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Consistent123: One Image to Highly Consistent 3D Asset Using
Case-Aware Diffusion Priors

Anonymous Authors

Input Generated Multiview-consistent Images Normals

Figure 1: The reconstructed highly consistent 3D assets from a single image of Consistent123. Rendered 3Dmodels are presented
by seven views (middle part) and normals (right part). Please visit the supplementary material for more high-quality 3D assets
reconstructed by Consistent123.

ABSTRACT
Reconstructing 3D objects from a single image guided by pretrained
diffusion models has demonstrated promising outcomes. However,
due to utilizing the case-agnostic rigid strategy, their generalization
ability to arbitrary cases and the 3D consistency of reconstruction
are still poor. In this work, we propose Consistent123, a case-aware
two-stage method for highly consistent 3D asset reconstruction
from one image with both 2D and 3D diffusion priors. In the first
stage, Consistent123 utilizes only 3D structural priors for sufficient
geometry exploitation, with a CLIP-based case-aware adaptive de-
tection mechanism embedded within this process. In the second
stage, 2D texture priors are introduced and progressively take on
a dominant guiding role, delicately sculpting the details of the 3D
model. Consistent123 aligns more closely with the evolving trends
in guidance requirements, adaptively providing adequate 3D geo-
metric initialization and suitable 2D texture refinement for different
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objects. Consistent123 can obtain highly 3D-consistent reconstruc-
tion and exhibits strong generalization ability across various objects.
Qualitative and quantitative experiments show that our method
significantly outperforms state-of-the-art image-to-3D methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
3D reconstruction, image-to-3D, diffusion prior, case-aware opti-
mization

1 INTRODUCTION
Humans possess an exceptional perceptual ability to rapidly infer
the complete 3D shape and surface details of depicted objects in
an image at a glance. This remarkable capability is attributed to
years of visual world comprehension and the accumulation of prior
knowledge. The experienced 3D artists can craft intricate 3Dmodels
from images, however, this demands hundreds of hours of manual
effort. In this study, we aim to efficiently generate highly consistent
3D model from a single image. This endeavor promises to furnish a
potent adjunct for 3D creation and offers a swift means of procuring
3D objects for virtual three-dimensional environment construction.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Despite decades of extensive research efforts [6, 14, 15, 18, 32],
the task of reconstructing 3D structure and texture from a single
viewpoint remains inherently challenging due to its ill-posed na-
ture. To address this challenge, one category of approaches relies on
costly 3D annotations obtained through CAD software or tailored
domain-specific prior knowledge [33, 40], e.g. human and clothing
templates, which contribute to consistent results while also limit-
ing applicability to arbitrary objects. Another cue [12, 13, 20, 30],
harnesses the generalization ability of 2D generation models like
CLIP [22] and Stable Diffusion [26]. However, RealFusion [13] and
Make-it-3D [30] suffer from severe multi-face issue, that is, the
face appears at many views of the 3D model. With 3D structure
prior, Zero-1-to-3 [12] and Magic123 [20] can stably recover the
3D structure of an object, but struggle to obtain highly consistent
reconstruction. All these methods do not take into account the
unique characteristics of object, and utilize fixed strategy for differ-
ent cases. These case-agnostic approaches face difficulty in adapting
optimization strategies to arbitrary objects.

100input 200 300 400 500 600 700 800 900 1000

Figure 2: The observation of optimization. For each case, the
top row shows the optimization process using 2D diffusion
priors, and the bottom row using 3D diffusion priors.

Distinctly, our objective is to establish a versatile approach appli-
cable to a broad spectrum of objects, endowed with the capability
to dynamically adapt guidance strategy according to the extent of
reconstruction progress. To achieve this aim, we draw attention
to two pivotal observations: (1) Across various objects, a case-
aware optimization phase, driven solely by 3D structural prior in
the early stage, ensures the fidelity and consistency of the eventual
reconstruction. (2) During the reconstruction process, the initial
focus lies on capturing the object’s overall structure, followed by
the meticulous refinement of geometric shape and texture details,
as illustrated in Fig 2.

Considering these, we propose Consistent123, a novel approach
for one image to highly consistent 3D asset using case-aware 2D and
3D diffusion priors. Specifically, Consistent123 takes two stages.
Stage 1: Consistent123 initializes the 3D content solely with 3D
prior, thereby mitigating any disruption from 2D prior in structure
exploitation. This process involves a case-aware boundary judge-
ment, where we periodically sample the 3D content from fixed
perspectives and measure their similarity with textual information.
Once the changing rate of the similarity falls below a threshold,
Consistent123 switches to stage 2. Stage 2: Consistent123 optimizes
the 3D content with dynamic prior, namely the combination of 2D
and 3D prior. Our rationale is to reduce the emphasis on 3D prior

over time, while accentuating the significance of 2D prior, which
serve as the principal guidance for exploring texture intricacies.
Consistent123 adaptively tailors an continuous optimization proce-
dure for different input, facilitating the creation of exceptionally
coherent 3D assets.

