
A Path-based Reasoning with A* Algorithm

Here we prove the correctness of path-based reasoning with A* algorithm.

A.1 Iterative Path Selection for Computing Important Paths

First, we prove that P̂(t)
u⇝v|q computed by Eqn. 6 and 7 equals to the set of important paths and paths

that are different from important paths in the last hop.

Theorem A.1. If mq(P) : 2P 7→ 2P can select all important paths from a set of paths P , the set
of paths P̂(t)

u⇝v|q computed by Eqn. 6 and 7 equals to the set of important paths and paths that are
different from important paths in the last hop of length t.

P̂(0)
u⇝v|q ← {(u, self loop, v)} if u = v else ∅ (6)

P̂(t)
u⇝v|q ←

⋃
x∈V

(x,r,v)∈E(v)

{
P + {(x, r, v)}

∣∣∣P ∈ mq(P̂(t−1)
u⇝x|q)

}
(7)

Proof. We useQ(t)
u⇝v|q to denote the set of important paths and paths that are different from important

paths in the last hop of length t. For paths of length 0, we define them to be important as they should
be the prefix of some important paths. Therefore, Q(0)

u⇝v|q = {(u, self loop, v)} if u = v else ∅. We

use P:−1 to denote the prefix of path P without the last hop. The goal is to prove P̂(t)
u⇝v|q = Q(t)

u⇝v|q .

First, we prove P̂(t)
u⇝v|q ⊆ Q

(t)
u⇝v|q. It is obvious that P̂(0)

u⇝v|q ⊆ Q
(0)
u⇝v|q. In the case of t > 0,

∀P ∈ P̂(t)
u⇝v|q , we have P:−1 ∈ mq(P̂(t−1)

u⇝v|q) according to Eqn. 7. Therefore, P ∈ Q(t)
u⇝v|q .

Second, we prove Q(t)
u⇝v|q ⊆ P̂

(t)
u⇝v|q by induction. For the base case t = 0, it is obvious that

Q(0)
u⇝v|q ⊆ P̂

(0)
u⇝v|q. For the inductive case t > 0, ∀Q ∈ Q(t)

u⇝v|q, Q:−1 is an important path of

length t − 1 according to the definition of Q(t)
u⇝v|q. Q:−1 ∈ mq(Q(t−1)

u⇝v|q) ⊆ Q
(t−1)
u⇝v|q according to

the definition of mq(·) and Q(t−1)
u⇝v|q. Based on the inductive assumption, we get Q:−1 ∈ P̂(t−1)

u⇝v|q.

Therefore, Q ∈ P̂(t)
u⇝v|q according to Eqn. 7.

As a corollary of Thm. A.1, P̂u⇝v|q is a slightly larger superset of the important paths Pu⇝v|q .

Corollary A.2. If the end nodes of important paths are uniformly distributed in the knowledge graph,
the expected size of P̂(t)

u⇝v|q is
∣∣∣P(t)

u⇝v|q

∣∣∣+ |E|
|V|

∣∣∣P(t−1)
u⇝v|q

∣∣∣.
Proof. Thm. A.1 indicates that P̂(t)

u⇝v|q contains two types of paths: important paths and paths that

are different from important paths in the last hop of length t. The number of the first type is
∣∣∣P(t)

u⇝v|q

∣∣∣.
Each of the second type corresponds to an important path of length t−1. From an inverse perspective,
each important path of length t− 1 generates d paths of the second type for P̂(t)

u⇝v|q, where d is the
degree of the end node in the path. If the end nodes are uniformly distributed in the knowledge graph,
we have E

[
P̂(t)
u⇝v|q

]
=

∣∣∣P(t)
u⇝v|q

∣∣∣+ |E|
|V|

∣∣∣P(t−1)
u⇝v|q

∣∣∣. For real-world knowledge graphs, |E|
|V| | is usually a

small constant (e.g.,≤ 50), and
∣∣∣P̂(t)

u⇝v|q

∣∣∣ is slightly larger than
∣∣∣P(t)

u⇝v|q

∣∣∣ in terms of complexity.

