTQ/F2)/,uBT
and cycle-epoch T > 10K log (MBTQ/F2) where k =
L/, with probability at least 1 — §, the convergence error
is bounded as:

E[F(w0)] - F* < FZ(F(W(O’O)) — F¥)

MBT?
~ (k%(B —1)%? ~ (KK —1)%a?
+O( W BT )+O< i >

(6)

o (o )
o( 7 (42)

where O (+) subsumes all log-terms and constants.

Again, since T = KK, increasing K does not impact the
bound above adversely.

Dependency on K is Identical to CyCP+GD. Theorem 3

: .. A (kKy? ( M/K-N
shows that the dominant term is O ( NT ( M1 ))

which is the same dominant term for the local GD’s conver-
gence rate in Theorem 1. This dominant term exists as long
v #0or K # M/N. Hence, for 1 < K < M/N, as with
local GD (see Corollary 1), CyCP +SSGD does not yield
a lower cost than standard FedAvg. Also like CyCP+GD,
K = M/N is necessary for CyCP+SSGD to get any cost
reduction compared to standard FedAvg. We give a more
detailed comparison between the costs of the two different
local update procedures below.

Can CyCP+SSGD be better than CyCP+GD? We
have seen above that CyCP+SSGD and CyCP+GD con-
verge at the same rate due to the same dominant term
which is non-zero for v # 0 and K < M/N. For
K =M /N, however, the dominant term goes to 0 and
CyCP+SSGD and CyCP+GD become comparable. Again,
we define the total communication and computation cost
in one communication round with local SSGD as cssgp.
Then, for K = M /N, we have that the total cost for
CyCP+GD and CyCP+SSGD to achieve an € error denoted

as Copr=n1/n (€); Cssap=nr/n (€) respectively, is

~ ®
Copj=nyn(€) =0 <CS\S/GED (\/M + Ka)) 7

CSSGD\?:M/N(E)

_~(cssap [ K =,V ®)
_O(ﬁ <m*””ﬁ”¢§)>

With these costs, we have that CyCP+SSGD only incurs a
lower cost than the CyCP+GD case for K = M /N when
1 v

l-—=—-v——=

VB VB

The only certain condition in which (9) can be satisfied is

when v ~ 7 ~ 0. Hence, with K = M/N, only when

there is close to O data heterogeneity across clients and

intra-client component heterogeneity within each client is

when CyCP+SSGD can incur a lower cost compared to

CyCP+GD. This also aligns well with the theoretical results
presented in (Yun et al., 2022; Woodworth et al., 2020a).

Matching Bounds with Special Cases of CyCP+SSGD.
Special cases of CyCP+SSGD become analogous to differ-
ent algorithms such as CyCP+GD or local RR (Yun et al.,
2022). With B = 1, since 7 = 0 , we recover CyCP+GD
(Theorem 1). Another special case is when K = 1, N = M
for CyCP+SSGD. In this case, for each communication
round, we have full client participation where each client
performs SSGD over its local components, which becomes
analogous to the local RR algorithm proposed and theoreti-
cally analyzed in (Yun et al., 2022). Note that in this case,
the bound in Theorem 3 matches the bound for local RR
presented in (Yun et al., 2022). We present a more detailed
comparison in the following paragraph.

>0, B>1 )

Is CyCP+SSGD better than Local RR?  Since local RR
assumes full client participation, for a fair comparison, we
compare local RR with CyCP+SSGD with K = M/N.
The dominant term in CyCP+SSGD’s convergence bound
in Theorem 3 becomes zero and we are left with the terms
having a convergence rate of O (1 /T 2). We compare the
two algorithms in terms of the total cost to achieve € error,
where the total cost for local RR is:

_ ~ ( Kcssop 1 T
CLOCalRR(E) = O <\/E (\/73 +V+ — E))
(10)

Note that for local RR, both the computation and communi-
cation cost is K times that of CyCP+SSGD, since in local
RR all clients’ participate in each communication round
while in CyCP+SSGD only M /K clients participate per
communication round. With CyCP+SSGD’s cost in (8)
for K = M/N and local RR’s cost in (10), we have the
following theoretical result that compares the two methods:

Corollary 3. For a sufficiently large M such that

M>N(1+—2 (11)
Yt 75

where K = M/N for CyCP+SSGD, CyCP+SSGD is al-
ways better than local RR in terms of the total cost taken to
gain epsilon error.
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Corollary 3 shows that with K = M /N, and sufficiently
large M, CyCP+SSGD is always preferred over local RR
to achieve a lower cost. Since K = M /N, a larger M
indicates a larger K. Observe that the lower bound on M in
Corollary 3 becomes smaller for a smaller « and a larger .
This indicates that it is preferred that the client groups have
smaller inter-group data heterogeneity but larger intra-group
data heterogeneity, for CyCP+SSGD to beat local RR.

5. Experimental Results

Setup. We train ML models on standard datasets using
FedAvg with CyCP for different client local updated pro-
cedures to see how cyclicity affects the performance of
FL. We experiment with image classification using an MLP
for the FMNIST (Xiao et al., 2017) dataset and EMNIST
dataset (Cohen et al., 2017) with 62 labels where we have
100 and 500 clients in total and select 5 and 10 clients per
communication round respectively. We use the Dirichlet
distribution Dirg (o) (Hsu et al., 2019) to partition the data
across clients where o determines the degree of the data
heterogeneity across clients. Smaller « indicates larger
data heterogeneity. We experiment with three different
seeds for the randomness in the dataset partition across
clients and present the averaged results. All experiments
are conducted on clusters equipped with one NVIDIA Ti-
tanX GPU. The algorithms are implemented in PyTorch 1.
11. 0. The code used for all experiments is included in
the supplementary material. For all experiments, we do a
grid search over the required hyperparameters to find the
best-performing ones and then fix the hyperparameters and
only change K. Specifically, we do a grid search over the
learning rate: n € {0.05,0.01,0.005,0.001}, batch size:
b € {32,64,128}, and local iterations: 7 € {5, 10, 30,50}
to find the hyper-parameters with the highest test accuracy
for each benchmark. For the deep multi-layer perceptron
used for our experiments, we use a network with 2 hidden
layers of units [64, 30] with dropout after the first hidden
layer where the input is the normalized flattened image
and the output consists of the label space. For all experi-
ments, the data is partitioned to 80%/10%/10% for train-
ing/validation/test data, where the training data then is again
partitioned across the clients heterogeneously.

Effect of K and Data Heterogeneity. We show in Fig. 2
the test accuracy for the FMNIST dataset for different K
values and client local procedures for high data heterogene-
ity (o = 0.5). Recall that K = 1 is analogous to standard
FedAvg and 1 < K < M/N (where M/N = 20 for the
FMNIST case) implies cyclic client participation. A higher
K represents the server visiting more client groups within
a single cycle. We show that for high data heterogeneity,
for all different client local procedures, a higher K achieves
better test accuracy by approximately 5-10% improvement.
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Figure 2. Test accuracy for FMNIST for high data heterogeneity
(a = 0.5). CyCP (K > 1) shows a higher test accuracy perfor-
mance of 5-10% improvement compared to K = 1 (Standard
FedAvg) for all different client local procedures.
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Figure 3. Test accuracy for FMNIST for low data heterogeneity
(oo = 2.0). Being consistent with the high data heterogeneity case
in Fig. 2, CyCP (K > 1) shows a higher test accuracy performance
compared to K = 1 (Standard FedAvg) for all different client
local procedures with the improvement of 2-8%. However, the
performance gap between CyCP and standard FedAvg is lower
than when there is higher data heterogeneity.

