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A APPENDIX

A.1 NULL COMPONENTS

Algorithm 1 Learning ṽ�

1 # f✓, f�, f 
2 # epochs: Training epochs # 500
3 # ✏: Learning rate # 0.01
4 # steps: Epochs to reduce the learning rate # [150, 300, 400]
5 # lim: Range to randomly sample initial values for ṽ� # [.01, .05, .1, .25, .5, 1, 1.5, 2]
6
7 ṽ� ⇠ U(�lim, lim)
8 for epoch in range(epochs):
9 for x in loader: # load a minibatch x of images

10 with torch.no_grad():
11 gt = f (f�(f✓(x))) # original output logits
12
13 u = f✓(x) + [0; ṽ�] # introducing noise
14 out = f (f�(u))
15 loss = (out� gt)2.sum(dim=-1)0.5.mean() # L2 computation
16
17 loss.backward() # back-propagate
18 grad = ṽ�.grad()
19 ṽ� = ṽ� � ✏ ⇤ grad # gradient step
20
21 if epoch in steps:
22 ✏ = ✏*0.1
23
24 return ⌫̃�

A.2 WATERMARKING IMAGES

As mentioned in the main paper, we use SQSLP for minimising equation 7. We use the imple-
mentation provided by SciPY (Virtanen et al., 2020) and run it 5000 iterations. Experimentally, we
observed that using p = 1 norm provides better watermarking behaviour than p = 2. All reported
and displayed nullspace noise content is with p = 1 unless stated otherwise.

To quantitative assess the robustness of model to the watermarking process, we will have to water-
mark every image in the dataset. This process requires considerable time and compute to execute.
Instead, we perform the evaluation for randomly selected 20 images and compute the % match
predictions and absolute difference in the predicted probabilities. We found that 85% of the water-
marked images were classified as the source image category. For the mean absolute difference, we
compute it between the predicted probabilities for source image category both for the source image
and the watermarked image. We observed that the difference in confidence varied 11.63% on an
average.

In figure 6 we show the original, |v✓| and the resulting watermark images. The watermark image
is the same as one reported in the main paper. Using nullspace watermarking, we notice that shape
details are more likely to be transferred than other information from the watermark image.

A.3 TARGETED NULLSPACE NOISE

Instead of directly minimising the unconstrained equation 7 with huge number of variables (r⇥r⇥c),
we manually fix the values of 2 channels (green and blue) and only perform the minimisation to learn
the red channel values for the transformed image. This reduces the number of parameter to one-third
and also retains a lot of target image information without any loss. This is also the reason why we
observe different colored tint for the transformed images. With respect to the implementation, the
details are identical to that for watermarking.

A.4 FOOLING XAI METHODS

In figure 7 we show the saliency maps generated by various XAI methods. Even though the maps
generated by methods other than LRP are poor (hard to interpret), we see that the source and trans-
formed respond similarly to these methods.
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Figure 6: Watermark superposition using the nullspace basis vectors.
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(a) Attention (Chefer et al., 2021) (b) Grad-CAM (Selvaraju et al., 2017)

(c) Rollout (Abnar & Zuidema, 2020) (d) LRP (Chefer et al., 2021)

Figure 7: Interpretability maps generated via. different methods for (source, target, trans-

formed) images
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