A.2 From Iterative Path Selection to Iterative Node Selection

Second, we demonstrate that Eqn. 7 can be solved by Eqn. 8 if paths with the same length and the
same stop node can be merged.

15

Proposition A.3. If mq(P) selects paths only based on the length t, the start node u and the end
node x of each path, by replacing mq(P) with n

(t)
uq (V), P̂(t)

u⇝v|q can be computed as follows

P̂(t)
u⇝v|q ←

⋃
x∈n(t−1)

uq (V)

(x,r,v)∈E(v)

{
P + {(x, r, v)}

∣∣∣P ∈ P̂(t−1)
u⇝x|q

}
(8)

This proposition is obvious. As a result of Prop. A.3, we merge paths by their length and stop nodes,
which turns the exponential tree search to a polynomial dynamic programming algorithm.

A.3 Reasoning with A* Algorithm

Finally, we prove that the A* iteration (Eqn. 9) covers all important paths for reasoning (Eqn. 5).

Theorem A.4. If n(t)
uq (V) : 2V 7→ 2V can determine whether paths from u to x are important or

not, and ⟨⊕,⊗⟩ forms a semiring [23], the representation hq(u, v) for path-based reasoning can be
computed by

h(t)
q (u, v)← h(0)

q (u, v)⊕
⊕

x∈n(t−1)
uq (V)

(x,r,v)∈E(v)

h(t−1)
q (u, x)⊗wq(x, r, v) (9)

Proof. In order to prove Thm. A.4, we first prove a lemma for the analytic form of h(t)
q (u, v), and

then show that limt→∞ h
(t)
q (u, v) converges to the goal of path-based reasoning.

Lemma A.5. Under the same condition as Thm. A.4, the intermediate representation h
(t)
q (u, v)

computed by Eqn. 2 and 9 aggregates all important paths within a length of t edges, i.e.

h(t)
q (u, v) =

⊕
P∈P̂(≤t)

u⇝v|q

|P |⊗
i=1

wq(ei) (15)

where P̂(≤t)
u⇝v|q =

⋃t
k=0 P̂

(k)
u⇝v|q .

Proof. We prove Lem. A.5 by induction. Let 0⃝q and 1⃝q denote the identity elements of ⊕ and ⊗
respectively. We have 1q(u = v) = 1⃝q if u = v else 0⃝q. Note paths of length 0 only contain self
loops, and we define them as important paths, since they should be prefix of some important paths.

For the base case t = 0, we have h
(0)
q (u, u) = 1⃝q =

⊕
P∈Pu⇝u|q :|P |≤0

⊗|P |
i=1 wq(ei) since the

only path from u to u is the self loop, which has the representation 1⃝q. For u ̸= v, we have

h
(0)
q (u, v) = 0⃝q =

⊕
P∈Pu⇝v|q :|P |≤0

⊗|P |
i=1 wq(ei) since there is no important path from u to v

within length 0.

For the inductive case t > 0, we have

h(t)
q (u, v) = h(0)

q (u, v)⊕
⊕

x∈n(t−1)
uq (V)

(x,r,v)∈E(v)

h(t−1)
q (u, x)⊗wq(x, r, v) (16)

= h(0)
q (u, v)⊕

⊕
x∈n(t−1)

uq (V)

(x,r,v)∈E(v)

 ⊕
P∈P̂(≤t−1)

u⇝v|q

|P |⊗
i=1

wq(ei)

⊗wq(x, r, v) (17)

= h(0)
q (u, v)⊕

⊕
x∈n(t−1)

uq (V)

(x,r,v)∈E(v)

 ⊕
P∈P̂(≤t−1)

u⇝v|q

 |P |⊗
i=1

wq(ei)

⊗wq(x, r, v)

 (18)

16

=

 ⊕
P∈P̂(0)

u⇝v|q

|P |⊗
i=1

wq(ei)

⊕
 ⊕

P∈P̂(≤t)

u⇝v|q\P̂
(0)

u⇝v|q

|P |⊗
i=1

wq(ei)

 (19)

=
⊕

P∈P̂(≤t)

u⇝v|q

|P |⊗
i=1

wq(ei), (20)

where Eqn. 17 uses the inductive assumption, Eqn. 18 relies on the distributive property of ⊗ over
⊕, and Eqn. 19 uses Prop. A.3. In the above equations,

⊗
and ⊗ are always applied before

⊕
and

⊕.