We evaluate Consistent123 on the RealFusion15 [13] dataset and
our collected C10 dataset. Through quantitative and qualitative
analysis, we demonstrate the superiority of Consistent123 when
compared to state-of-the-art methods. In summary, our contribu-
tions can be summarized as follows:

• We propose a case-aware image-to-3D method, Consistent123,
which aligns more effectively with the demands of prior knowl-
edge. It places a heightened emphasis on 3D structural guidance
in the initial stage and progressively integrates 2D texture details
in the subsequent stage.

• Consistent123 incorporates an adaptive detection mechanism,
eliminating the necessity for manual adjustments to the 3D-
to-2D prior ratio. This mechanism autonomously identifies the
conclusion of 3D optimization and seamlessly transitions to a
3D-to-2D reduction strategy, improving its applicability across
objects with diverse geometric and textural characteristics.

• Consistent123 demonstrates excellent 3D consistency in contrast
to purely 3D, purely 2D, and 3D-2D fusion methodologies. Fur-
thermore, our approach yields superior geometric and textural
quality.

2 RELATEDWORK
2.1 Text-to-3D Generation
Generating 3D models is a challenging task, often hindered by
the scarcity of 3D data. As an alternative, researchers have turned
to 2D visual models, which are more readily available. One such
approach is to use the CLIP model [22], which has a unique cross-
modal matching mechanism that can align input text with rendered
perspective images. CLIP-Mesh [16] directly employed CLIP to
optimize the geometry and textures of meshes. Dream Fields [7]
and CLIP-NeRF [31] utilized the neural implicit representation,
NeRF [15], as the optimization target for CLIP.

Due to the promising performance of the Diffusion model in
2D image generation [23, 26, 34], some studies have extended its
application to 3D generation. DreamFusion [19] directly used a 2D
diffusion model to optimize the alignment between various ren-
dered perspectives and text with SDS loss, thereby generating 3D
objects that match the input text. Magic3D [11] used the two-stage
optimization with diffusion model to get a higher resolution result.
3DFuse [27] generated a 2D image as a reference and introduced a
3D prior based on the generated image. It also incorporated opti-
mization with a prompt embedding to maintain consistency across
different perspectives. TEXTure [24] generated textures using a
depth-to-image diffusion model and blended textures from various
perspectives using a Trimap. Rodin [33] and ETRIS [38] bridged the
gap between vision and language with CLIP, and achieved a unified
3D diffusion model for text-conditioned and image-conditioned 3D
generation. DreamAvatar [1] transformed the observation space to
a standard space with a human prior and used a diffusion model to
optimize NeRF for each rendered perspective.
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Figure 3: The framework of Consistent123. Consistent123 consists of two stages. In the first stage, we take advantage of 3D
prior to optimize the geometry of 3D object. With the help of an optimization boundary judgment mechanism based on CLIP,
we ensure the geometry initial optimization process is well conducted. Then, in the second stage, the output from the last stage
continues to be optimized by the fusion of 2D prior and 3D prior in a specific ratio based on timestep, which is also named
Dynamic Prior. To access a high-consistence and high-quality asset, we employ enhanced representation like Mesh instead of
NeRF in the final period of optimization. The eventual result of the framework has correct geometry and exquisite texture
from visual observation.

2.2 Single Image 3D Reconstruction
Single-image 3D reconstruction has been a challenging problem in
the fields of graphics and computer vision, due to the scarcity of suf-
ficient information. To address this issue, researchers have explored
various approaches, including the use of 3D-aware GANs and Diffu-
sion models. Some work [2, 36, 37, 39] leveraged 3D-aware GANs to
perform 3D face generation with GAN inversion techniques [25, 35].
Other works used Diffusion models to generate new perspectives
in reconstruction. Rodin [33] proposed a 3D diffusion model for
high-quality 3D content creation, which is trained on synthetic
3D data. Zero-1-to-3 [12] fine-tuned Stable Diffusion with injected
camera parameters on a large 3D dataset [3] to learn novel view
synthesis.

Another line of work adopted 2D diffusion prior to directly opti-
mize a 3D object without the need for large-scale 3D training data.
These approaches represent promising avenues for addressing the
challenge of single-image 3D reconstruction. As a seminal work,
Make-It-3D [30] used an image caption model [10] to generate text
descriptions of the input image. The researchers then optimized
the generation of novel views with SDS loss, as well as introduc-
ing a denoised CLIP loss to maintain consistency among different
views. Meanwhile, RealFusion [13] utilized textual inversion to op-
timize prompt embedding from input images and then employed
SDS loss to optimize the generation of new perspectives. Magic123
[20] leveraged a rough 3D prior generated by Zero-1-to-3 [12] and
combined it with textual inversion to optimize prompt embedding
using SDS loss with fixed weighting.

