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In the main text of the paper, we restrict our attention to exactly one individual at each time step.
Now we relax this restriction by considering policies as follows:
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Theorem 1. Under regularity (Assumption 3) and modeling conditions (Assumption 2), and assume

that f;(x) = f(z), gi(x) = g(x), the proportional min-U policy leads to the following closed form
solution of the individual rates of growth:
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where J is a random variable with values in [N| whose exact value depends on U (0), f(-), and g(-).

Proof of Theorem 2] For Vi,j € [N] s.t. U;(t) > U;(t), we have a;(t) > a;(t), then under the
assumption that f;(z) = f(x), g;(x) = g(z), we fu rther obtain
E[Zi(t +1)] = ai(t) - f(Ui(1)) — (1 — ai(t)) - g(Ui())
> a;(t) - f(Ui(1) = (1 = a; (1)) - g(Us(t))
> a;(t) - f(U;(1) — (1 = a;(8)) - g(U; (1)) = E[Z;(t + 1)].
where the last inequality holds because of modeling conditions (Assumption 2.(a), (b)). Consider
i € M; where M, = argmax;{U;(t)} and i € My, j € [N] such that U;(t) — U;(t) > 1, we have
EU:i(t+1) = U;(t + 1) | F] = (Ui(t) = U;(1))
=E[Zi(t+1)—Z;j(t+1) | F]
ai(t) - f(Ui(t)) = (1 = ai(t)) - g(
ai(t) - f(Ui(t)) = (1 = ai(t)) - g(
t

Ui(t)) = (a;(t) - f(U; (1)
Uj (@) = (a;(t) - f(Ui(1)) — (1 = a;(2)) - g(U;(¢)))

Y

= (a;(t) —a;j(t)) - f(Ui(t)) + (a;i(t) — a;(t)) - g(U;(2))
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Now treat U;(t) — U;(¢) as the welfare process and apply Lundberg inequality for welfare process
(Lemma 3), we claim that with positive probability that U;(t) — U;(t) > 1 for ¥t > 0 when
U;(0) —U;(0) > 1 where i € M. Then combine with the regularity condition (Assumption 3.(c)),
we have that with positive probability (lowerbounded by a constant) that U;(t) — U;(t) > 1 for
Vt > 0 where i € Mj. Then we apply the same reasoning for j € [N]\i and conclude that with
probability 1, the proportional max-U policy will fixate on one single individual asymptotically. [l

Theorem 2. Under regularity (Assumption 3) and modeling conditions (Assumption 2.(a),(b)), the
survival condition (Assumption 1), the proportional max-U policy leads to the following closed form
solution of the individual rates of growth:
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Proof of Theorem([lI] The result can be proved by induction, and the proof of long-term behavoir of
min-U policy (Theorem 3) applies here with minor modifications. We assume for NV — 1 individuals
the conclusion holds, and consider M := arg max;{U;(0)} and M := [N]\ M. For VI € M,
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where D(t) = max;ecy) U;(t) — min;en) Ui(t). Hence there exists constant C' such that when
D(t) > C, the survival condition for M¢

Opme(t+1) = Upac(t) = Y wias(t) - fi(Ui(1) = (1 = ai(t)) - gs(Ui(t))
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where Upqe(t), wM

M are defined as in equation (5) for set M°. Hence we apply the conclusion

for M€ and claim that there exists constant T'x¢c such that when ), a;(t) < 1+(N711)e70 for
Vt > 0, we have
i ; > i > c
E Lrglﬁllc U, (t)} > jrél/gllc +1, Vt>Trge,
E i(t)| < -1, Vi >Tre.
0] < s =T
As fori € M,
E[Zi(t+1) | ai(t), Fe] < ai(t)f;" = (1 — ai(t))g;
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and when D(t) > C’ for constant C' > 0, we have
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Hence for the whole population [N, if 3\, ai(t) < min { W, £ minge () # },

there exists constant 7" such that

]E{mm U(t)} > min U;(0)+1, Vi>T,
JjEMES jeEM:e J

E {maxUj(t)} <maxU;(0)—1, Vt>T.
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The rest of the proof goes through with minor modifications given the above facts and omitted
here. O



