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Figure 1: Overview of the denoising process. Taking sparse tracking signals and noisy human poses as inputs, our method

generates clean full-body poses through iterative denoising,.

ABSTRACT

In the domain of generative multimedia and interactive experi-
ences, generating realistic and accurate full-body poses from sparse
tracking is crucial for many real-world applications, while achiev-
ing sequence modeling and efficient motion generation remains
challenging. Recently, state space models (SSMs) with efficient
hardware-aware designs (i.e., Mamba) have shown great potential
for sequence modeling, particularly in temporal contexts. However,
processing motion data is still challenging for SSMs. Specifically,
the sparsity of input conditions makes motion generation an ill-
posed problem. Moreover, the complex structure of the human body
further complicates this task. To address these issues, we present
Motion Mamba Diffusion (MMD), a novel conditional diffusion
model, which effectively utilizes the sequence modeling capability
of SSMs and the robust generation ability of diffusion models to
track full-body poses accurately. In particular, we design a bidirec-
tional Temporal Mamba Module (TMM) to model motion sequence.
Additionally, a Spatial Mamba Module (SMM) is further proposed
for feature enhancement within a single frame. Extensive experi-
ments on the large motion capture dataset (AMASS) demonstrate
that our proposed approach outperforms the latest methods in

Unpublished working draft. Not for distribution.

terms of accuracy and smoothness and achieves new state-of-the-
art performance. Moreover, our approach runs in real-time, making
it ideal for employment in practical applications. The source code
will be made public upon acceptance of this paper.

CCS CONCEPTS

« Computing methodologies — Motion processing; Neural
networks; Tracking.

KEYWORDS

Human Motion Generation, Sparse Tracking, Mamba, Diffusion

1 INTRODUCTION

With the recent popularity of generative multimedia and interactive
experiences, tracking full-body human movement has become a
highly demanded feature. However, there are no strong tracking
signals for the entire human body in the typical AR/VR scenar-
ios. Common VR systems are usually composed by Head Mounted
Displays (HMD) and handheld controllers, in which Inertial Mea-
surement Unit (IMU) sensors are utilized to track head and hands.
While these devices can provide resourceful upper body motion
information, the lower body is not tracked and must be estimated
from the limited information provided by the upper body joints.
The ill-posed intrinsic nature makes generating realistic full-body
motion particularly challenging.

Various methods have been proposed for this task, many of
which are based on the Transformer architecture [46]. While Trans-
former models [6, 11, 21, 28, 38, 48, 57, 59] are renowned for their
ability to capture long-range dependencies within a sequence, there
remains a concern regarding their accurate understanding of tem-
poral motion relationships among frames, primarily due to their
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Figure 2: The framework of the proposed Motion Mamba Diffusion (MMD). It starts with Feature Mapping to map the noisy
human poses and sparse tracking signals to the unified latent space for subsequent process. Then a U-shaped architecture is
applied to process motion information across different timescales. In particular, we utilize the Motion Mamba Block (MMB)
to construct it, which consists of two key components tailored for motion generation, i.e. Temporal Mamba Module (TMM)
and Spatial Mamba Module (SMM). Specifically, TMM focuses on capturing the temporal dependencies inherent in motion
sequences, while SMM is employed for feature enhancement within each frame.

dependency on positional encoding. A recent work, AGRoL[12], em-
ploys a MLP-based network for this task. Nevertheless, its reliance
on 1D convolution to capture temporal relationships within motion
sequences may limit its modeling capacity, thereby leading to insuf-
ficient performance. Recent advancements in State Space Models
(SSMs) [17, 18, 32, 40, 47], notably Mamba [14], have demonstrated
significant promise in sequence modeling with selective scanning
mechanism, indicating a promising direction for building motion
generation models based on this approach. However, it is not trivial
to employ SSMs in this task. Generating human movements with
high accuracy is of vital importance, yet the sparse nature of input
conditions means this task is actually an ill-posed problem. Further-
more, the intricate structure of the human body also makes it very
difficult to generate smooth and realistic movements.