3 METHODOLOGY
As shown in Fig 3, the optimization process of Consistent123 can
be categorized from a perspective standpoint into two phases: the

reference view and the novel view. In the reference viewpoint, we
primarily employ the input image as the basis for reconstruction, a
topic comprehensively addressed in Section 3.1. The optimization of
the novel view unfolds across two distinct stages. These two stages
are thoroughly explored in Sections 3.2 and Section 3.3, respectively.
The resultant model output consistently exhibits a high degree of
3D consistency and exceptional texture quality.

3.1 Reference View Reconstruction
Imported a 2D RGB image, Consistent123 adopts a preprocess oper-
ation to get derivative ground truth which can be used in the loss
calculation in the reference view. We utilize pretrained model [5, 9]
to acquire the demerger I𝑔𝑡 , the binary mask M𝑔𝑡 and the depth of
object D𝑔𝑡 . L𝑟𝑔𝑏 ensures the similarity between the input image
and the rendered reference view image. Mean Squared Error (MSE)
loss is leveraged to calculate the L𝑟𝑔𝑏 in the form as follows:

L𝑟𝑔𝑏 = ∥I𝑔𝑡 − G𝜃

(
𝑣𝑟
)
∥22 (1)

where G𝜃 stands for the representation model in the optimization
process, 𝑣𝑟 represents the viewpoint of reference view in the render-
ing process. The design of L𝑚𝑎𝑠𝑘 likewise employs MSE to operate
calculation whose concrete expression as follows:

L𝑚𝑎𝑠𝑘 = ∥M𝑔𝑡 −M
(
G𝜃

(
𝑣𝑟
) )
∥22 (2)

where M (·) means the operation of extracting the mask of the
rendered image. Seeing that the method of using depth prior in the
former of this area, we decide to adopt the normalized negative
Pearson correlation between D𝑔𝑡 and the rendered depth map 𝑑𝑟
as L𝑑𝑒𝑝𝑡ℎ .

L𝑑𝑒𝑝𝑡ℎ = 1 −
cov(M

(
D𝑔𝑡

)
,M (𝑑𝑟 ))

𝜎 (M (D𝑔𝑡 ))𝜎 (M (𝑑𝑟 )) (3)
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where cov (·) denotes covariance and 𝜎 (·) measures standard devi-
ation.

Given three vital parts of reference view reconstruction loss, we
merge them into a modified form of expression:

L𝑟𝑒𝑐 = 𝜆𝑟𝑔𝑏L𝑟𝑔𝑏 + 𝜆𝑚𝑎𝑠𝑘L𝑚𝑎𝑠𝑘 + 𝜆𝑑𝑒𝑝𝑡ℎL𝑑𝑒𝑝𝑡ℎ (4)

where 𝜆𝑟𝑔𝑏 , 𝜆𝑚𝑎𝑠𝑘 and 𝜆𝑑𝑒𝑝𝑡ℎ are controllable parameters which
are used to regulate the ratio of each supervision. With the help of
merged lossL𝑟𝑒𝑐 , we can restore a high detail and correct geometry
target on the reference viewpoint.

3.2 Optimization Boundary Judgement
The optimization process illustrated in Fig 2 demonstrates the ef-
ficiency of 3D structural priors in capturing the shape of object,
and the 3D priors play a crucial role mainly in the initial stage
of reconstruction. To ensure the comprehensive recovery of the
object’s shape as depicted in the image, we establish a structural
initialization stage, namely stage 1, where only 3D structural pri-
ors guide the optimization. The guidance of the 3D prior can be
expressed as the gradient which is used to update the parameter 𝜃 :

∇𝜃L3𝐷 (𝜙,G𝜃 ) = E𝑡,𝜖
[
𝑤 (𝑡)

(
𝜖𝜙

(
z𝑡 ; I𝑟 , 𝑡, 𝑅,𝑇

)
− 𝜖

) 𝜕I
𝜕𝜃

]
(5)

where 𝑡 denotes the noise level, z𝑡 is the noisy latent generated by
adding random Gaussian noise to the rendered view I, I𝑟 represents
the reference view,𝑅 and𝑇 mean the rotation and translation param-
eters of the camera. The function𝑤 (𝑡) corresponds to a weighting
function, while 𝜖𝜙 and 𝜖 respectively denote the noise prediction
value generated by the U-Net component of the 2D diffusion model
and the ground truth noise. During stage 1, 2D priors are delib-
erately excluded, effectively mitigating the multi-face issue. The
output of this stage is 3D content with high-quality structure, yet it
significantly lags in terms of texture fidelity compared to the image
representation. That’s mainly because of the deficiency of texture
information, which is primarily driven by 2D priors.