Although our theoretical results suggest that CyCP sees im-
provement in convergence for only K = M /N, we observe
improvement even for M/N > K > 1. This can be due
to our theoretical results being on PL-objectives while the
landscape of DNN may not necessarily fall into this cate-
gory (Qu et al., 2021). For lower data heterogeneity results
shown in Fig. 3, the improvement for K > 1 compared to
standard FedAvg is approximately 2-8%. The improvement
is less than that for the high data heterogeneity case which
aligns with the theoretical results in Section 4 which shows
that increasing K decreases the dominant term that is de-
pendent on the intra-group data heterogeneity. In Fig. 4, we
show that the performance gap between CyCP and standard
FedAvg is even higher due to the data heterogeneity being
even higher than the FMNIST case.

Difference Across Client Local Procedures. One dis-
tinct characteristic that can be observed in Fig. 2(b)-(c) and
Fig. 4(b)-(c) which are the results for the local SGD and
SSGD with high data heterogeneity is that for the highest K
there are oscillations in the test accuracy curve. This is due
to cyclic client participation where as we increase K, the
inter-group data heterogeneity also becomes higher causing
oscillation as the server sequentially visits the group for
training. This behavior has also been observed in previous
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Figure 4. Test accuracy for EMNIST with high data heterogeneity
(a = 0.05). CyCP shows a higher test accuracy performance to
Standard FedAvg for all different client local procedures. The
improvement gap is larger than the FMNIST case which is due to
the EMNIST dataset partitioned with more data heterogeneity.
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Figure 5. Training loss curves for the test accuracy results in Fig. 2
(FMNIST for high data heterogeneity, o = 0.5) where higher K >
1 leads to faster convergence, consistent with the test accuracy
results where K > 1 yields better performance.

work where the server trains sequentially in a cyclic manner
from different groups in (Zhu et al., 2021). Accordingly,
we show similar behavior of oscillation in the training loss
curves shown in Fig. 5 and Fig. 6.

Training Losses for the Results in Fig. 2 & Fig. 3. We
present the training loss for the test accuracy results shown
in Fig. 2 and Fig. 3 in Fig. 5 and Fig. 6 respectively. We see
that the implications are consistent with what we observed
for test accuracy where a higher K > 1 leads to faster con-
vergence. The convergence improvement gap is larger when
we have high data heterogenetiy as shown in Fig. 5 com-
pared to the improvement gap for lower data heterogeneity
shown in Fig. 6. Moreover, for the SGD and SSGD client
local procedures for high data heterogeneity (Fig. 5(b)-(c))
for the highest K = 20, we see the oscilliations that were
also observed in the test accuracy curves. This is due to the
cyclic participation of clients which the client groups have
heterogeneous data. Such oscilliation is not observed for
lower data heterogeneity and lower K values.

6. Concluding Remarks

Cyclic client participation is frequently observed in prac-
tical FL systems (Kairouz et al., 2021b; Zhu et al., 2021),
but its effect on the convergence of FedAvg is not yet well-
understood. In this paper, we formulate a new framework to
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Figure 6. Training loss curves for the test accuracy results in Fig. 3
(FMNIST for low data heterogeneity, @ = 2.0) where higher
K > 1 also leads to faster convergence, consistent with the test
accuracy results, but the convergence improvement gap is smaller
compared to when we have higher data-heterogeneity.

analyze the convergence of FedAvg with cyclic client par-
ticipation for PL-objectives. Our analysis covers different
client local procedures such as GD, SGD, and shuffled SGD.
The analysis allows us to understood how FedAvg conver-
gence is affected by different characteristics of the system
such local update procedures, data heterogeneity within and
across groups of clients that cyclically become available,
and the length of the cycle K. We discover conditions in
which cyclic client participation converges faster than stan-
dard FedAvg. We also provide comparisons across different
client local procedures and algorithms that are special cases
of our framework with cost analyses to achieve an ¢ error.
Interesting future work includes extending the analysis to
non-PL-objectives and general optimizers such as including
momentum, and to cases where the client groups are not
disjoint and not fixed throughout training.
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A. Proofs for the CyCP+Local GD Case (Case (i) in Algorithm 1)

The proof of Theorem 1 is presented in this section. For simplicity, the proof is presented as follows: first, in appendix A.1,
the model update steps are shown to be noisy gradient descent steps. Next, in appendix A.2, we present some intermediate
results, which shall be used in the analysis, followed by the proof of Theorem 1 in appendix A.3. Finally, in appendix A.4,
we present the proofs of the intermediate results.

We define the o-algebra generated by the randomness in the algorithm till cycle epoch k as follows: Fj =
o {{w(l’i)}fil, {w@nK o {w(kflﬂ)}i}il}. We use Ej[] as the shorthand for the expectation E[-|Fy].

A.1. Global Model Updates as Noisy Gradient Descent Step

With CyCP, with each client doing a single GD update, (case (i) in Algorithm 1), the update rule for the global model
(k € [K],i € [K]) is given as

w(k,i) _ w(k,i*l) =7 Z VFm(w(k,Zfl)) (12)
meS (k1)

Recall that w(*+1.0) = w(*.K) Therefore, we can unroll (12) to get the following result.

Lemma 2.
EwF 10| 7] — w0 = nKNVF(w®0) 4 ?EFH0| 5], (13)
where g = Zmes(k,i) VE,,(w*9)  and S(IC ) = D meston HF  we have O =

K- k) glkitl) i
Zfill (HJ Z+2(Id -nS ’ )) S ij:l q(k,J ).

Proof. Note that (12) is a rescaled version of the update rule in the main paper in the sense that the update is scaled up by
N but instead we downscale the step-size by setting the learning rate as 7 = log(M K?)/uM K. We can reformulate the
gradient of the local objective as:

VE,(wki=) = VE, (wF9) + VE, (wki=D) - VE,, (wk0)

= VFm (W(k,i 1) ) VF k O) / v?F k ,0) + t(w(k,ifl) k O))) dt ( (kji—-1) _ W(k,o)) (14)

ki
::H£n )

Note that Hs,’?i) exists due to our assumption that the local objectives F,(-), m € [M] are differentiable and L-smooth

(see Appendix D.2 in (Yun et al., 2022)), and we can thus show that ||H7g¢”) || <L, Vm,k,i. Using the expression in (14)
we get

wkid) _glhi=h) — Z (VF (wk0) 4 Hk) (g (ki=1) W(k,o))) . (15)
meS k1)

(ki)

Defining g 1= 3" s VEL,(WwED)and ST =3 s H'* we have

mes
wkid) ki) — (ki) ng(kﬂ‘) (wki=1) _ g (k:0)y
— wki) _ k0 _ (I _ ng(lm)) (wki=D) _ yk0)) (ki) (16)
Unrolling (16), we get
K-1

1, - ng(k,j)) gkt Z gka") (17)
i A

-,':]w\

+

K
wk+1.0) _ (o (k0) _ _772 (ki) | g2
i=1

=1 Jj=1

.—=7(k,0)
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Conditioning on F}, the only randomness in (17) is owing to the random client sets {S (k’i)}i. Therefore,

K
E[W(k+1’0)|]:k] — W(k’o) = —UZEk Z va(W(k70)) + 7]2Ek [f(k’o)} R
i=1 meS (ki)

Computing the expectation finishes the proof. O

Interpreting n K N as the effective learning rate, the update in (13) is a noisy gradient descent step. The bulk of the proof is
concerned with bounding the noise term k0,

A.2. Intermediate Results

Lemma 3. [f the client functions F,,, satisfy Assumption 3, then for arbitrary i € [K| and any w
i

ZMl/K D VE.(w)|| <ia+i| VE(w)].

mea(j)

Lemma 4 (Bounds on the Error Terms). Under Assumption 1, 3, the error in (13) can be bounded as

i R e o )]
s o] G (G v (foreef )] o

A.3. Proof of Theorem 1

For ease of reference, we restate Theorem 1 here.