In light of these issues, we propose the Motion Mamba Diffusion
(MMD), a novel conditional diffusion model, which generates hu-
man poses through iterative denoising, as illustrated in Figure 1.
It effectively leverages the robust generation capabilities of diffu-
sion models in conjunction with the sequence modeling proficiency
of SSMs. As shown in Figure 2, the proposed MMD adopts a U-
shaped architecture to process motion information across different
timescales, and the Motion Mamba Block (MMB) is designed to
construct it, comprising two key components tailored for motion
generation. First, a bidirectional Temporal Mamba Module (TMM)
is employed for motion sequence modeling of sparse inputs. This
module excels at identifying temporal dependencies among frames,
facilitating a thorough comprehension of the dynamics inherited
in motion sequences. Second, we apply a Spatial Mamba Module
(SMM) to enhance the motion features within a single frame. This
module is dedicated to improving the understanding of the human
body structure within each frame.

The proposed MMD remarkably advances the performance of
motion generation, notably improving the key metrics like MPJRE,
MPJPE, and MPJVE by 13.53%, 14.55%, and 6.83%, respectively,

compared to the previous state-of-the-art method AGRoL [12] on
AMASS [31]. Overall, the contributions of this paper are summa-
rized as follows:

o A SSM-based framework, termed Motion Mamba Diffusion
(MMD), is proposed for motion generation. It is a pioneer-
ing method for full-body pose estimation from sparse track-
ing signals with the incorporation of the selective scanning
mechanism and denoising diffusion model.

e Two innovative components tailored for motion generation,
Temporal Mamba Module (TMM) and Spatial Mamba Mod-
ule (SMM), are introduced to construct the proposed MMD.
Specifically, TMM is employed for motion sequence model-
ing of sparse inputs, while SMM is utilized to enhance the
motion features within a single frame.

e Extensive experiments have been conducted to evaluate
the proposed method, and the experimental results on the
widely-used AMASS benchmark illustrate that our approach
outperforms the state-of-the-art in terms of accuracy and
smoothness. Further analysis reveals the contribution of each
component to the performance improvement. Additionally,
MMD runs in real-time, providing a crucial advancement for
creating realistic virtual avatars in real-world applications.

2 RELATED WORK

2.1 Motion Generation from Sparse Tracking

Full-body motion generation from sparse tracking signals of body
joints has attracted significant interest in the research community.
Many prior works, such as [23, 52], have utilized up to 6 body-worn
inertial sensors, typically distributed over the head, arms, pelvis,
and legs. However, in many practical Head-Mounted Display (HMD)
settings, only 3 tracking signals are available: the head and 2 wrists.
CoolMoves [2] was the first to estimate full-body motion using
only 3 tracking signals from headphones and handheld controllers.
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Nevertheless, the adopted KNN-based method interpolates poses
from a smaller dataset with specific motion, raising concerns about
its scalability to larger datasets with diverse subjects and activities.
Recently, various learning-based methods are proposed for this
task. For instance, AvatarPoser [24] employed a Transformer en-
coder to extract deep features from the input signals and decouples
global motion to guide pose estimation. AGRoL [12] introduced an
MLP-based architecture for motion reconstruction. Other methods
approached sparse input body tracking as a synthesis problem. To
that extent, VAE-HMD [10] proposed a Variational AutoEncoder
(VAE) architecture, while FLAG [3] opted for a flow-based method.

2.2 Denosing Diffusion Models

Emerging from the realm of image generation, denoising diffusion
models [7, 13, 22, 27, 33, 43, 56] have garnered considerable atten-
tion due to their capability to yield high-quality results and adept-
ness at handling large datasets. These models acquire a probabilistic
understanding over a denoising process applied to inputs, gradu-
ally refining Gaussian noise to the desired output. Furthermore,
diffusion models excel in supporting conditional generation. For in-
stance, ILVR [5] guided the generative process to generate superior-
quality images based on a provided reference image. In a similar
vein, GLIDE [35] explored diffusion models for text-conditional
image synthesis. Furthermore, UniDiffuser [4] empowers a single
model to accomplish multiple generation tasks with high quality.
Recent advancements have extended diffusion models to motion
synthesis. However, these endeavors have primarily focused on the
text-to-motion [30, 39, 53] or audio-to-motion [8, 25, 51]tasks, with
scant attention given to tracking the full body from sparse inputs.
AGRoL [12] introduced the first diffusion model solely for motion
reconstruction from sparse inputs. Nonetheless, there remains a
concern regarding its precise comprehension of temporal sequence
modeling, primarily stemming from the adopted MLP-based ar-
chitecture. Our approach, Motion Mamba Diffusion, innovatively
addresses this limitation, thereby leading to more accurate and
smoother motion generation.