Consequently, we embed a case-aware CLIP-based detection
mechanism within stage 1 to determine whether the shape of the
current 3D content has been accurately reconstructed. If so, a transi-
tion is made to stage 2, with 2D priors introduced gradually. During
the first-stage training, we conduct boundary judgement at spe-
cific iterations. Specifically, we periodically perform detection at
intervals of ℎ iterations, set to 20 in our experiments. For each
detection step 𝑘 , we render the current 3D content from different
viewpoints, and then calculate the average similarity score between
these images and textual descriptions using the CLIP model:

S𝑘
𝐶𝐿𝐼𝑃

(
𝑦,G𝑘

𝜃

)
=

1
|𝑉 |

∑︁
𝑣∈𝑉

𝜀𝐶𝐿𝐼𝑃

(
G𝑘
𝜃
(𝑣)

)
· 𝜑𝐶𝐿𝐼𝑃 (𝑦) (6)

where 𝑦 is the description of the reference image, and 𝑣 is a render-
ing perspective belonging to sample views set 𝑉 . 𝜀𝐶𝐿𝐼𝑃 is a CLIP
image encoder and 𝜑𝐶𝐿𝐼𝑃 is a CLIP text encoder. To determine
whether the shape of the current 3D content has been adequately
recovered, we compute the moving average of changing rate of
S𝐶𝐿𝐼𝑃 :

𝑅𝑘 =
1
𝐿

𝑘∑︁
𝑖=𝑘−𝐿+1

(
S𝑖
𝐶𝐿𝐼𝑃 − S𝑖−1

𝐶𝐿𝐼𝑃

)
/S𝑖−1

𝐶𝐿𝐼𝑃 (7)

where 𝐿 is the size of the sliding window. When this rate falls below
a threshold 𝛿 , the current 3D content is considered to possess a
structure similar to that represented in the image.

3.3 Dynamic Prior
Recognizing that 3D prior optimization is characterized by con-
sistent structure guidance but weak texture exploration, while 2D
prior optimization leads to high texture fidelity but may occasion-
ally diverge from the input image, we posit these two priors exhibit
complementarity, each benefiting the quality of the final 3D model.
Consequently, in Stage 2, we introduce a 2D diffusion model as
the guiding 2D prior to enrich the texture details of the 3D ob-
ject. Throughout the optimization process, the 2D diffusion model
primarily employs Score Distillation Sampling (SDS) [19] loss to
bridge the gap between predicted noise and ground truth noise.
This concept is elucidated as the follows:

∇𝜃L2𝐷 (𝜙,G𝜃 ) = E𝑡,𝜖
[
𝑤 (𝑡)

(
𝜖𝜙 (z𝑡 ;𝑦, 𝑡) − 𝜖

) 𝜕z
𝜕I

𝜕I
𝜕𝜃

]
(8)

where 𝑦, originating from either user observations or the output
of a caption model, represents the text prompt describing the 3D
object. However, we have observed that, in the stage 2, when the
optimization relies solely on the 2D prior, the resulting 3D asset
often exhibits an unfaithful appearance. This is attributed to the low-
resolution output of stage 1 possessing poor low-level information
such as color, shading, and texture, which makes room for 2D prior
to provide high-resolution but unfaithful guidance. Moreover, the
alignment relationship between the input text prompt and each
individual novel view which is waiting to be optimized by the 2D
prior varies. This variability leads the 2D prior to introduce certain
unfaithful details, which we refer to as the ‘Over Imagination’ issue.
Consequently, the eventual output typically maintains a reasonable
structure but displays an unfaithful novel view, resulting in an
inconsistent appearance.

To resolve the above problem, we incorporate 3D prior and 2D
prior in an incremental trade-off method instead of only using
2D diffusion model in stage 2, which we call it Dynamic Prior.
More specifically, we design a timestep-based dynamic integration
strategy of two kinds of prior to gradually introduce exquisite
guidance information while maintaining its faithfulness to input
image. The loss formula of dynamic prior using both L3𝐷 and L2𝐷
is as follows:

L𝐷𝑃 = 𝑒−
𝑡
𝑇 L3𝐷 +

(
1 − 𝑒−

𝑡
𝑇

)
L2𝐷 (9)

where 𝑇 represents total timesteps of optimization. As shown in
Equation (9), we determine the weighting coefficients of two losses
using an exponential form which is dependent on the training
iteration 𝑡 . As 𝑡 increases, L3𝐷 which is primarily contributing
structural information undergoes a gradual reduction in weight,
while L2𝐷 which is mainly responsible for optimizing texture in-
formation exhibits a progressive increase of influence. We have also
considered expressingL𝐷𝑃 in the form of other basis functions, but
extensive experimental results have shown that the expression in
Equation (9) yields many excellent and impressive results, and more
details of the comparison can be found in Section 4.4. Compared to
single prior or fixed ratio prior, the outputs of Consistent123 are
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Figure 4: Qualitative comparison vs SOTA methods. The results on the RealFusion15 dataset is shown on top, and results on the
C10 dataset on the bottom. We randomly sample 2 novel views to showcase, and reference view and other views are included in
the supplementary material.
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Table 1: Quantitative results on the RealFusion15 and C10 datasets. Make-it-3D uses CLIP similarity to supervise the training,
so its value† is not considered for Make-it-3D in the comparison.

Dataset Methods Shap-E RealFusion Make-it-3D Zero-1-to-3 Magic123 One-2-3-45 Consistent123(ours)

RealFusion15
CLIP-Similarity↑ 0.544 0.735 0.839† 0.759 0.747 0.679 0.844

PSNR↑ 6.749 20.216 20.010 25.386 25.637 13.754 25.682
LPIPS↓ 0.598 0.197 0.119 0.068 0.062 0.329 0.056

C10
CLIP-Similarity↑ 0.508 0.680 0.824† 0.700 0.751 0.673 0.770

PSNR↑ 6.239 22.355 19.412 18.292 15.538 14.081 25.327
LPIPS↓ 0.639 0.140 0.120 0.229 0.197 0.277 0.054

more consistent and exquisite from the perspective of texture and
geometry.

4 EXPERIMENTS
4.1 Implementation Details
For the diffusion prior, we adopt the open-source Stable Diffu-
sion [26] of version 2.1 as 2D prior, and employ the Zero-1-to-3 [12]
as the 3D prior. We use Instant-NGP [17] to implement the NeRF
representation and for mesh rendering , we utilize DMTet [28], a
hybrid SDF-Mesh representation. The rendering resolutions are
configured as 128 × 128 for NeRF and 1024 × 1024 for mesh. Follow-
ing the camera sampling approach adopted in Dreamfusion [19],
we sample the reference view with a 25% probability and the novel
viewswith a 75% probability. Theweighting coefficients 𝜆𝑟𝑔𝑏 , 𝜆𝑚𝑎𝑠𝑘 ,
𝜆𝑑𝑒𝑝𝑡ℎ are set to 1000, 500, 10 respectively. For the case-aware de-
tection mechanism, we sample from 8 viewpoints each time, that is
𝑉 = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}. The sliding window
size 𝐿 is set to 5 and the threshold 𝛿 of 0.00025. We use Adam opti-
mizer with a learning rate of 0.001 throughout the reconstruction.
For an image, the entire training process with 10,000 iterations
takes approximately 30 minutes on a single NVIDIA A100 GPU.

4.2 Comparison with State-of-the-art
Datasets. We consider a classic benchmark, RealFusion15, re-
leased by RealFusion [13]. RealFusion15 consists of 15 images fea-
turing a variety of subjects. In addition, we introduced aC10 dataset
consisting of 100 images collected from 10 categories which covers
a wider range of items. These 10 categories broadly encompass
common objects found in daily life, including fruits, balls, furniture,
scenes, flora and fauna, food, transportation, clothing and footwear,
cartoon characters, and artwork. Thus, the results on C10 can serve
as an effective evaluation of the method’s generalization ability. For
3D evaluation, we utilize Google Scanned Objects(GSO) [4], a 3D
object dataset containing 3D meshes, to evaluate the accuracy of
the reconstructed meshes. Specifically, for a 3D object, we take the
officially provided front-rendered image as input to the model. The
object mesh is used as 3D ground truth to conduct the evaluation.

Baselines and metrics.We choose 6 SOTA methods, namely
Shap-E [8], RealFusion [13], Make-it-3D [30], Zero-1-to-3 [12],
Magic123 [20], and One-2-3-45 [? ], for extensive comparison. For
Shap-E and one-2-3-45, we leverage their open-source API on the
huggingface website for 3D reconstruction. We use an improved
implementation [29] of Zero-1-to-3, and the original released code

for other works. On RealFusion15 and C10, we report three met-
rics, namely CLIP-similarity [21], PSNR and LPIPS [41]. CLIP-
similarity quantifies the average CLIP distance between the ren-
dered images from the reference view, and serves as a measure of 3D
consistency by assessing appearance similarity across novel views
and the reference view. PSNR and LPIPS assess the reconstruction
quality and perceptual similarity at the reference view. On GSO, we
measure Chamfer Distance(CD), volumetric IoU,multi-view
PSNR and multi-view LPIPS. The ground truth 3D mesh and the
reconstructed 3D mesh are first normalized within the unit cube.