Theorem (Convergence of the Global Model with CyCP+Local GD (Case (i) in Algorithm 1)). Suppose the local client
functions { F,, } satisfy Assumption 1 and Assumption 3, while the global loss function satisfies Assumption 2. If the learning
rate satisfies n < - LJl\IF’ then the iterates generated by Algorithm 1 with one local GD step at the clients satisfies

E[F(wH)] — Fr < (1- nKNu)K (F(w®0) - F*) 4+ 0 (”2L2N2(fj — 1>20‘2> +0 (mK (W) 72> ,

where k = L/ is the condition number. Choosing step-size n = log(MK?)/uNKK with K > Trlog (M K?), the
convergence error is bounded as:

F(w)y — (1 2(K —1)2a2 ~( k? (M/K - N
(K,0)\1 _ = B S - 7 -
E[F(W )] F MK?2 +0 [1,?2]:(2 +O</J,NK(M/K—1)>

IN

where (’5() subsumes logarithmic terms and numerical constants.
Corollary 1. Denoting the total number of communication rounds in algorithm 1 as T = KK, in terms of T the bound
above becomes

2

Eipw ) - < ST o (SR o (T (57T ))

where since K > Trlog (MK?), we have T > TrK log (M?QTQ) and one cannot increase K without increasing T
accordingly due to its lower bound depending on K.

Proof. Using the L-smoothness property (Assumption 1) of the global objective F'(w) we have

2
B[P (9] = Fw ) < (TF(wtO), Bfw10] w4 2, | w20 - w7 o

14
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where the expectation here is over the selected client sets S (k ’i), forall i € [F] First, we bound the inner product term in
(20). Using Lemma 2, Lemma 4, we have

<VF(W(I€,O))’ Ek [W(k—i-l,O)] _ W(k',O))

= (VE(w*) —nKNVFE(w®0) 4 2R, [550)) (Using Lemma 2)
— 2 N2LK(K —1 .

< —nKNHVF(W(k’O))H + 772HVF(W(]C7O))H%() (HVF(W("’O))H + a) (Using Lemma 4)
— K —-1)NL 2 ’N?LK(K —

— KN (1 - 3”(5)> HVF(w(k’O))H 43 5( a HVF(wW))H @1)

We can bound the last term in (21) as

3°N?LK (K — 1) ‘

1/2N1/2K
: o G

)VF(wWO))( - - HVF CON H) (302 N*2LE (K ~ 1)a)

9P LENR (K — 1)2
2

K 2
< —"JVOK [VEw®Eo)||" +

(22)

Plugging (22) back into (21) we have

78 3. 272N 3T (T 2
(VF(wE0) B, [wl10] — wE0) < _ RN (49 _ M) HVF *, 0))H2 L PP L2NTR (K — 1)

50 5 2
(23)
Now we aim to bound the last term in the RHS of (20). We have

_ 2 _ 2
k41,0 k02(17)L = ki 2—(k,0 2 = ki 4 k,0)||?
. [Hw( #10_gye0) } Lo || a® e | | < Lrm |3 a0 |+ o'y [Hr( o }

i=1 i=1

(24)

The last term is already bounded in Lemma 4, (19). Now, we bound the first term,

— 2 — 2 — 2
K K K
) 1
—(k,i) _ (k,0) _ 2 - (k,0)
By ||1>_d =B (> D VE(WEOD | =NE |3 & D VEa(wY)
=1 i=1 meS(k,i) =1 meSk,i)
o 2
K
v [0S B ) B TR 8 e w)
i=1 meS(k,i) mEU(z mEo’ %)
- - 1 9 -
_ A2 1 w(k0) w0
= N2E, Z Z‘VFm( = > VEn ) ?Z Z Fp (w0))
i=1 meS(k,i) mEo’(z =1 meo
—2[(M/K—-NY\ , .05 |2
< NE®|( 222 +NHVF (1,0) H . 25
(67 SoASR it @

following steps analogous to the proof of (36). Finally, we can plug in (23), (24) and (25) into (20) to get

B[P (w0)] = F(w()

UKN<52 37’(5)L71NK773K(K1)2N3L3) HvF(W(k,O))H +97704 . ( )
—3,— 1 =2 — M/K — N S (M/R-N
+0 K (K = 1)N*LPa® + on'K K—12N3L3<> 24 Ly NK () 2
n ( ) o 277 ( ) M/K -1 Y n MK =1 ~y
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_nkN

< 5| vreto]

2 10 5

AP LPNR (K ~1)? 5 1LY NE
o

> ATPLAN'R(K -1 5 1L NK" (M/K - N> )
MK —1

< (1= RN ) (BF(w*O)] - F*) + = -

where the last inequality follows from Assumption 2. Unrolling (26), and using n =

E[F(wE0)) — F*

(

log(MK?)
uKKN

M/KN) )
M/K —1 ’

we get

log(ME2)\ % ATPLPN3R(K — 1)2 NLpPNEK® (M/K — N
< (1 N Og( )) (F(W(O’O)) _ F*) + m ke ( ) o? + TL ( /7
K 10nK Ny 50KNp \ M/K —1
- F(wO0) — F*  4m?’N?*(K — 1)20[2 N NInK (M/K -~ N\ ,
= MK? 104 5u M/K —1

MK? 1OMF2K2 S5uNK

72 —
K (F(w©9) - F*)  _ /(k*(K —1)%a? ~
(K0 _ p* < AR —)x
E[F(w ) —F* < T2 +0 e +0

Proof for Corollary 1 We reiterate (3), the total cost Cgp to achieve an € error:
CC,DF’VQ <M/K — N)

Con(€) = eN M/K —1

To get Cgp 1 (€) < Cgpr—;(€) we have that the inequality

® ()~ (Grer) <0

should be true for K > 1. Rearranging the terms, we get

N(M - 1)K’ + (N — MK + M? — MN >0

F(w©0) — F~ N 47log?(MK?)k2(K — 1)? N 11L1og(MK?) (M/K — N) )
o —
M/K —1

F(wOoy — [ k2(K —1)2a2 N M - NK
:(WMK)2+O<W>+O<J$K( )7)
pK K? 7 M- K

Also, since we have total T' = K K communication rounds, we can also express the bound in terms of 7" as follows.

)72

Kr <MNK) 2)
JNT\ M-K ) )

(26)

27)

Since (M (M —2N)+ N)? = (N — M?)?2 —4N(M? — MN)(M — 1) > 0 we have that for K > M (M — N)/N(M —1)

we have K (1;[4//??:];7) - (1\]@7_1;/ ) < 0 Rearranging the terms slightly, we get

— 1
M<N+NK[([1-——|.
<+ NF (1-57)
Recall that K € [&£]. For K = M/N, we get
M 1
N+N—(l-—|=M-1+N>M
wvy (1-37) FN>

for any N > 1. However, if K = % — 1, we get

M 1 N N
N+N(—1> (1—M):M—1+N—N+=M—1+<M

N M

M

for any N > 1. Consequently, the only case when K > 1 gives benefit over K = 1is when K = M /N, meaning full client

participation in every client group.
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A.4. Proofs on Intermediate Lemmas

Proof of Lemma 3.

i

Zi Z VE.w)| <3 Ml/K S VEu(w) = VF(w) + VF(w)

meo(j j=1 méeo(j)

< Z Z VE,, VEW)| +i| VF(w)|| < ic + il VF(w)]. (using Assumption 3)

mEO‘(])

O

Proof of Lemma 4. First, we bound HEk [£(#0) H

- i -
—(k,j —(k,i+1 (g
HEk (k0)] H _ Z o H (I —775( J)) g ) Z qi)
i=1 | \s=i+2 =1 |
K-1 [/ & e\ s & N
< SR || TT @a—n8™7) ) 850 S0 g0 8)
i=1 | \i=i+2 ji= |
K—1 K k) (kit1) i 4
< 28 || T s [s 152 qt @)
i=1 Jj=i42 J'=1
Ay ’ A3
Next, we bound Aj, Ao, A3 separately as follows.
—(k, k
A = H (Id*ns( ]) H H S( J) H
Jj=i+2 Jj=i+2
= H I;— Z HED || < (14+9NL)K < /7 < 6/5, (30)

j=i+2 meg(k 3)

where in (30) we use Assumption 1, and n < . Next, we bound As.