2.3 State Space Models

Recently, State Space Models (SSMs) are introduced into deep learn-
ing [44] as state space transforming. Inspired by continuous state
space models in control systems and benefiting from HiPPO initial-
ization [15], LSSL [18] demonstrates the potential to tackle long-
range dependency problems. However, due to the prohibitive com-
putation and memory demands, LSSL is practically unfeasible. To
resolve this issue, S4 [17] proposes parameter normalization into a
diagonal structure. Subsequently, various variants have emerged,
encompassing complex-diagonal structures [16, 19], diagonal de-
composition coupled with low-rank operations [20], and selection
mechanisms [14]. These models are further integrated into larger
representation models. Amid these advancements, Mamba [14] in-
troduces the Selective Scan Space State Sequential Model (S6) Block,
representing a promising innovation for addressing long sequence
modeling across diverse tasks. Recent work has introduced Mamba
into the field of computer vision [37, 42, 50, 54, 58], while [55]
presents a text-to-motion framework.

ACM MM, 2024, Melbourne, Australia

3 PRELIMINARIES

State Space Models (SSMs), especially with the advancements made
by structured state space sequence models (S4) [17] and Mamba
[14], have showcased remarkable proficiency in sequence modeling.
These models rely on a classical continuous system that maps a
one-dimensional input function or sequence, denoted as x(t) €
R, through intermediate implicit states h(t) € RN to an output
y(t) € R. The aforementioned process can be formulated as a linear
Ordinary Differential Equation (ODE):

K (t) = Ah(t) + Bx(t), .
y(1) = Ch(), @

where A € RNXN denotes the evolution matrix, while B € RN*1
and C € RNVX1 represents the projection parameters.

S4 and Mamba discretize this continuous system, making it more
suitable for deep learning scenarios. Specifically, they introduce
a timescale parameter A and apply fixed discretization rules to
transform A and B into discrete parameters A and B. Typically,
zero-order hold (ZOH) is employed as the discretization rule, which
can be defined as follows

A = exp(AA),
B = (AA) (exp(AA) — 1) - AB.

After discretization, SSM-based models can be computed through
linear recurrence, described as

B (t) = Ah(t) + Bx(t),
y(t) = Ch(t).

Another computational approach is global convolution, which can
be formulated as follows

K = (CB,CAB,--- ,CAL"'B),

@)

®)

_ ©)
y=xx*K
where K € R represents a structured convolutional kernel, and L
denotes the length of the input sequence x.

4 THE PROPOSED METHOD

In this section, we initially introduce the formation of motion gen-
eration from sparse tracking, i.e., the positional and rotational data
from a headset and two handheld controllers. Subsequently, the
detailed architecture of the proposed MMD is described.

4.1 Problem Formation

Consider a sequence of human motion from sparse tracking ¢ €
REXC, where L denotes the length of the sequence and C represents
the dimensions of the observed joint features. Our objective is to
estimate the corresponding full-body poses x € RF*/ based on ¢,
where J denotes the dimensions of the full-body joint features. To
represent human poses, we utilize the SMPL model parameters [29]
and follow the practice of disregarding joints on the hands and
face [10, 12, 24].