Qualitative comparison.We present a comprehensive set of
qualitative results featuring 14 images drawn from the RealFusion15
and C10 datasets in Fig 4. In contrast to our method, Shap-E and
One-2-3-45 fail to recover the proper structure. RealFusion often
yields flat 3D results with colors and shapes that exhibit little re-
semblance to the input image. Make-it-3D displays competitive
texture quality but grapples with a prominent issue of multi-face.
For instance, when reconstructing objects like teddy bears and
Spongeboy, it introduces facial features at different novel views,
which should only appear in the reference view. Zero-1-to-3 and
Magic123 produce visually plausible structures, but the consistency
of texture among all views, especially in side views, is poor. For
example, in the cases of fish and rugby, their textures fail to achieve
a smooth transition when observed from the side view. In contrast,
our methodology excels in generating 3D models that not only ex-
hibit semantic consistency with the input image but also maintain
a high degree of consistency in terms of both texture and geometry
across all views.

Quantitative comparison. As demonstrated in Table 1, on the
RealFusion15 dataset, Consistent123 attains the most favorable re-
sults in the CLIP-Similarity metric which gain an increment of
11.2% compared to the original SOTA, signifying that our method
yields the most consistent 3D models. Regarding reference view
reconstruction, Consistent123 performs comparably to Magic123
and Zero-1-to-3, and significantly outperforms others. On the C10
dataset, encompassing images from 10 distinct categories, Consis-
tent123 outpaces its counterparts by a substantial margin across
all evaluation metrics. Moreover, there is a notable enhancement
in CLIP-Similarity, accompanied by an improvement of 2.972 in
PSNR and 0.066 in LPIPS metrics when compared to the previously
top-performing model, which underscore robust generalization ca-
pability of Consistent123 across diverse object categories. Turning
attention to Table 2, on GSO, Consistent123 achieves the highest
CD and IoU, demonstrating our structure closely aligns with the
3D ground truth. Notably, Consistent123 excels in both multi-view
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Table 2: Quantitative results on the GSO dataset.

Methods Zero-1-to-3 Magic123 One-2-3-45 ours
CD↓ 0.0959 0.0989 0.0427 0.0416
IoU↑ 0.3364 0.3189 0.4941 0.5020
PSNR↑ 17.110 17.363 17.408 17.684
LPIPS↓ 0.289 0.285 0.303 0.278

PSNR and LPIPS, which signifies the texture quality of our 3D
outcomes surpasses that of other methods.

4.3 Ablation Study of Two Stage Optimization
In this section, we explore the significance of boundary judgment
mechanism. We divide the reconstruction process into three parts,
namely: 3D structural initialization, boundary judgment, and dy-
namic prior-based optimization. In cases where boundary judg-
ment is absent, the optimization process can be categorized into
two approaches: full 3D structural initialization (boundary at the
training starting point) or full dynamic prior-based optimization
(boundary at the training endpoint), denoted as Consistent1233𝐷
and Consistent123𝑑𝑦𝑛𝑎𝑚𝑖𝑐 respectively. As illustrated in Fig 5, with-
out the guidance of 2D texture priors, Consistent1233𝐷 produces
visually unrealistic colors in the new view of the car, and in the
absence of 3D structural initialization, Consistent123𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ex-
hibits inconsistency and multi-face issue in Mona Lisa’s face. In
contrast, results with boundary judgment showcase superiority in
both texture and structure.

(a)

Inputs

Reference view Novel views

(b)

(c)

Reference view Novel views

Methods

Figure 5: The ablation of two stages. (a) Consistent123, (b)
Consistent1233𝐷 and (c) Consistent123𝑑𝑦𝑛𝑎𝑚𝑖𝑐 .

4.4 Ablation Study of Dynamic Prior
Dynamic prior refers to the method of dynamically adjusting the
ratio of 2D and 3D priors based on different time steps during the
optimization process. Depending on the transformation method,
we compare the optimization effects of three different approaches:
exponential (Equation (9)), linear(Equation (10)) and logarithmic
(Equation (11)). We assessed them across ten categories, each com-
prising 5 images from the RealFusion15 and C10 datasets. As shown
in the Table 3, the exponential variation process, which is the our
adopted method, can achieve a higher CLIP-Similarity on most of
the categories, which to some extent reflects the reconstruction
consistency. The actual reconstruction results also support this,
as the exponential variation method can effectively mitigate the

multi-head problem, leading to higher reconstruction quality and
better consistency.