Since P(t)
u⇝v|q ⊆ P̂

(t)
u⇝v|q , we have Pu⇝v|q ⊆ P̂u⇝v|q ⊆ Pu⇝v . Based on Lem. A.5 and Eqn. 5, it is

obvious to see that

lim
t→∞

h(t)
q (u, v) =

⊕
P∈P̂u⇝v|q

hq(P) ≈
⊕

P∈Pu⇝v

hq(P) = hq(u, v) (21)

Therefore, Thm. A.4 holds.

B Additional Edge Selection Step in A*Net

As demonstrated in Sec. 3.2, A*Net selects top-K nodes according to the current priority function,
and computes the A* iteration

h(t)
q (u, v)← h(0)

q (u, v)⊕
⊕

x∈X (t)

(x,r,v)∈E(v)

s(t−1)
uq (x)

(
h(t−1)
q (u, x)⊗wq(x, r, v)

)
(12)

However, even if we choose a small K, Eqn. 12 may still propagate the messages to many nodes
in the knowledge graph, resulting in a high computation cost. This is because some nodes in the
knowledge graph may have very large degrees, e.g., the entity Human is connected to every person
in the knowledge graph. In fact, it is not necessary to propagate the messages to every neighbor of
a node, especially if the node has a large degree. Based on this observation, we propose to further
select top-L edges from the neighborhood of X (t) to create E(t)

E(t) ← TopL(s(t−1)
uq (v)|x ∈ X (t), (x, r, v) ∈ E(x)) (22)

where each edge is picked according to the priority of node v, i.e., the tail node of an edge. By doing
so, we reuse the neural priority function and avoid introducing any additional priority function. The
intuition of Eqn. 22 is that if an edge (x, r, v) goes to a node with a higher priority, it is likely we are
propagating towards the answer entities. With the selected edges E(t), the A* iteration becomes

h(t)
q (u, v)← h(0)

q (u, v)⊕
⊕

x∈X (t)

(x,r,v)∈E(t)(v)

s(t−1)
uq (x)

(
h(t−1)
q (u, x)⊗wq(x, r, v)

)
(23)

which is also the implementation in Alg. 1.

C Padding-Free Operations

In A*Net, different training samples may have very different sizes for the selected nodes V(t) and E(t).
To avoid the additional computation over padding in conventional batched execution, we introduce
padding-free operations, which operates on the concatenation of samples without any padding.

Specifically, padding-free operations construct IDs for each sample in the batch, such that we can
distinguish different samples when we apply operations to the whole batch. As showed in Fig. 8,
for padding-free topk, we pair the inputs with their sample IDs, and cast the problem as a multi-key
sort over the whole batch. The multi-key sort is implemented by two calls to standard stable sort

17

1 3

0 0 1 1 1

1 3 2 1 0

1 3

2 1 0

-∞

2 1 0

1 0 1 1 0

0 1 1 2 3

1 3

0 1 2

-∞add paddings batched sort

sort inputs

1 3

1 2

batched index

1 3

1 2

remove paddings
(if necessary)

add sample IDs index
0 0 1 1 1

1 3 0 1 2

sort IDs

Figure 8: Comparison between padding-based topk (up) and padding-free topk (down) for K = 2.
Padding-based operations first add paddings to create a padded tensor for batched operations, and
then remove the paddings. Padding-free operations pair the inputs with their sample IDs (showed in
colors), and then apply single-sample operations over the whole batch.

operations sequentially. We then apply indexing operations and remove the sample IDs to get the
desired output. Alg. 2 provides the pseudo code for padding-free topk in PyTorch.