In our approach, we view the full-body pose estimation task as a
conditional generation problem, where the sparse tracking serves as
the conditioner. Specifically, a simple yet effective diffusion model
detailed in Section 4.2 is proposed for motion generation. In the
forward diffusion process, we gradually add Gaussian noise into
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Figure 3: The detailed architecture of the Temporal Mamba Module. As a key component in the network, it adopts a bidirectional
strategy to fully capture the temporal dependencies inherent in the motion sequences.

the clean data until the output distribution is close to an isotropic
Gaussian distribution. Taking a data pair (%, ¢) in the dataset as a
instance, the diffusion process from clean data x¢ to Gaussian noise
xr is defined as

T
g (et xr [ x0) = [ | g (e I xe-1),
=1 ®)

q(x¢ | x¢-1) = N (xe;Varxe—1, (1 — ap) I),

where x; € R/ represents the motion at the ¢-th step and there
are T denoising steps in total. x7 tends to an isotropic Gaussian
distribution when T — oo. The hyperparameters a; € (0,1) are
predefined positive constants and should gradually decrease to 0 at
later steps.

In the reverse diffusion process, the sampled Gaussian noise
will be iteratively denoised to reconstruct a clean human motion
sequence conditioned on the sparse tracking inputs c. To obtain
the clean data x, we learn a generative process py to predict and
eliminate the noise added in the forward diffusion process. Specifi-
cally, the reverse process from Gaussian noise xr to clean data xq
is defined as

T
po (%o, xr-1 | x1,0) = [ | po (xe-1 1 x1,0),

=1 (6)
po (Xt—1 | xt,¢) = N (Xt—l;l’ﬁ(xt)(:» l‘),cftzl),

where g (%, ¢, t) is a neural network parameterized by 6, which
could be reformulated as

LW (e t)) R

1
(x,c,t)z—(x——
pom var \ Vi-a

and the variance atz is a timestep dependent constant. The parametriza-

_ t
tion is O'tz = 11__'1—1’;;1 (1-a;), where @; = [] ;. Therefore, the model
i=1

has to learn to predict the residual noi;e €p(xs, ¢ t). In our case,
we follow the practice of [41], directly predicting the clean body

poses X instead of the residual noise €g. The objective function in
training can be formulated as

L(e) = EXO”‘Pmotion [”XO - ﬁo”%] 4 (8)

where pmotion is the distribution of the full-body poses in the dataset
and x¢ denotes the output of the proposed diffusion model.

4.2 Motion Mamba Diffusion

As shown in Figure 2, our Motion Mamba Diffusion (MMD) adopts
a U-shaped architecture to process motion information across dif-
ferent time scales. This architecture is constructed using a metic-
ulously designed Motion Mamba Block (MMB), which consists of
two key components: Temporal Mamba Module (TMM) and Spatial
Mamba Module (SMM). In particular, TMM specializes in modeling
temporal dependencies among frames, enabling a thorough compre-
hension of the dynamics present in motion sequences. Meanwhile,
SMM is employed to enhance the motion features within a single
frame, which is dedicated to improving the understanding of the hu-
man body structure within each frame. The proposed components
in our framework are introduced in detail as follows.

Feature Mapping: At time step ¢, fully connected layers are first
applied to map the noisy human poses x; € RL*/ and the observed
joint features ¢ € RIXC to a unified latent space. Then we can
obtain the corresponding latent features fy € RI*P and sparse
features f, € RIXD wwhere D represents the dimension of the latent
space. Subsequently, fx and f; are concatenated and input into a
MLP layer for feature enhancement [12]. We denote the output
motion features as f € REXP. Notably, the diffusion time step ¢ is
also transformed into an embedding vector f; € R, which will
be injected repetitively into the network.

Temporal Mamba Module: To capture the temporal dependencies
present in motion sequences, we propose the Temporal Mamba
Module (TMM). It is worth noting that we employ a bidirectional
strategy to enhance its temporal modeling capabilities, as shown
in Figure 3.
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Algorithm 1 Temporal Mamba Module Process