- 7LNK

Hs(k z+1)H

> HETYI<NL 31)
meS (kiit1)
Next, we bound Az as follows:

9

S| Ta ) - Sa | B vReen)| | NS g 3 grmt)
j'=1

meS(k.i’) Jj'=1 meo(j)

<iNa+iN|VF(w)|. (32)
where the last inequality follows from Lemma 3. Substituting the bounds from (30)-(32) in (29), we get the bound in (18).

Next, we derive the bound in (19).

9 K-1
Ek[r ’ :|:Ek

i=1 Jj=t

‘ 2
(I — ng(k»j)) g(k»iJrl) Z a(k,j’)

2 §'=1

1=

+
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K-1 K i it i 2
<E-1) Y B ||| [T @-ns"") |83 g
i=1 j=i+2 j'=1
_ o 2 2
o K-1 K ki)
<E-1)YE H (18" [ Z q®| | (33)
i=1
Observe that
H(I S H<1+n S OHE <14 3 HH’“) <1+19NL, ¥j € [K). (34)
meS (k) meS ki)
Using (30), (31) and (34) in (33), we get
_o)||?] - 36(K — 1)N?L? K SN :
Ex ||T < Z Ex Z q (35)
i=1 j'=1
Lastly, we bound the expected value in (35):
_ 2 _ 2
K1 i 3 K1
Sr|[San| |- Ta (S5 ¥ R
i=1 §=1 i=1 mes<k i
_ 2
K-1 ‘ 1
=N2M"E VF,(wk0)y - ——— V Fp (w®0)) 4 V Fy, (w:0)
A DRSS YR . ) |
= J'=1 mes(k i) méeo(j’) mea(g
_ 2
K-1 j 1
_ A2 w00y _ (k,0)
=N ; Ey, Z_: > VE, ) R Z VE, (w0
i= j'= meSUﬂ ") mea(j’)
K-1 1 i 2
N MR Do > VEL(wH)
i=1 j'=1mea(j)
K-1 i 1 ?
<N2Y iV E, v > VE,(wk) Z VE,, (w0)
=1 j'=1 meS(k.3") mGa’(]

2

K-1
N2y M} Z S VEL(wt0)
=1

j’'=1meo(j’)

_ 2
K-1 i -
1 (M/K-N 1 1
=N2D» iy — — — VEu(w)— —— VE,(w
a 24,_N(M/K1)M/K Z (w) M/K Z w)
i=1 j'=1 m/€o(j’) meao(j’)
_ 2
K—-1 1 i
DM RS S R A
i=1 M/K i'=1meo(j")
(Using without replacement sampling)
_ _ 2
K—-1 i 7 K-1 i
1 (M/K—-N 1
< N? i — <> 72 4+ N2 — V(w0 (Assumption 3)
i=1 j'=1 NAM/K -1 ; M/ 32:1 me;j/)
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K-1 - K-1
M/K - N 2
S i:E - 7,2N (]\4//[{_1) ’YQ =+ N2 i:E - 222 (HVF(W(ICO))H + Oé2> (using Lemma 3)
1— =2 M/K —-NY\ , N e
<-(K - — ’ :
< (F-1F NKM/K1>7 oON <HVF(W )H +a (36)

Plugging (36) into (35) we get

2] 12(K —1)2K°N3L2 [/ M/K — N 2
] B ) o o)
25 M/K —1

which concludes the proof.
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B. Proofs for the CyCP+Local SGD Case (Case (ii) in Algorithm 1)

The proof of Theorem 1 is presented in this section. For simplicity, the proof is presented as follows: first, in appendix B.1,
the model update steps are shown to be noisy gradient descent steps. Next, in appendix B.2, we present some intermediate
results, which shall be used in the analysis, followed by the proof of Theorem 2 in appendix B.3. Finally, in appendix B.5,
we present the proofs of the intermediate results.

Similar to what we have did in appendix A.3, we define the o-algebra generated by the randomness in the algorithm till
cycle epoch k as follows: Fy, = o {{W(l’i)}fil, {w@ K o {wkm O K } We use Ey,[-] as the shorthand for the
expectation E[-| Fy].

B.1. Global Model Updates as Noisy Gradient Descent Step

Recall that the global model update rule is

T—1
wihb) —wti — NN VR, (Wi ) (37)
meS k.1 1=0

where VF,, (w,(,’f’ifl’l), &(ﬁ’i*l’l)) =3 degwkl,w Vf(wﬁ,’f’ifl’l), €) is the stochastic gradient computed using a mini-

batch gffi 7LD of size b that is randomly sampled from client m’s local dataset B,,,. Recall that k is a semi-epoch index
which denotes each communication round when we have traversed the K groups of clients by sampling N clients from

each group o (i), i € [K] uniformly at random without replacement. The index i € [K] denotes each inner communication
round. Recall that w(¥+1.0) = w(*.K) for all k € [K]. With (37) we get

T—1
wiki) _ (ki=1) _n Z Z (VFm(ng,iq,z),555,1'71,1)) B VFm(W(k,iq)) i VFm(W(k,iq)))
meS ki) 1=0

T—1
> S (VE (W (ki) R, (whi D)) oy 3TV, (wkiY)

meS(k,i) 1=0 meS (ki)
::dgf’i)

=—n Z d*D —pr Z (VFm(w(k’O)) + HED (wlki=) W(k’o)) (from (14))

meS (ki) me8 (ki)

N—

::H(k’“
_ 777(3(1@,1')/7 +a(k,i)) —7 Z Hgsz) (w(k,iq) _ W(k,o)) (38)
=gk meS (k1)
—gkD

where 77 = 77 and g*9) := S mesten VEq, (w0 Unrolling (38), we get

K K-1 K ) ) i
wk+1.0) _ o (k0) _ _ﬁz a(k,i) + 7~7»2 H (I — ﬁg(k,])) §(1m+1) Z a(k,j ) (39)
i=1 i=1 \j=i+2 j'=1
::F(k’(»

Conditioning on Fj, we get

' ®
B [d] =i |30 Y VRwED) |+ 2R )

i=1 mesk.i)

Ey[wk+10] - wk0) =

REESH
M~

&
Il
-

— KNVE(w®0) 4 525, [F*0)]

Il

|
RSN
e

s
Il
-

B [
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~ K

1 Z S A% | —GENVE(wF0) 4 P RO, (40)

.
=1 meS(k,i)

B.2. Intermediate Results

Lemma 5. First to bound the first term in (42) we bound the following:

i — — —
: LNK(t—1 14nLNK (T —1 LN(K -1 —1
ZE Z atd ||l < 3n (T )THVF(W(k,O))H 4 Hn (r—Drv L ( (T —Dra
, _ 5 25 36
=1 |meskd
Lemma 6.
~ AT 27277 _ SN2 T T
i ’Ekﬁ(k’o)}H < 1777NKHVF(WU€’O))H 84n°nN2L*K (K — 1)( — 1)v . 167°N*LK (K — 1)«
250 125 25
Lemma 7.
K 2
ZE [Hw(k,r—n _ W(k,o)H }
r=1
2 N2TF2 (T ~2 NP2 (T 2 277 2
< 83°N*K (K —1) HVF(W(k’O))HZ N 51M°NK (K — 1)o n 3*Kr(r—1)v
20 50T 100
5IPNEK (K — 1)7% (M/KE -~ N\ 41 N?K (K — 1)a?
25 M/K —1 10
Lemma 8.
_ 2
K . ~9772 a7 2 ~2 273772 A2 2
—(kyi) H (k,0) H2 81Ln*K No 2097 n*L° K" N*7(1 — 1)v
d VF(w
272 ‘Z - 200 N+ 50T + 50
. LK 'N32 (M/K - N . IR’ (K — 1)Na?
20 M/K -1 100 '
Lemma 9.
~4 ~ATTE ~2 1 772 N7 2 ~4 774 A3 73,2 T
3Ly B HF(k’O)H2 < gnNKHVF(W(k’O))HzJF 3n“"LK No 173n*K N°L°y M/Iﬁ—N
2 — 500 2007 20 M/K -1
S LK N2r(r — 1)1 59 K (K — 1)N4L3a?
+ + :
50 10
B.3. Proof of Theorem 2