L𝑙𝑖𝑛𝑒𝑎𝑟 =
𝑡

𝑇
L3𝐷 +

(
1 − 𝑡

𝑇

)
L2𝐷 (10)

L𝑙𝑜𝑔 = log2
𝑡

𝑇
L3𝐷 +

(
1 − log2

𝑡

𝑇

)
L2𝐷 (11)

The key difference between exponential transformation and the
other two lies in the fact that exponential transformation can inject
2D priors more quickly. The focus of dynamic priors is to opti-
mize the quality and consistency of the reconstruction with 2D
texture priors while maintaining the correctness of the 3D struc-
ture. In stage 2, we have observed that establishing the dominant
role of 2D priors early on facilitates the extraction of texture de-
tails. Subsequently, gradually increasing the weights of 2D priors
slowly ensures minimal texture distortion, thereby ensuring the
reconstruction of high-quality textures. The exponential weight
variation process seamlessly aligns with this objective.

4.5 Ablation Study of Hyperparameters
We ablate the weighting coefficients 𝜆𝑟𝑔𝑏 , 𝜆𝑚𝑎𝑠𝑘 , 𝜆𝑑𝑒𝑝𝑡ℎ in the refer-
ence view reconstruction loss equation on the RealFusion15 and C10
datasets. We set up 5 parameter settings: (a){𝜆𝑟𝑔𝑏 = 1000, 𝜆𝑚𝑎𝑠𝑘 =

500, 𝜆𝑑𝑒𝑝𝑡ℎ = 0}, (b){𝜆𝑟𝑔𝑏 = 10, 𝜆𝑚𝑎𝑠𝑘 = 1000, 𝜆𝑑𝑒𝑝𝑡ℎ = 500},
(c){𝜆𝑟𝑔𝑏 = 500, 𝜆𝑚𝑎𝑠𝑘 = 10, 𝜆𝑑𝑒𝑝𝑡ℎ = 1000}, (d){𝜆𝑟𝑔𝑏 = 800, 𝜆𝑚𝑎𝑠𝑘 =

600, 𝜆𝑑𝑒𝑝𝑡ℎ = 400}, (default){𝜆𝑟𝑔𝑏 = 1000, 𝜆𝑚𝑎𝑠𝑘 = 500, 𝜆𝑑𝑒𝑝𝑡ℎ =

10}. The quantitative results of different parameter settings are
shown in Table 4.

In addition, for boundary judgment, we ablate the threshold 𝛿
and the sliding window size 𝐿. We set up 5 settings: (a){𝐿 = 1, 𝛿 =

0.000025}, (b){𝐿 = 20, 𝛿 = 0.000025}, (c){𝐿 = 5, 𝛿 = 0.0001}, (d){𝐿 =

5, 𝛿 = 0.001}, (default){𝐿 = 5, 𝛿 = 0.00025}. The quantitative results
of different parameter settings are shown in Table 5.

More interesting exploration. In this part, some interesting
experiments are conducted to further demonstrate the effectiveness
of our two-stage optimization method with boundary judgment
and dynamic prior. Specifically, we devise three different optimiza-
tion strategies: (a) remove boundary judgments and perform stage
transition in a specific iteration step (3000 in our experiment), (b)
the weight of the 2D prior is always set to 1.0 in stage 2 (dynamic
prior stage), (c) the two stages are combined into a single stage and
the 3D object is optimized using the following dynamic prior.

L𝐷𝑃 = 𝑒−
𝑡
𝜎𝑇 L3𝐷 +

(
1 − 𝑒−

𝑡
𝜎𝑇

)
L2𝐷 (12)

where 𝜎 takes the value of 1.5, which represents the initial phase
of optimization with a higher weighted 3D prior. We show the
results of these strategies on the RealFusion15 and C10 datasets in
Table 6. Our default strategy achieves the best results on all metrics.
The results of strategy (a) prove the necessity of our boundary
judgment mechanism, and it is not appropriate to use the same
optimization process for all cases. The results of strategy (b) show
that the gradual introduction of 2D prior is necessary. Strategy (c)
leverages 2D prior from the beginning, leading to worse results,
which characterize the necessity of our 3D initialization phase.
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Table 3: Ablation Study of Dynamic Prior on the RealFusion15 and C10 datasets.

Methods Metrics/class ball biont furniture cartoon fruit statue food vehicle costume scene average

log
CLIP-Similarity↑ 0.79 0.85 0.58 0.77 0.87 0.71 0.87 0.74 0.67 0.68 0.76

PSNR↑ 26.45 25.46 23.19 23.97 24.62 22.94 27.33 24.24 26.14 21.71 24.59
LPIPS↓ 0.04 0.06 0.12 0.06 0.06 0.11 0.03 0.07 0.06 0.10 0.07

linear
CLIP-Similarity↑ 0.82 0.85 0.55 0.74 0.88 0.73 0.88 0.72 0.65 0.70 0.76

PSNR↑ 26.32 25.51 22.96 23.43 25.31 25.71 27.41 24.57 25.36 21.63 24.96
LPIPS↓ 0.04 0.05 0.13 0.09 0.04 0.06 0.03 0.07 0.06 0.10 0.07

exp
CLIP-Similarity↑ 0.87 0.88 0.54 0.78 0.87 0.77 0.88 0.76 0.67 0.72 0.79

PSNR↑ 27.50 26.09 23.28 24.29 25.39 25.63 27.02 25.16 25.65 21.78 25.30
LPIPS↓ 0.04 0.04 0.12 0.06 0.05 0.07 0.04 0.05 0.05 0.09 0.06