Algorithm 2 Spatial Mamba Module Process

Input: compressed features F : (B, L, D), timestep embedding T : (B, 1,D)
Output: transformed features O : (B, L,D)
1: /* broadcast the timestep embedding T *
2: T*: (B,L,D) « Broadcast(T)
3: /* bidirectional process *
4: for k in {forward, backward} do
5. F :(B,L,D) « Flip(F) if k is backward else F < F
6 * add the timestep embedding T *
7. F:(BLD) «F +T*
8 * normalize the input features F’ *
9:  F*:(B,L,D) « Norm(F")
10:  x: (B,L,E) « Linear*(F*)
11:  z:(B,L,E) « Linear”(F")
122 x):(B,L,E) « SiLU(Conv1d,(x))
13 By : (B,L,N) « LinearB (x))
14: Co: (B,L,N) « LinearS(x/)

15: /* softplus ensures positive A, *
16: Ao : (B,L,E) « log(1 +exp(Linear? (x/) + Parameter?))
17 /* shape of Parameter’ is (E,N) *

180 Ap: (BLEN) « A& Parameter?

190 Bo:(B,LLENN) « Ao X B,

20:  y:(B,L,E) « SSM(A,,Bo, Co) (X))

21:  y :(B,L,D) « Linear(y () SiLU(z))

22:  yo: (B,L,D) « Flip(y’) if k is backward else y, <y’
23: end for

24: /* sum and return®

25: 0: (B,L,D) « Yforward t Ybackward Return: O

In particular, we present the operations of TMM in Algorithm. 1.

To operate over an input feature sequence F € RBXLXD of batch
size B, a timestep embedding T € RBX1XP will be first broadcast
and added to guide the denoising process (For backward, we will
first flip F along the dimension of the sequence length). Then a
normalization layer is applied to normalize F. Next, we linearly
project the normalized sequence to x and z with dimension size E.
Subsequently, the 1-D convolution is applied to the x to obtain the
x/,. Then we linearly project the x/, to the By, Co, Ao, respectively.
A, is then utilized to transform A,, B,, respectively. In the end, we
compute Veorward a0d Ypackward With the SSM (For backward, we
will flip the output along the dimension of the sequence length).
The Yforward and Ypackward Will be added together to form the final
output sequence O € RBXLXD Note that E represents the expanded
state dimension, while N denotes the SSM dimension.
Spatial Mamba Module: This module is introduced to learn the
spatial dependencies of the motion poses within a single frame.
Similar to TMM, the bidirectional strategy is adopted to improve
the comprehension of the human body structures. It is worth noting
that SMM is structurally consistent with TMM. The difference is
that it process features along the dimension of the latent space
rather than the sequence length.

We present the process of TMM in Algorithm. 2. Specifically,
given the output O of TMM, we first transpose it along the last two
dimensions to get the O; € RBXPXL_ Correspondingly, we linearly
project the timestep embedding T to T’ with dimension size L
and then broadcast it. The subsequent calculation process follows
a similar procedure to TMM. Note that we utilize the transpose

Input: compressed features O : (B, L, D), timestep embedding T : (B, 1,D)
Output: transformed features P : (B,L,D)
1: /* transpose the compressed features O *
2: O; :(B,D,L) « Transpose(O)
3: /* transform and broadcast the timestep embedding T */
4: T': (B,1,L) < Linear(T)
5. T* : (B,D,L) « Broadcast(T’)
6: /™ bidirectional process *
7: for k in {forward, backward} do
8 O’ : (B,D,L) « Flip(O;) if k is backward else O’ « O,
9 * add the timestep embedding T */
10: O’ :(B,D,L) « O +T*
11: * normalize the input features O” *
122 O*:(B,D,L) « Norm(O’)
132 x:(B,D,E) « Linear*(O*)
14:  z:(B,D,E) « Linear*(0O*)
15 x,: (B,D,E) « SiLU(Conv1d, (x))
16: By : (B,D,N) « Linear (x/)
17 C, : (B,D,N) « LinearS (x)

18: * softplus ensures positive A, *
19 Ao : (B,D,E) « log(1+exp(Linear} (x}) + Parameter?))
20: * shape of Parameter? is (E,N) *

21: A, : (B,D,EN) « A, X Parameter’s

222 Bo:(B,D,EN) — Ay X B,

23: y: (B,D,E) « SSM(AOaBO,Co)(Xz)

24:  y':(B,D,L) « Linear(y () SiLU(z))

25:  y*:(B,D,L) « Flip(y’) if k is backward else y* <y’
26: Vo :(B,L,D) « Transpose(y™)

27: end for

28: /* sum and return®

29: P: (B,D,L) « Yforward * Ybackward Return: P

operation in the end to ensure the shape consistency between the
output P and the input O.