Algorithm 2 Padding-free implementation of topk in PyTorch
Input: Input values of each sample inputs, size of each sample sizes, K
Output: TopK values of each sample, indices of topk values

1 # the sample id of each element
2 sample_ids = torch.arange(batch_size).repeat_interleave(sizes)
3 # multi-key sort of (sample_ids, inputs)
4 indices = inputs.argsort()
5 indices = sample_ids[indices].argsort(stable=True)
6 sorteds = inputs[indices]
7 # take top-k values of each sample
8 ranges = torch.arange(K).repeat(batch_size)
9 ranges = ranges + sizes.cumsum(0).repeat_interleave(K) - K

10 return sorteds[ranges], indices[ranges]

D Datasets & Evaluation

Dataset statistics for transductive and inductive knowledge graph reasoning is summarized in Tab. 7
and 8 respectively. For the transductive setting, given a query head (or tail) and a query relation,
we rank each answer tail (or head) entity against all negative entities. For the inductive setting, we
follow [54] and rank each each answer tail (or head) entity against all negative entities, rather than 50
randomly sampled negative entities in [39]. We report the mean reciprocal rank (MRR) and HITS at
K (H@K) of the rankings.

Table 7: Dataset statistics for transductive knowledge graph reasoning.

Dataset #Relation #Entity #Triplet
#Train #Valid #Test

FB15k-237 237 14,541 272,115 17,535 20,466
WN18RR 11 40,943 86,835 3,034 3,134
YAGO3-10 37 123,182 1,079,040 5000 5000
ogbl-wikikg2 535 2,500,604 16,109,182 429,456 598,543

As for efficiency evaluation, we compute the number of messages (#message) per step, wall time per
epoch and memory cost. The number of messages is averaged over all samples and steps

#message = E(u,q,v)∈EEt

∣∣∣E(t)∣∣∣ (24)

The wall time per epoch is defined as the average time to complete a single training epoch.
We measure the wall time based on 10 epochs. The memory cost is measured by the function
torch.cuda.max_memory_allocated() in PyTorch.

18

Table 8: Dataset statistics for inductive knowledge graph reasoning.

Dataset #Relation Train Validation Test
#Entity #Query #Fact #Entity #Query #Fact #Entity #Query #Fact

FB15k-237

v1 180 1,594 4,245 4,245 1,594 489 4,245 1,093 205 1,993
v2 200 2,608 9,739 9,739 2,608 1,166 9,739 1,660 478 4,145
v3 215 3,668 17,986 17,986 3,668 2,194 17,986 2,501 865 7,406
v4 219 4,707 27,203 27,203 4,707 3,352 27,203 3,051 1,424 11,714

WN18RR

v1 9 2,746 5,410 5,410 2,746 630 5,410 922 188 1,618
v2 10 6,954 15,262 15,262 6,954 1,838 15,262 2,757 441 4,011
v3 11 12,078 25,901 25,901 12,078 3,097 25,901 5,084 605 6,327
v4 9 3,861 7,940 7,940 3,861 934 7,940 7,084 1,429 12,334

E Implementation Details

Our work is based on the open-source codebase of path-based reasoning with Bellman-Ford algo-
rithm9. Tab. 9 lists the hyperparameters for A*Net on all datasets and in both transductive and
inductive settings. For the inductive setting, we use the same set of hyperparameters for all 4 splits of
each dataset.

Table 9: Hyperparameter configurations of A*Net on all datasets. For FB15k-237, WN18RR and
YAGO3-10, we use the same hyperparameters as NBFNet [58], except for the neural priority function
introduced in A*Net. There is no publicly available hyperparameters of NBFNet on ogbl-wikikg2.