Table 4: Quantitative ablation about 𝜆𝑟𝑔𝑏 , 𝜆𝑚𝑎𝑠𝑘 , and 𝜆𝑑𝑒𝑝𝑡ℎ
on the RealFusion15 and C10 datasets.

Dataset setting (a) (b) (c) (d) default

RealFusion15
CLIP-Similarity↑ 0.812 0.763 0.701 0.795 0.844

PSNR↑ 25.097 18.597 16.961 23.288 25.682
LPIPS↓ 0.069 0.174 0.206 0.085 0.056

C10
CLIP-Similarity↑ 0.748 0.669 0.649 0.724 0.770

PSNR↑ 25.177 16.857 17.129 22.196 25.327
LPIPS↓ 0.067 0.217 0.216 0.098 0.054

Table 5: Quantitative ablation about 𝐿 and 𝛿 on the RealFu-
sion15 and C10 datasets.

Dataset setting (a) (b) (c) (d) default

RealFusion15
CLIP-Similarity↑ 0.812 0.814 0.817 0.815 0.844

PSNR↑ 25.464 25.272 25.528 25.607 25.682
LPIPS↓ 0.068 0.070 0.069 0.068 0.056

C10
CLIP-Similarity↑ 0.748 0.753 0.747 0.753 0.770

PSNR↑ 25.651 25.151 25.506 23.398 25.327
LPIPS↓ 0.065 0.065 0.060 0.066 0.054

Table 6: Quantitative ablation about optimization strategies
on the RealFusion15 and C10 datasets.

Dataset setting (a) (b) (c) default

RealFusion15
CLIP-Similarity↑ 0.813 0.813 0.825 0.844

PSNR↑ 25.604 24.836 24.812 25.682
LPIPS↓ 0.068 0.070 0.069 0.056

C10
CLIP-Similarity↑ 0.746 0.730 0.765 0.770

PSNR↑ 25.066 25.562 25.253 25.327
LPIPS↓ 0.063 0.067 0.062 0.054

4.6 User Study
Due to the absence of ground-truth 3D models, we conducted a
perceptual study to compare Consistent123 against SOTA baselines.
we conducted a user study comprising 784 feedbacks from 56 users
to gather statistical data. From the RealFusion15 and C10 datasets,
we carefully selected 14 representative cases to gauge user prefer-
ences. Participants were tasked with selecting the best result that
represents the texture and structure of the object depicted in the
image. To quantify the likelihood of participants favoring SOTA
methods over Consistent123, we present the corresponding results

2.4%

5.9%

11.6%

14.4%

65.7%

RealFusion
Make-it-3D

Zero-1-to-3

Magic123

Consistent123
(ours)

Figure 6: User Study. The collected results of preference.

in Fig 6. Our method demonstrates superior performance compared
to the alternatives, exhibiting a 65.7% advantage in the user study.

5 CONCLUSION AND DISCUSSION
Conclusion. In this study, we introduce Consistent123, a two-stage
framework designed for achieving highly detailed and consistent
3D reconstructions from single images. By recognizing the comple-
mentary nature of 3D and 2D priors during the optimization process,
we have devised a training trade-off strategy that prioritizes initial
geometry optimization with 3D priors, followed by the gradual
incorporation of exquisite guidance from 2D priors over the course
of optimization. Between the two optimization stages, we employ
a large-scale pretrained image-text pair model as a discriminator
for multi-view samples to ensure that the 3D object gains sufficient
geometry guidance before undergoing dynamic prior optimization
in stage 2. The formulation of our dynamic prior is determined
through the exploration of various foundational function forms,
with a subsequent comparison of their categorized experimental
results. Our approach demonstrates enhanced 3D consistency, en-
compassing both structural and textural aspects, as demonstrated
on existing benchmark datasets and those we have curated.

Limitation. Our study reveals two key limitations. Firstly, dur-
ing stage 1, heavy reliance on 3D priors influences the 3D object,
with reconstruction quality notably affected by the input image’s
viewpoint. Secondly, output quality depends on the description of
asset in stage 2. Finer-grained descriptions enhance output consis-
tency, while overly brief or ambiguous descriptions lead to the ‘Over
Imagination’ issue in Stable Diffusion [26], introducing inaccurate
details.
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