Training: At timestep ¢, we denote the output motion feature of
our MMD as F;. It will be passed through a fully connected layer
to obtain the full-body motion x;, which serves as the input for
the next time step. This process will continue until we obtain the
clean human poses x¢. In training, the loss function adopted by our
MMD is calculated in the same way as Equation 8.

5 EXPERIMENTS
5.1 Datasets

To verify the effectiveness of our method, we conduct extensive
experiments on three subsets of AMASS [31]: CMU [1], BMLr [45],
and HDMO5 [34] for training and testing. The AMASS dataset is
a large human motion database, which unifies different existing
optical marker-based MoCap datasets and represents human poses
with SMPL model parameters [29]. Following [24], we split the
three datasets into training and test sets with 90% and 10% of the
data, respectively.

5.2 Metrics

Following previous works, the adopted metrics for evaluation can
be divided into three categories: 1) Rotation-Oriented Metrics:
Mean Per Joint Rotation Error (MPJRE) in degrees measures the

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580



592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

ACM MM, 2024, Melbourne, Australia

Anon.

Table 1: Performance comparison with state-of-the-art approaches on AMASS.

Method ‘ MPJRE| MPJPE| MPJVE| HandPE| UpperPE| LowerPE| RootPE| Jitter| Upper Jitter | Lower Jitter |
LoBSTr [49] 10.69 9.02 4497 - - - - - - -
CoolMoves [2] 5.20 7.83 100.54 - - - - - - -
VAE-HMD [10] 411 6.83 37.99 - - - - - - -
AvatarPoser [24] 3.08 4.18 27.70 2.12 1.81 7.59 3.34 14.49 7.36 24.81
DAP [9] 2.69 3.68 24.03 - - - - - - -
AGRoOL-MLP [12] 2.69 3.93 22.85 2.62 1.89 6.88 3.35 13.01 9.13 18.61
AGRoL [12] 2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26 5.88 9.27
MMD (Ours) 2.30 3.17 17.32 0.79 1.25 5.94 2.86 6.52 4.89 8.87
Ground Truth 0 0 0 0 0 0 0 4.00 3.65 4.52

Table 2: Results of cross-dataset evaluation among different
methods. The best results for each dataset and each evalua-
tion metrics are highlighted in boldface. Note that AGRoL is
not included in this comparison due to its absence of cross-
dataset experiments.

Dataset | Method MPJRE| MPJPE| MPJVE |
CoolMoves [2] 9.20 18.77 139.17
LoBSTr [49] 1251 12.96 49.94
VAE-HMD [10] 6.53 13.04 51.69
CMU
AvatarPoser [24] 5.93 8.37 35.76
DAP [9] 5.46 8.15 32.32
MMD(Ours) 5.26 7.88 28.25
CoolMoves [2] 7.93 13.30 134.77
LoBSTTr [49] 10.79 11.00 60.74
VAE-HMD [10] 5.34 9.69 51.80
BMLrub |\ otarPoser [24]  4.92 7.04 43.70
DAP [9] 475 6.81 4278
MMD(Ours) 4.47 5.68 26.17
CoolMoves [2] 9.47 17.90 140.61
LoBSTr [49] 13.17 11.94 48.26
VAE-HMD [10] 6.45 10.21 40.07
HDMO05 AvatarPoser [24] 6.39 8.05 30.85
DAP [9] 6.18 7.84 29.17
MMD(Ours) 5.84 7.37 27.33

average relative rotation error for all joints; 2) Velocity-Oriented
Metrics: Mean Per Joint Velocity Error (MPJVE) in cm/s evalu-
ates the average velocity error for all joints, while Jitter in 10%m/s>
quantifies the mean jerk; and 3) Position-Oriented Metrics: Mean
Per Joint Position Error (MPJPE) in cm measures the average po-
sition error across all joints, while Root PE, Hand PE, and Upper
and Lower PE estimate the corresponding parts of human body,
respectively.