Again, with the L-smoothness property of the global objective we have that
2
AP 0] = Fw) < (VFw ), Blw 0] - w0 + 25, w10 w0 an

where the expectation here is over the selected client sets S(*¥), i € [K] and stochastic gradients. First we bound the inner
product term in the RHS (41). Using (40),
<VF(W(k’O)) Ey [W(k+1,0)] _ W(k,0)>
~ ?
= (VF(wk0) -1 S A% | - GRNVE(wRO) 4 PR, [FE0))
T
=1 meS (k1)

21



On the Convergence of Federated Averaging with Cyclic Client Participation

meS (ki

~ K
7o i [oreo [ [ |
< —=||VF E d,, —nKN|VF(w E( Ex[ 42
< |[VE(w?) ; Y HKN||V +77||VF(w ] (42)
HZzK:1 Ex (2 mestn dgﬁ’i)] H and ||Ey, [£(k:0)] || are already bounded in Lemma 5 and Lemma 6 respectively. Plugging
these bounds in (42) we have

<VF(w(k’0))7 ]Ek[w(kJrl,O)] _ w(k’0)>
QHVF(W(IC,O))H (W—va(w(km)“ n 14nLNK (T — 1)1V 4 nLN(K —1)(t — l)Ta)

5 2 36
o 2 1TINK 84n*nN2L*K (K — 1)(t — 1)v
= TRN|[VE w0 [ vt | (Z55= [ roton|
1 (w + (w'™™) 5E0 (W) + 195
1672 N2 LR (K — 1)a>
+
25

o 1/2N1/2K/ 12
< N (1-2 1T H SCON H —H F(wk0) H (1472 LNY2 R P (r — 1
< <N (1 5 - 50 TR e (1)

VE(wk) > (2872 LAN?2 R (r — 1))

VF(w*0)

) (ﬁl/QnLN1/2(K— 1)(r — 1)a)
ki

~1/2N1/2*1/2
(77 VF(W(k’O)) (16773/2LN3/2K /2 (K _ 1)a)
25
_ 317 1 1
< RN (1— = - - = = | VP (w) H 98I L*NEK (7 — 1
= ( 50 250  2x 402 2 x 362 2><252> + 98 (r—1)%

P L2N (K — 1)*(1 —1)%0?

_ + 1287 L2 N3*K (K — 1)%a?
2K

+ 3922 LANSK (1 — 1)%2 +

107K N ? K
- —%HVF(W(M)W + 1027? L’ NK (1 — 1)%0?
i’ L*N(K —1)%(r — 1)%? K(K
TN =TT 2 D707 | I NSR(R - 1)%02, “

2K
Now we bound the second term in the RHS of (41) as follows

2

L k+1,0 k,0 2 L ~?~k‘ ~2~(k,0
b w0 - w0 ] < Ze, SO

2

K K
L N (k1) ~N = (ki) ~25(k,0) :
=SB ||=nd_d T =iy at i (Using (39))
e 2 e 2
3L77 — (ki) 3Li? — (ki) 3Lyt +(k,0) ?
< B || o d™ || S S a| |+ |0 (44)

=1 i=
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Substituting the bounds from (25), Lemma 8 and Lemma 9 into (44) we get

J— —2 —2
L NIE: NNK 2 81L7H?K No?  2097°*n?L*K N27(r — 1)v?
d ) H (k+1,0) _ (k70)H < ‘ Fw®0 H
2k[w W < 00 IVEGVEO 50—+ 50
. L3 K N342 (M/K - N) IR (K — 1)Na? . 3L?N+?K° (M/K - N)
20 M/K — 1 100 2 M/K —1
INK 2 ONK > $PLE No? 1737°K N3L3y2 (M/K — N
3?7 HVF (h, ()))H Lo HVF(WUC,()))H L 80 of 1731 v (M/K
500 2007 20 M/K —1
3P LK N2 (r— 1) 59774K (K —1)N*L3a?
+
10
<iNK L+—+— ‘VF w(k0)) ‘2 LK No? (3 L, 3
=1 200 500 T 50 T 200
209 M/K—-N\ (174 3
L3 K N2 (1 — 1)v? LiPKNA? — =
+ (1 (r—1)v7) + Li "\ E 5000 " 5
. 9 59
LR (K — 1)Na?
LK (K = 1N e | 155+ 75
~NTE ~2772 A7 2 ~ 2727 2 ~272 A7 2 a7
< 17377NKHVF(W(]€’O))H2 n 41Ln*K No n 41ym?L*KN7(t — 1)v n 8Ln*K N~ M/Iif N
1000 257 250 5 M/K —1 (45)

+6L3E (K — 1)N*a?

Using the bound derived in (45) and (43) for the upper bound in (41) we have

WEN AP L2N(K —1)2(r — 1)%0
B [F(wH10)] - pwh0) < 12| 7 (w0 H 03P LENE (= 1) + TEEN QF) (r—1)a
—9 I
NLPK No®  SLiPK N+* (M/K -~ N
120 L2 N3K* (K — 1)a? — 46
+1297) (K —1)a* + 55 + - MR 1 (46)

With Assumption 2 we have
mP?L*N(K — 1)%(1 — 1)%a?

E[F (w0 — F* < (1 = GENp) (BE[F(w®O)] — F*) + 1037° L2 NK (1 — 1)7v° + ce

1203 L2NPER (K —1)a® + 47)

A1LiPK No? . SLiPK N~+* (M/K — N
257 5 M/K —1

and unrolling (47) we have

log (M K?)

10372 L2NK (1 — V)72 m?L2N(K — 1)(17 — 1)%a?

K
K,0 * 0,0 *
E[F(w0)] - F* < (1 - K) (F(w©0)) — F*) 4 RN + RN
. 120 L2N3K (K — 1)a®  41LiPK No?  SLiPK N2 <M/K - N)
nKNu 25K Np 5nKNpu M/K -1
- F(wO0) — F*  1030°L2(1 — 1)70? N L2 (K —1)(1 — 1)%a? N 12972L°N?K (K — 1)a?
- MK? I 2K 1 ]
ALNKo?  S8LHK~® (M/K — N

25T S < M/K —1 )
F(w®9) — F*  103log* (MK?)r?(1 — 1)1 N log? (MK?)k?*(K — 1)(1 — 1)a?

MEK? N2 K K? 2T N2 K K?
n 196log® (MK?)k*(K —1)a?  4llog (MK?)ko?  8log (M K?)ky? (M/K—N)

UK K? 25uTNK S5uNK M/K -1
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F (0,0) _ Fx _ 2(r — 1)p2 . 2(r — IVK — 1)a2 _ 2(K — 1)a? _ 2
_ (w )2 45 5(772)1/ 5 K2(T )(73 o +(’)(H(Q)a>—|—0( Ko >
MK prN2K K2 urN2K°K? uK K uTNK

+0 (i (e 1)

(48)
B.4. Proof for Corollary 2
We reiterate (5), the total cost to achieve an € error for the local SGD case in Algorithm 1 as
CSGDF 2 M/K—N) 0'2:|
Csgp = — +—1. 49
sop =~ N [7 (M/K—l - (49)
To get CSGDW>1 < CSGD|F=1’ we need
K M/K — N 2 M —N 2
csopfC [ o (M/K =N\ | o] _csap [ s i
neN M/K -1 T neN M—-1 T
_ o? M-N _M-NK
= (K-1)— <2 — —
E -1 <7 ( M-1 " M-K >
873 374 NK
MK -1) (NE - M+ N - 5F)
K (M —1)(M - K)
The right-hand side is positive for K = M/N. However, even for K = M /N — 1, on the r.h.s. we notice that
NK N (M
NK-M+N—-—=M-N-M+N—-—|—-1 0.
TS wv-3 (1) <
Hence, except for K = M /N, we can see that for v > A;0? /7 to achieve CSGD|F>1 > C’SGDW:I we need to have
M o2  Ayo? (M —-N
1) =
(N )7‘< T (M—l) (50)
M- N M —N
= A 51
N <A1 (M 1 ) (5D
M—-1
: A 52
TN < Ay (52)

completing the proof.