Hyperparameter FB15k-237 WN18RR YAGO3-10 ogbl-wikikg2
transductive inductive transductive inductive transductive transductive

Message Passing

#step (T) 6 6 6 6 6 6
hidden dim. 32 32 32 32 32 32

message DistMult DistMult DistMult DistMult DistMult DistMult
aggregation PNA sum PNA sum PNA sum

Priority Function

g(·) #layer 1 1 1 1 1 1
f(·) #layer 2 2 2 2 2 2
hidden dim. 64 64 64 64 64 64
node ratio α 10% 50% 10% 5% 10% 0.2%

degree ratio β 100% 100% 100% 100% 100% 100%

Learning

optimizer Adam Adam Adam Adam Adam Adam
batch size 256 256 256 256 40 128

learning rate 5e-3 5e-3 5e-3 5e-3 5e-3 5e-3
#epoch 20 20 20 20 0.4 0.2

adv. temperature 0.5 0.5 1 1 0.5 0.5
#negative 32 32 32 32 32 1,048,576

Neural Parameterization For a fair comparison with existing path-based methods, we follow
NBFNet [58] and parameterize

⊕
with principal neighborhood aggregation (PNA), which is a

permutation-invariant function over a set of elements. We parameterize
⊗

with the relation operation
from DistMult [49], i.e., vector multiplication. Note that PNA relies on the degree information of
each node to perform aggregation. We observe that PNA does not generalize well when degrees are
dynamically determined by the priority function. Therefore, we precompute the degree for each node
on the full graph, and use them in PNA no matter how many nodes and edges are selected by the
priority function.

Following NBFNet [58], we parameterize the indicator function as 1q(u = v) = 1(u = v)q.
Intuitively, this produces a boundary condition of zero vectors except for the head entity u, which
is labeled with the query embedding q. For ogbl-wikikg2, instead of using a boundary condition of
mostly zeros, we find it is better to incorporate distance information in the boundary condition. To
this end, we use the personalized PageRank score pu,v from u to v as a soft distance metric, and
parameterize the indicator function as 1q(u = v) = 1(u = v)q + 1(u ̸= v)pu,v, where pu,v is an
embedding learned based on discretized value of pu,v .

Data Augmentation We follow the data augmentation steps of NBFNet [58]. For each triplet
(x, r, y), we add an inverse triplet (y, r−1, x) to the knowledge graph, so that A*Net can propagate in

9https://github.com/DeepGraphLearning/NBFNet. MIT license.

19

https://github.com/DeepGraphLearning/NBFNet

both directions. Each triplet and its inverse may have different priority and are picked independently
in the edge selection step. Since test queries are always missing in the graph, we remove the edges of
training queries during training to prevent the model from copying the input.

F More Experiment Results

Tab. 10 shows the performance and efficiency results on YAGO3-10. We observe that A*Net achieves
compatible performance with NBFNet, while reducing the number of messages by 16.0×. A*Net
also reduces the time and memory of NBFNet by 2.5× and 2.0× respectively.

Tab. 11 provides all metrics of the performance on inductive knowledge graph reasoning. It can
be observed that A*Net consistently outperforms all compared methods except NBFNet. A*Net
achieves competitive performance compared to NBFNet, despite the fact that A*Net reduces the
number of messages, wall time and memory on both datasets and all splits (Tab. 12).

Table 10: Performance and efficiency on YAGO3-10. Results of compared methods are from [38].

(a) Performance results.

Method YAGO3-10
MRR H@1 H@3 H@10

DistMult 0.34 0.24 0.38 0.54
ComplEx 0.36 0.26 0.40 0.55
RotatE 0.495 0.402 0.550 0.670

NFBNet 0.563 0.480 0.612 0.708
A*Net 0.556 0.470 0.611 0.707

(b) Efficiency results.

Method YAGO3-10
#message time memory

NBFNet 2,158,080 51.3 min 26.1 GiB
A*Net 134,793 20.8 min 13.1 GiB

Improvement 16.0× 2.5× 2.0×

Table 11: Performance on inductive knowledge graph reasoning. V1-v4 refer to the 4 standard splits.