5.3 Implementation Details

Due to its simplicity and continuity, we represent the joint rota-
tions by the 6D reparametrization. Therefore, for the observed joint
features ¢ € RN XC, which consists of the orientation, translation,
orientation velocity and translation velocity of the head and hands

in global coordinate system, C = 18 X 3. For the sequences of full-
body poses x € RN*P D = 22 x 6. Unless otherwise stated, we set
the length of motion sequence N to 196 and the sampling steps to
8 for inference. All experiments were conducted using the PyTorch
platform [36] and trained/tested on a single NVIDIA A100 GPU.
In addition, our network used Adam optimizer [26] with a base
learning rate of 3e-4.

5.4 Comparison with State-of-the-Art Methods

We compare Motion Mamba Diffusion (MMD) with the state-of-the-
art method (AGRoL) and other popular body tracking models. The
quantitative experimental results are tabulated in Table 1, where the
best results are boldfaced. It can be seen that our proposed method
showcases significant advancements, achieving superior perfor-
mance across all metrics and outperforming the current state-of-
the-art technique. In particular, three key metrics from the AMASS
dataset demonstrate MMD’s superiority: a reduction in MPJRE by
13.53%, MPJPE by 14.55%, and MPJVE by 6.83%. Additionally, we
measure the performance corresponding to different parts of the
body. Specifically, MMD reduce the position error of the hands,
upper body, lower body, and root by 39.69%, 19.35%, 13.16%, and
14.88%, respectively.

Moreover, it is worth noting that our method exhibits a sig-
nificant 22.70% improvement in Jitter, indicating its capability to
generate smoother human motion, a crucial aspect for enhancing
user experience and realism. The improvement in upper body and
lower body is 44.39% and 8.42%, respectively.

To further validate the performance of our proposed method,
we conduct a 3-fold cross-dataset evaluation among different ap-
proaches. Specifically, we train our model on two subsets and then
test on the remaining subset in a round-robin fashion. Table 2
presents the experimental results of various methods evaluated
on the CMU, BMLrub, and HDMO05 datasets. Our method achieves
the best results across all evaluation metrics in all three datasets.
Particularly noteworthy is our MMD, which significantly outper-
forms previous state-of-the-art methods in terms of MPJVE across
all subsets, indicating smoother motions. Additionally, both the
rotation error (MPJRE) and position error (MPJPE), representing
prediction accuracy, are notably reduced.

For visualization, we conducted qualitative experiments and the
results are shown in Figure 4, in which the extent of the error
is indicated by the intensity in red. The results show that MMD
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Complex movements

Figure 4: Visual comparison between the AGRoL and our MMD on static movements. The extent of the error is indicated by
the intensity in red. The first row denotes the results of the state-of-the-art model AGRoL. The second row represents the
reconstruction results of our models. The third row is the ground truth of full body.
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Figure 5: Visual comparison between the AGRoL and our MMD on dynamic movements. Compared to AGRoL [12], our MMD

can generate more accurate and smoother motion sequences.

generates more accurate human motion compared with AGRoL.
For complex movements, our method can also produce plausible
full-body predictions from merely three sparse tracking inputs.
Additionally, two different motion sequences are presented for
further comparison. As shown in Figure 5, the results generated

from our method exhibit higher smoothness and better consistency
with the ground truth.

In addition to delivering high-quality predictions, our MMD ex-
hibits exceptional efficiency. It achieves an average processing time
of only 0.57ms per pose when running on an A100 GPU, resulting
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in an impressive frame rate of 1754 frames per second (fps). This re-
markable performance makes our method ideal for real-time avatar
animation driven by head-mounted displays (HMDs) in practical
applications.

5.5 Ablation Studies

In this section, we present extensive ablation studies on our Motion
Mamba Diffusion (MMD) architecture, aiming to assess the impact
and effectiveness of each proposed component on the overall model
performance. The specific details are as follows.