B.5. Proofs on Intermediate Lemmas

Proof of Lemma 5.

K N K
SE| Y Al SWZ [Butat]
=1 3

meS (ki) i=1 meo(i)

E K [r—1
ST Z k| D (VEn (Wi =Y ff!?””)VF7,,,<w<’““>>>H|
=1 LI=0
— K _
< KZ Z ZHEk [VF (wlki=1Dy g f, (wkis 1))]H (53)
i=1 meo
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Next, using Assumption 1,

T—1 T7—1
52 o) - Tt <23 0w
=0 =0

<an Ek ZVF (kZ 1,1") g(k}l 1,0") ‘|H
1'=0

T7—11-1
< Ln Z Z H]Ek [VFm(wgfvi—l,l')) _ VFm(W(k,i—l)) + VFm(W(k,i—U)} H

1=0 I'=0

T—11-1

< Lmz HE’“ {VF (wlki=11)) _ VFm(w(k,z‘—ﬂ)} H +an Z H]E’“ [VFm(W(k,i—l))} H
= 1=0 I'=0

T—1
S(1— L)Y H]Ek [VFm(w,(,’f’i*“)) - VFm(w(k’i’l))} H
=0

LﬂT( H]Ek [VF (w kifl))7VFm(w(k,0))+VFm(w(k,0))]H

<Lmi7—1HE{ i) 0] ||y P =D g k0| (54)

Using n such that n < 157~ LT we get

H < 5Lnt(T—1)
9

S [ [T Fm sl 1) = 9B 5] [2[Bulw ) = w0 + |77 (0.

1=0
(55)
Bounding ||Ej,[w*~1] — w9 ||, Analogous to (39) we have that
Hw(k,r) w(k:0) H n Zd(kz B ~Z g*d 4 Etn ||
=1
where T(F7) .= S 1 (H;:i+2( — st ]))) gt > _y @*9). Hence we have
T
k, ~ (ki (ko]
[ s ]| < 25 [ 715 [ | e )| 6)
i=1 .
First, we bound the first term in the RHS of (56) as follows:
K, T—1
e [a®?] | Zm S S (VE (w0, gl 10) - VR, (wiki 1))
meS k) 1=0
~ T T—1
=TS E | Y S VEL(wETI) - VR, (wki))
= mesk.i) 1=0
INK .
S n Z Z ZH]Ek |:VF k"L 1l))_VFm(W(k‘,’Lfl))):|H
=1 mé€o(i) =0
nNK 5nL(T SnL2(t —1)T
o e e || BT
i=1 mea(i)
S5INLNEK (T — 1) « S5iNL? (1 — 1) < ,
R Y TR P
i=1

=1 meo(3)
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We can bound the second term in the RHS of (56) using Lemma 3 to get

< rﬁNHVF(wW))H + afjNT- (58)

7] XT: Ey, {ﬁ(k’i)}
=1

Third, we can bound the third term in the RHS of (56) as following:

r—1 T 7
~2 ~(k,m)] || _ =2 _=gkd)y | glksit+D) ~(k,5")
WHEk[I’ T}H—n Ey Z H Ta—7mS"7)|S Zq !
=1 J=i+2 7'=1
r—1 r 7
~ k ZJrl) - ./
<Y B | ] (178" H]E [ ]H > gk
i=1 j=i+2 J'=1
62NL ' k) )
<2 > Z o [ j } (Using (30), 31) and 7] < —1—)
~9 r—1
=1 =1meao(j’)
62NL '
+ 2 —> (zNHVF (k0)) H +zaN) (Using (57), (58))
=1

2PN L2K (1 — 1)(r — 1) « (£,0) 3PPN2Lr(r — 1)
= 3M > X |VERwt O] + 5

J'=1mea(j")

~2 AT273 r—1 2
L 2ENTLA(r = D(r — 1) 3 HEk [Wum'—l) _ wm H n MHW wik o>)H (59)
-

3 5)

Plugging in (57), (58), and (59) into (56), and summing over r, we have

5onLNK (t —1 2P nN2L2K (1 — 1)(r — 1)
HEk [W(k,r)i ko)”’_( m ( ) nn ( )( )Z Z HVF W(kO))H

OM 3M T meati
5577NL2(T -1) 27 77N2L3(7' = 1)( (ki=1) _ (k.0
* < 9 * 3 Z HE" { }H
~ W’ N2Lr(r — 1 _ RN2Lr(r —1
N (mN+ 37 57"(7" )) HVF(W@O))H a1 g(r )a
K
- Z HE’“ {W(lcr D) _ ik o)}
~ — = K
S5mLNK(K —1)(1 — 1) 77N2L2K (r = 1)( H (k,0)
< F,, ’
= < oM + 3M Z VEn (W)
=1 meo(i)
5mNL?K(t —1)  7*nN?L3K (1 — 1)(K — 1) (ki=1) _ 4 (k.0)
* ( 9 + 3 Z HE’“ [ }

KX -1)iN PNLE (K 1) _ 19K (K — 1)7iN
( : 2 LR 5( >HVF(W(k’0))H+ : (100 nRe
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K JU—— K 2
_ 3IGNK(K — 1) 2TINK )
(kr=1) _ k0| < 22V = 1) H (k,0) H 7“ (k,0) H
ZHEk |w w0 | < - ; > | VEa w0 | 4 TV E)

K(K — 1)nN 5mmNL2K (1 — 1 MnN2L3K(r — 1)(K — 1
( JNNa ..o (T )+n n (r=1)( )§3/500
2 9 3
K U ——
Z HEk [W(k’T_l) wik o)} H < 3177NK HVF (k,0) H . BIPNK(K — 1)v n K(K - 17N« (60)
500 2

K
So| ¥ ap
meS (k1)

=1

"
L(r L3(t = )T
Z Z <5n HVF w(t0) H+MHE [ (kii=1) _ (k’O)HD (Using (55))
i=1 meo
. 5nLNK(T— THVF (w0 H | BnLNK(r = Vv
9 9
+577NL2(7'—1)T 31nNK HVF (ko))H+31ﬁN?(F—1)y K(K —1)Na (Using (60))
9 500 2
3nLNK(r — 1 14nLNEK (1 — 1 LN(K —1)(t -1
SwHVF(W(k7O))H+ Ui (r )TV+77 ( )T — 1)1
5 25 36
O

Proof of Lemma 6. From (59) it follows that

] TEESENCN S 5 for, o] o L Dfrino

M j'=1meao(j’) 5

~2 AT273 = K-1 ~2 N2 T T
n 2°nN=L (73— DK -1) Z HEk [W(ku"fl) B w(k’o)} H n 3" N LK5'(K - Da

_ 2PN LR (K ~1)(r 1) i S [Prawto)| + 3PN LR (K — 1) v

3M : , 5
j'=1mea(j’)
2 nN2L3 (r — 1)(K — 31INEK 31TNEK” K(K — 1)n7N
L2 (r—1DF -1) 77 HVF (k0)) H+ VK v ( )iNa (Using (60))
3 500 2
3PN2LE (K — 1)a
5
~2 AN2T2T7 (T . 2
< 2°nN>L K(?f( D(r—1) [HVF(WUC,O))H +V} n 3°N LI;( HVF (k0)) H

(Recall v = v + o, Assumption 3)
~2 AT273 T SN2 y7dazd ~
| 2PN LA~ 1)(E 1) (3117NK HVF ", O))H | BUNE' v K(K - 1)77Na>

3 500 2
| 3PN?LE(K —1)a

<AN(K —1)

