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A APPENDIX

A.1 UNDERWATER VIEW SYNTHESIS DATASET

Due to the absence of multi-view underwater scene datasets suitable to evaluate novel-view render-
ing, we establish a new benchmark Underwater View Synthesis (UVS) Dataset containing 8 scenes,
equally split into easy (real-world high quality) and hard (real-world low quality). For real-world
data, we hand-pick 4 scenes from high quality youtube videos to form the easy split, while the
hard split is composed of low-quality noisy real-world captures obtained during a diving expedi-
tion. For each scene from the easy and hard splits, we select roughly 100-150 images and calibrate
them using Structure-from-Motion (SfM) algorithm in an open-source software package COLMAP
Schönberger & Frahm (2016); Schönberger et al. (2016). For COLMAP, we use a “simple radial”
camera model with a single radial distortion coefficient and a shared intrinsic for all images. We
use a “sift feature guided matching” option in the exhaustive matcher step of SfM and also refine
principle points of the intrinsic during the bundle adjustment.

Figure 2: Overview of U2NeRF: 1) Identify source views for a given target view, 2) Extract features
for epipolar points using a trainable U-Net like model, 3) For each ray in the target view, sample
points and directly predict a target patch disentangled into scene radiance, direct and backscat-
ter transmission maps, and global background light. 4) The individual components are combined
based on the image formation model to reconstruct the underwater image which is used as a self-
supervision loss.

Models UIQM↑ UCIQE↑ LPIPS (gray)↓
UPIFM 1.424 32.940 -
UIESS 1.136 30.534 -

NeRF 0.501 31.622 0.208
NeRF + UIESS 0.865 31.054 0.223
UIESS + NeRF 0.858 30.336 0.198

U2NeRF 1.570 32.556 0.174

(a) Easy Split

Models UIQM↑ UCIQE↑ LPIPS (gray)↓
UPIFM 1.182 28.537 -
UIESS 0.649 27.161 -

NeRF 0.463 18.370 0.334
NeRF + UIESS 0.486 27.453 0.328
UIESS + NeRF 0.456 26.530 0.292

U2NeRF 1.100 26.788 0.260

(b) Hard Split

Table 1: Comparison of U2NeRF against baseline methods for single-scene rendering on the UVS
dataset
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(a) Degraded Image (b) UIESS (c) UPIFM (d) NeRF (e) NeRF + Clean (f) Clean + NeRF (g) U2NeRF

Figure 3: Qualitative results on single-scene rendering for Easy and Hard Scenes. The top 4 rows
depict the scenes from the hard split(Scene 1, Scene 2, Scene 3 and Scene 4 respectively) and the
last 4 rows depict the scene from the easy split(coral, shipwreck, starfish and debris respectively).
(a) represents the actual underwater image from the scene, (b) & (c) represents the no rendering
baseline methods (Chen & Pei (2022) Chai et al. (2022)), (d), (e) & (f) refers to the renderings
from NeRF on raw underwater image, restored view after NeRF rendering and NeRF rendering on
restored input underwater images respectively, and (g) refers to results from our method: U2NeRF.
U2NeRF is able to render better high-quality images when compared to other rendering+restoring
methods.
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