Method v1 v2 v3 v4
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

FB15k-237

GraIL 0.279 0.205 0.429 0.276 0.202 0.424 0.251 0.165 0.424 0.227 0.143 0.389

NeuralLP 0.325 0.243 0.468 0.389 0.286 0.586 0.400 0.309 0.571 0.396 0.289 0.593
DRUM 0.333 0.247 0.474 0.395 0.284 0.595 0.402 0.308 0.571 0.410 0.309 0.593
NBFNet 0.422 0.335 0.574 0.514 0.421 0.685 0.476 0.384 0.637 0.453 0.360 0.627
RED-GNN 0.369 0.302 0.483 0.469 0.381 0.629 0.445 0.351 0.603 0.442 0.340 0.621
A*Net 0.457 0.381 0.589 0.510 0.419 0.672 0.476 0.389 0.629 0.466 0.365 0.645

WN18RR

GraIL 0.627 0.554 0.760 0.625 0.542 0.776 0.323 0.278 0.409 0.553 0.443 0.687

NeuralLP 0.649 0.592 0.772 0.635 0.575 0.749 0.361 0.304 0.476 0.628 0.583 0.706
DRUM 0.666 0.613 0.777 0.646 0.595 0.747 0.380 0.330 0.477 0.627 0.586 0.702
NBFNet 0.741 0.695 0.826 0.704 0.651 0.798 0.452 0.392 0.568 0.641 0.608 0.694
RED-GNN 0.701 0.653 0.799 0.690 0.633 0.780 0.427 0.368 0.524 0.651 0.606 0.721
A*Net 0.727 0.682 0.810 0.704 0.649 0.803 0.441 0.386 0.544 0.661 0.616 0.743

Table 12: Efficiency on inductive knowledge graph reasoning. V1-v4 refer to the 4 standard splits.

Method v1 v2 v3 v4
#msg. time memory #msg. time memory #msg. time memory #msg. time memory

FB15k-237

NBFNet 8,490 4.50 s 2.79 GiB 19,478 11.3 s 4.49 GiB 35,972 27.2 s 6.28 GiB 54,406 50.1 s 7.99 GiB
A*Net 2,644 3.40 s 0.97 GiB 6,316 8.90 s 1.60 GiB 12,153 18.9 s 2.31 GiB 18,501 33.7 s 3.05 GiB

Improvement 3.2× 1.3× 2.9× 3.1× 1.3 × 2.8× 3.0× 1.4× 2.7× 2.9× 1.5× 2.6×

WN18RR

NBFNet 10,820 8.80 s 1.79 GiB 30,524 30.9 s 4.48 GiB 51,802 78.6 s 7.75 GiB 7,940 13.6 s 2.49 GiB
A*Net 210 2.85 s 0.11 GiB 478 8.65 s 0.26 GiB 704 13.2 s 0.41 GiB 279 4.20 s 0.14 GiB

Improvement 51.8× 3.1× 16.3× 63.9× 3.6× 17.2× 73.6× 6.0× 18.9× 28.5× 3.2× 17.8×

20

G More Visualization of Learned Important Paths

Fig. 9 visualizes learned important paths on different samples. All the samples are picked from the
test set of transductive FB15k-237.

Vitamin B5

beef

fat egg

pasta

coconut milk

nutrientnutrient nutrient
nutrient

(?, nutrient, Vitamin B5)

nominated
forAliens

Walter Hill
Alien vs. Predator

action film

stop-motion RoboCop

Alien 4

(Aliens, genre, ?)

genre

Auckland City

University of Auckland Insular Oceania

New Zealand

Graeme Revell

(Auckland City, country, ?)

Pineapple Express

contains

composer

marriage
locationOliver Hardy

Scottish Americans

USA
Las Vegas

North Hollywood

country

(Oliver Hardy, nationality, ?)

Figure 9: Visualization of important paths in A*Net on different test samples. Each important path is
highlighted by a separate color.

21

	Introduction
	Preliminary
	Proposed Method
	Path-based Reasoning with A* Algorithm
	Path-based Reasoning with A*Net

	Experiments
	Experiment Setup
	Main Results
	Ablation Studies
	Visualization of Learned Important Paths

	Related Work
	Discussion and Conclusion
	Path-based Reasoning with A* Algorithm
	Iterative Path Selection for Computing Important Paths
	From Iterative Path Selection to Iterative Node Selection
	Reasoning with A* Algorithm

	Additional Edge Selection Step in A*Net
	Padding-Free Operations
	Datasets & Evaluation
	Implementation Details
	More Experiment Results
	More Visualization of Learned Important Paths