The effectiveness of proposed modules. A series of abla-
tion experiments were conducted to verify the effectiveness of our
proposed components. As can be seen in Table 3, the individual
application of the Temporal Mamba Module (TMM) and Spatial
Mamba Module (SMM) brings significant performance improve-
ments, while the combination of the two modules can lead to better
results. Notably, the first line represents that only the forward SSM
is applied in the TMM, excluding the SMM, while the second line
denotes that we utilize the bidirectional TMM.

Table 3: Ablation results on two key components: Temporal
Mamba Module (TMM) and Spatial Mamba Module (SMM),
revealing their impact on MPJRE, MPJPE, and MPJVE met-
rics.

TMM SMM | MPJRE| MPJPE| MPJVE |

2.68 3.78 25.10

v 2.49 3.37 18.92
v 2.52 3.48 18.84

v v 2.46 3.31 18.07

The number of blocks in the framework. We investigate
the influence of varying the number of Motion Mamba Blocks
(MMBs) in our MMD network. The number of MMBs in Figure 2
is denoted as [Ej, E2, M, D1, D] from left to right, respectively. As
shown in Table 4, the model’s performance consistently improves
as more blocks are added. Nevertheless, the performance gains start
to plateau when too many blocks are used.

Table 4: Ablation study on the number of blocks in the pro-
posed Motion Mamba Diffusion (MMD) framework.

#Blocks | MPJRE| MPJPE| MPJVE |

[3,1,1,1,3] 2.54 3.47 18.89
[3,2,2,2,3] 2.50 3.42 18.51
[4,2,2,2,4] | 2.46 3.31 18.07
(52,2 2,5] 2.48 3.33 18.13
[5,3,3,3,5] 2.48 3.32 18.08

Input Sequence Length. Our method takes a sequence of sparse
tracking signals as input and predicts the full-body poses of the
same length. In this ablation study, we evaluate the performance of

Anon.

five different input sizes: 64, 96, 144, 196, and 256. The results are
summarized in Table 5. As shown in Table 5, the model achieves
the best overall performance across three key metrics when the
sequence length is set to 96. Therefore, we opt for this length for
subsequent experiments.

Table 5: Ablation study on the input & output length of the
MMD network. The best overall performance is achieved
when we set the length to 96.

# Sequence Length ‘ MPJRE | MPJPE| MPJVE |

64 2.26 3.06 18.23
96 2.28 3.11 17.63
144 2.42 3.26 17.68
196 2.46 3.31 18.07
256 2.69 3.63 18.23

The number of sampling steps for inference. In Table 6,
we ablate the number of sampling steps during inference. It is
worth noting that even when evaluating with merely 2 sampling
steps, our model can achieve plausible performance. Meanwhile, we
notice that the model tends to output worse results when too many
sampling steps are used. To achieve the best overall performance, 5
is selected as our final sampling steps for inference.

Table 6: Ablation study on the number of sampling steps for
inference. The results become worse when the number of
sampling steps is too large.

# Sampling Steps ‘ MPJRE | MPJPE| MPJVE |

2 2.77 4.21 18.06
5 2.30 3.17 17.32
8 2.28 3.11 17.63
50 2.32 3.15 19.01
100 2.33 3.16 19.28
1000 2.36 3.20 19.76

6 CONCLUSION

In this paper, we propose Motion Mamba Diffusion (MMD), a novel
SSM-based framework for accurately estimating full-body motion
from sparse tracking signals. It is a pioneering method, which ef-
fectively leverages the robust generation capabilities of diffusion
models in conjunction with the sequence modeling proficiency of
SSMs to generate realistic human poses. Specifically, we adopt a
U-shaped architecture and introduce two innovative modules, Tem-
poral Mamba Module (TMM) and Spatial Mamba Module (SMM),
to model the temporal motion sequence and human body structure
within each frame, respectively. Extensive experiments demonstrate
that our method outperforms the latest approaches and achieves
new state-of-the-art performance, showcasing its significant poten-
tial in various generative multimedia applications.
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