5
9RNL2K 3iNLK 3LiBN2L3K’
(B SR LI [ |
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2m°nN2L2K (K — 1)(1 — 1 17NLK — MPNL*K
/I ( e =1) (1, 311 VA ENIR(E — 1) (TNER L3,
3 500 3 )
1TINK APnN2L?°K(K — -1 1672N2LK (K — 1
< TINR | g v o MERVERE i =1), | 107 NIRE 1),
250 125 25
O
Proof of Lemma 7. We have
Lg, war) _W<k,o>H2
2
2
T T r—1 T [
L ~ — 3 ~ . — —(k.,7 — -/
_ §Ek _nzd(m)/T _ nza(m) - H (I S( ,J)) S(k’ +1) Z gk
i=1 i=1 i=1 \j=i+2 j'=1
—5(k,m)
) _
3Ln — (ki) 3L? i 3Lt _ 2
Ey, E (ki) E H ol 61
S5 + k ;q +— B |r (61)
We first bound the last term in (61) as the following:
) 2]
3L Nleen |12 3L — [ i (k) | ki) o= (g
e [0 ) = e || IT @a-as™ | s g
i=1 \j=i+2 J'=1
2 ) 2
54N2L3 T —1) (k" ‘o
< ZEk = S a| ) S| | (62)
j'=1 j'=1

which follows from (30), (31). Note that the two terms in (62) are in 51m11ar forms as in the first two terms in (61). We will
come back to bounding (62) after bounding the first two terms in (61).

2 T
-5 (> 3 ag

i=1 meS(k,i)

ia(kvi)

i=1

Ex

< TzT:Ek
i—1

meS (k.9

r 1
<rY B Y D (TR ki) - v
=1 meS (ki) [=0
TNQTKZ Z (103772L2 T — 1) 2 697]2L472(T_1)
=L meali) 200 50
202725 — 1) ,
+%Ek [HVFm(w(k,O))H }) + r2Nrg2
697“N2 3(r — 1)Kn?L?

S 3 v

i=1 meo(i)

69rN273(1 — 1)Kn*L* &
50M Z Z Ex
i=1 meo(i)

50M

wik: 0) H +7r2N7o? (1 +

2
[Hw(lm 1) _ (k,O)H }

103N7(T — 1) L2n?

2

Fm(wgrlf,ifll )+ VE, ( (k,i—1,1) )7VFm(w(k,i71))>

E, [Hw(’”—l) _ W(’w)HZ]

(Using the bound in (68))

For the second term in (61), similar to how we got (36), we have that

. 2
Zq(kai)

=1

Ex
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We can use (63) and (64) to bound (62) as following:

~4
8Ly {H;u@,n 2]
)

273~4/,. 1)L S AT2  N\To272 ¢ 2
< 54N Ln*(r — 1) Z 69iN T(72'5 1)Kn*L Z Z HVFm(W(k’O))H
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- 25 M “ .
j'=1meo(j’)

69iN27 (1 — )En?L* < k-1 o |?] L 2°Na® 103N T (7 — 1)L27?
+ 250 > Y Elfw w0 = (1 200

j’'=1meao(j’)

2 M/K - N
+8N2i2HVF(w(k’O))H AN </) + 8N2i2a2)

M/K -1
SNALAT(1 — 1)Kn?itr(r —1)2 29NAL30* (r — 1)2
wk o) (k,0)
< i oD ol AZ ARl e A |
i'=1meo(j’)
SNALTr (1 — 1)Kn?n*(r — 1)? 2
(k' =1) _ 3 (k,0)
+ 3 "3 m ey owen|]
i'=1meo(j’)
. T2N3L30 (r — 1)%r%42 (M/K — N 36N3L30* (r — 1)%r20? 14 103N7(T — 1)L2n?
25 M/K —1 251 200
29NAL304 (r — 1)%r%a?
. 65
5 (65)
Finally, plugging in (63), (64), and (65) to (61) we have
5 -]
20°n2L2N?7 (1 — 1)Kr P (k 0)
< - (2 + BFRLANY( Z > VA H
Jj'= lmEU(]
2722 LAN? - 1K 2
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+
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1020°n2 L2 N27 (1t — 1)K (r — 1) H & 2 617°N%(r—1)2 2
< VE,, (w0 H —HVF (k,0) H
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j'=1meao(j’)
2 N2 ~2 2
41n°N K (K HVF (ko))H 5117 NEK® (K —1)o
10 50T
20372 NE (K —1)72 (M/K — N\ ALPN?K (K - 1)a?
— +
100 M/K —1 10
~2 N2 (T 9 ANT2 (T 2 27 (o 2
< 83°N*K (K DHVF(W(k’O))H 4 S51°NK (K —1)o®  3n°K7(r—1)v
20 50T 100
5IIPNK (K — 1)7% (M/K — N . APN? KR — 1)a?
25 M/K -1 10 '
O
Proof of Lemma 8.
S S 2 = K g
3L (k) 3L77 (ki) 3L’ K (ki)
o7 i > d 5 Ei > > ¥ <=5 B D] al
i=1 i=1 meS (ki) i=1 meS ki)
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2

LK = _ _ _
=° 2772 ZEk Yo D (VE(wi Tt i) — v, (whimhh)) (cross terms are zero)
g Z meS(k.4) 1=0
K 2
— K
L .
3 77 Z Z z (VE, (wki=10y _ g (wki=1))
= meS k1) =0
T—1 2
3L K - - N
= 273_2 ZEk Z Z(VFm(Wgrlf,z 1,l)7 Er(r/j,z 1,l)> _ VFm(W(k,z 1,l)>)
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From (67) we have that
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Plugging in (68) to (67) we have
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Proof of Lemma 9.
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where (69) is derived in the same was as (35). Now we bound the following in (69)
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Plugging in (71) to (70) in (69) we have
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C. Proofs for the CyCP+Shuffled SGD Case (Case (iii) in Algorithm 1)

Now let us extend our analysis to clients locally performing shuffled SGD. Recall that for shuffled SGD, as shown in
Algorithm 1 we have that each client in m € S receives the global model w**~1) and initializes its local model as

the global model i.e. w(k =10 = (k=1 Then the client performs shuffled SGD over its B components sequentially

with update rule W(k LD ngf"ifl’l) = NV Fpy o oy (WD) 1€ [0, ..., B — 1] where mf, ~ Unif(Pg) and

Fop i 1y(W) is the 7% (1) component of the local loss of client m such that the sum of all the components for each client

B-1
1 F,

% 21=0 Fm,(w). Hence the update rule over the inner loop i € [K]

is equal to the local loss of that client i.e., Fy,, (W) =
is as follows:

ki) _ o (kyi—1 n k,i—1,1
WD w5 SR (o) @
meSk.1) 1=0

Using
VE,, nk z)( wki— 11)) VFy e z)( wki— 11)) VFm’Wb;l(l)(w(k,i—l))+VFm7ﬂ5n(l)(W(k,i—1))

— VFm,ﬂan(l)(W(k’i_l)) +/ Vsz,‘n’;ﬁ(l) (w(k,i—l) + t(ng’i_l’l) _ W(k’i_l)))dt(wgf’i_l’l) _ W(k,i—l)) (74)
0

—A
we have that
wlbd) = ki - J 37 Z [v pi (o (WD) D (ki =L gy(kizD))) (75)
mes(k i) 1=0
Leveraging the fact that w(k =10 — w(ki=1) we can use recursion to get the update rule
" B-1 [ 1+1
i i (k-1 i
wihd=wtemh == > 1 (I —H, )) V Ep e (W) (76)

meS(k,i) 1=0 j=B-1

Similarly, we can define

1
¥ Eonrt (84 = T (W E0) [T g () (D w0 5D ek,
L m 0 ? m

g i=D

m,l

to get

% n k,i—1 k,i—1 i—
W(k’ ) =W — N ' H (I - Hsn_] )> (VFerfn(l)( (ks )) H'EYLIZ )( (ki=1) w(k70))>

B—-1 +1
- 1 Z Z H 5 (yi—
= w(k7 b n X N ( (I - ann,; 1)) VFm,Trf%(l)(w(k’O))
i j=B

= (77)
1 B-1 [ 141 ki1 e hinl) o (h .
i i i—1 0
ey 3 3| IT (1= ) H et - wh)
meSk.) 1=0 \j=B-1
Z:T(k’i)
Unrolling (77) we can obtain the update rule for the outer loop as follows:
1+1
wk+1.0) — (o (k0) _ ”Z H (I; — nT®Dy | gk (78)
=1 \j—K
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Applying summation by parts to H”r (I — nT*9)) and t(¥%) in (78) and then again to Hl+1 (I nH(k A 1)) and

VF,, w1y (wk0) in 659 we can rewrite (78) as

K B-1
n
Wit = w0 - Nz > D VEumaw™?)
i=1 meSk,i) =0
K — +
kz 1) (k,i—1) k,0
S5 2O SID ol I RURLER D L
i=1 (ki) 1=0 \t=B-1
.y (k:0)
1 K-1 [ i+2
B S 01 (TGN Kl O D Sl wa )
i=1 \j=K j=1meSk.3) 1=0
—p(.0)
2
7773 -1 i+2 B-2 1+2 N )
-n" (Id_nT(k]) pksit1) Z Z Z(H (Id—ﬁﬂgfj; 1)) (kzl)zvmﬂk( ) (kO))
N =1 \j_K i=1 mes(k.i) 1=0 \t=B-1 ’
—p(k:0)
-3
K B-1
=who - L3 V Epy e 0y (WD) 4 {50 200 g0 (79)

Taking expectation conditioned on all the past till w(*?) | we get

By [w* 0] - wk0 = KBV FwrO) 4 2By [r( 4 rf50 — el (80)

:—=r(k,0)

which follows from the expectation over the selected client set S*+9), i € [K].

C.1. Intermediate Results

Lemma 10.

3
e/10  exp(e!/19/10)e*/5nBL(K — 1
J’_
2 2
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C.2. Proof for Theorem 3

Theorem. With Assumption 1-Assumption 3, and Assumption 5 we have that with step-size 1 = log(M BK?)/uK BK and
K > 10k log (M BK?) where = L/ we have that the convergence error is bounded as:

E[F(wS0)] — F* < (1 — K B)X (F(w®) — F*) + O (“”ﬁK (Aj\gfé‘_f ) 72)

+ O (n*(B — 1)KL¥* + n*kL(B — 1)*/?)
+ O ((K —1)*B’Lrn°a®) .

With n = log(M BK?)/uBKK, we get

Ewmmmnw<fwwW>lw+5(nﬁ @WKN>)+5CBUf%ﬁ>+@<#wn%j

=" MBK? uNK \ M/K —1 B> RK? uB2K’ K2
2K —1)202
] S
kK K2

where v = v + a and @() subsumes all log-terms and constants.

Corollary 2. Recall that the total communication rounds translates to T = K K and therefore in terms of T we have that
the bound becomes

—2 J—
K (F(w®9) — F*)  ~ (r2(B-1)%%\ = (K*(K —1)%a?
(K70) _ * < A R
E[F(w5)] — F* < BT +0 BT +0 T2

o(GE ) 0 (35 ),

Since K > 10k log (M BK?), we have T' > 10xK log (M BFQTQ) and one cannot increase K without increasing T'
accordingly due to its lower bound depending on K.

Proof. Using the L-smoothness property of the global objective F' we have
L 2
E [F(w 0] — F(w®0) < (vE(wEO) By fwk+10] — wk0)y | EE [Hw(k+1,o) _ W(k,O)H ]
— 2 L 2
< anBHVF(w(’“’O))H JrnQHEk[r(k’o)]HHVF(W(IC’O))H + B [Hw“@ﬂﬁ) - w(k’O)H ] . @1)
Plugging Lemma 10, we bound the second term in the RHS of (81).
o Bt n e reeon]
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1/10 1710 110Ve 5y BL(K — 1 —
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63°KLB(B — 1)v
100

)

1?2B2LK (K —
+ 2 50( QHVF(WUCVO))H

N e1/10 exp(el/lo/l())el/w exp(el/lo/IO)el/E’
20 20 200

47 o <4MBK

>n2KL(B3/2 - l)ﬁHVF(w(’“O)) H + HVF(WUC’O))H

— 2
> nKBHVF(w(k’O))H

13
< KBHVF ’“0>)H +

ar | (AMBK
20\ 5

277 _1 2 P2 T I (TE
637 KLf)(()B W ‘+ 31n°B L;(K 1)aHVF(W(k’O))H' 82)

Next we bound the third term in the RHS of (81) as follows:
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Plugging the bound from Lemma 11 in (83) we have

)2
log (4AM BK /8)v°

—2 J— J—
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Finally, substituting (82) and (83) into (81) we get

Es [F(w(k+1,0))] . F(w(k}o))

VPt 0>>H2+ (84)

2 2
3B KB vr o |4 TR (M/K )+
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SE[F(wEHO)] - F* < (1 - unBR)(E[F(wk0)] - F*) +

2L B?K" (M/K—N) )
10N M/K —1

39



On the Convergence of Federated Averaging with Cyclic Client Participation

N <472(B3/2 ~-1)2  31(B-

12\ 53— 5 4MBK\ _, 632 1\ 53— 9 o
KL?1 —— 4+ - |*KL*B(B -1
8B LT )’7 o775 )V 2w ta)" (B-1)v
+ 121K (K — 1)*B3L*na?.

Unrolling (85) we have

. — 215BK [ M/K — N

E[F(wk+ 1) — F* < (1 — unK B)X (F(w®9) — F*) 4 ( — )2
Fw ] = BT < (L= BB P (W) = F) + =0 = 37 -1

N (472(33/2 —-1)2 31(B-

(85)

1)2 AMBK 632 1 86
<52 + 108 ) ) n*kLlog ( 5 > 72+ ( + ) "’ kL(B —1)%1? (86)

200 ' 2
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With = log(M BK?)/uBK K, we have
E[F (w0 - P
- F(w(0:0) — F* N 21klog(MBK?) (M/K — N\
= 7 MBK® 10N K M/E-1)"

N (472(33/2 —1)2 N 31(B — 1)2> r?log (4AM BK /§) log*(M BK?)7? N 21k%(B — 1) log*(M BK?)1/?
8B4 10B3 MFQKQ IO;LBQFZKQ
N 121(K — 1)?k2log*(M BK?)a?

,uFQ K?

F (0,0) _ F* _ 2 M/K - N _ 33/2712 B—1)2 22
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2B _1)2,,2 o 2(T _1)242
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which concludes the proof.

C.3. Proof for Corollary 3

Recall that the total cost for CyCP+Shuffled SGD and LocalRR respectively is as follows:

[ essopr [ Ky =, 7
CSSGD(G)—O< \/R (H\/W+V+Ka+\/§>> 87)

= ( Kessop 1 v
CLocalRR(E) =0 ( \ﬁ (\/W +v+ \/§>> (88)

For Cssep(€) < CLocairr (€) to be true, we need to have Hence, equivalently, we need to have

1-Kyv+Ka+(1-K) <0.

S

Since we have that K = M /N, we have

N-M Ma (N - M)w (N — M)p (
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\/B) VB
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v 1% v «
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(’y \/B> ( ! ¢B> ( ! waf)/(7 wB) ( v+;§>
completing the proof.

)
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C.4. Proofs on Intermediate Lemmas

Proof of Lemma 10. In the following, we bound all three components of r(¥:*) separately as follows.
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We can similarly bound the next noise term as
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since Hﬁfﬁfl) H < L. We can bound (90) as
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(Lemma 8 in (Yun et al., 2022))
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Finally, using (89), (92), (93), in

ot < e o o)
we get the final bound. O

Proof of Lemma 11. Similar to how we bounded the norm of the noise terms, we can bound the norm square of the noise
terms as following
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