
A Discussion on the Cumulative Metric

As discussed on the Section 3, we use d(ran(AT ),�X ) as the performance metric. We can make
results with respect to the cumulative error

PT
t=1

coe↵
T�t

metric(At,�X ) (coe↵ 2 (0, 1]) orPT
t=1

metric(At,�X )/T from our results of d(AT ,�X ). Note that the distance between actual
and estimated space (check the Figure 3b for visualization) does not tend to 0 as T ! 1 on both
algorithms when �>0, which is inevitable as the non-zero lower bound of the Theorem 1 suggests.

To extend our results to the cumulative metric, for the Theorem 1, we can construct a new A1, . . .AM 0

for estimating the fundamental lower bound; and for the Theorem 2 and the Theorem 3, our discussion
can easily be applied to each t 2 [T ] (not only to the termination time T ) using the union bound.
However, we have to multiply log T to the result of d(AT ,�X ) since we use the union bound to
have bounded noise matrices from column blocks and the number of blocks linearly increases to T .
Therefore, when T ! 1, our results become the trivial bound

PT
t=1

metric(At,�X )/T  1.

B Rate Optimality

Our Assumption 1 at the Section 5 allows us to write the clear statement on the performance of two
algorithms. Furthermore, by simply truncating the multivariate Gaussian distribution of xt (8t) with
high probability 1�1/T (we denote this event as E), we may adopt Assumption 1 on the model with
equation (1), for suitable M and V .

Here we will discuss about the construction of E, M, and V . To apply the Assumption 1 on the
Gaussian model, we define the high-probability(� 1�1/T ) event E under xt ⇠ N (0,AtA

>
t +

�2Ip⇥p), where (At)
T
t=1

2 Tu(�,�). Precisely, we define the event E at the main paper as below:

Definition 4. Formal Version. Let xt ⇠ N (0,AtA
>
t + �2Ip⇥p) and SVD(AtA

>
t + �2Ip⇥p) =

UtDtU>
t . We define the event E as follows:

E := 8t 2 [T ] : zt = D�1/2
t U>

t xt 2 [�⇢, ⇢] p , for ⇢ =

p
2 log(2pT 2) .

Under the event E, kztk2 is bounded by p⇢2 = ⇥̃(p). Furthermore, by well-known formula on
the variance of truncated normal distribution [13], we have E[ztz>t |E] = (1 � ⌫(pT 2

))Ip⇥p and
E[xtx

>
t |E] = (1� ⌫(pT 2

))E[xtx
>
t ] where:

⌫(x) :=
1

2
p
⇡

p
log(x/2)

x� 1
+

1

2⇡

x2

(x� 1)4
, (13)

because zt ⇠ N (0, Ip⇥p). Since ⌫(x) = O(x�1
log(x/2)) for x � 1, we have:

⌫(pT 2
) = O

✓
log(pT 2

)

pT 2

◆
.

B.1 Properties under E

Under the truncation event E, the expectation of the covariance estimator becomes different. There-
fore, the properties which affect to the convergence are also differed, but those are not significant for
the sufficiently large T . We first define:

AE
t :=

p
1� ⌫(pT 2)At =

s

1�O

✓
log(pT 2)

pT 2

◆
At .

Let us first define new parameters as:

{(�E
)
2, �E, �̃E,�E} = (1� ⌫(pT 2

)){�2, �, �̃,�}

Then, since E[xtx
>
t |E] = (1 � ⌫(pT 2

))(AtA
>
t + �2Ip⇥p) = AE

t (A
E
t )

>
+ (�E

)
2Ip⇥p, noise

magnitude (�2), spectral gap of AtA
>
t (�), largest spectrum of AtA

>
t (�̃), and distance between

covariance matrix (�) should be replaced by (1� ⌫(pT 2
))-scaled new parameters. However, if T is

sufficiently large, we restore the original parameters with logarithmic multiplicative factor.
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B.2 Applying Assumption 1 under E

In this section, we will show that under the event E, the equation (1) satisfies the Assumption 1
(for probability greater than 1� 1/T ), with parameters:

1. M = (p�̃ + k�2
)⇢2 + �̃E + (�E

)
2,

2. V = (�̃E + (�E
)
2
)M .

For the first statement, under E we have:

kxtx
>
t � E[xtx

>
t |E]k = kD1/2

t (ztz
>
t � E[ztz>t |E])D

1/2
t k

 kD1/2
t ztk

2
+ kD1/2

t (1� �(E/pT ))Ip⇥pD
1/2
t k

 (p�̃ + k�2
)(⇢)2 + �̃E + (�E

)
2 .

Finally, for second argument:

kE[(xtx
>
t �E[xtx

>
t |E])(xtx

>
t � E[xtx

>
t |E])|E]k

=kE[xtx
>
t xtx

>
t � xtx

>
t E[xtx

>
t |E]|E]k

kxtk
2
kE[xtx

>
t |E]k+ kE[xtx

>
t |E]k

2

(p�̃ + k�2
)(⇢)2(�̃E + (�E

)
2
) + (�̃E + (�E

)
2
)
2
= (�̃E + (�E

)
2
)M .

B.3 Discussion

The temporal uncertainty set Tu(�,�) does not have any information or clue about �̃, which is the
upper bound for the first singular value of AtA

>
t . Therefore, let us assume �̃=⇥(�). Then we have:

M  2(p� + k�2
) log(2pT 2

)

V  2(� + �2
)(p� + k�2

) log(2pT 2
)

On this case, the first term of the upper bound for the noisy power method becomes:

O

✓
((� + �2

)(p� + k�2
)� log(2pT 2

) log(2pT 2
))

1/3

�

◆
, or Õ

✓
((� + �2

)(p� + k�2
)�)

1/3

�

◆
.

By similar procedure, we can also find that our guarantee for Oja’s algorithm is sub-optimal.
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C Preparation for Detailed Proofs

C.1 Notation Table

Table 1: Table of Notations throughout the appendix. We omit notations what we already defined at
the Section 1.

Parameters related to the
environment:
T time horizon length
k number of principal components
p dimension of observation vectors
� magnitude of observation noise
AtA

>
t + �2Ip⇥p covariance matrix at the time t

� lower bound of spectral gap between kth and k + 1th singular value
of AtA

>
t

�̃ upper bound of the largest spectrum of AtA
>
t

� upper bound of the kAtA
>
t �At+1

A>
t+1

k

Parameter for the algo-
rithms:
B block size for the noisy power method
⇣ learning rate for the Oja’s algorithm
⇣opt , Bopt optimal learning parameter when there exists covariance shifts

(Tu(�,�))
L(' T/B) number of iteration in the noisy power method / for the Oja’s algo-

rithm, B is always the virtual block size corresponding to the optimal
parameter ⇣opt

Related to the rate opti-
mality (Section B):
E high-probability event under the spiked covariance model setting

(P[E] � 1� 1/T ), for bounding the norm of observation vectors
�E ,�E ,�E, , �̃E corresponding parameters when we assume the event E (since we

have different expectation for xtx
>
t under the E)

M ,V probabilistic upper bound, which plays the role of M and V on the
spiked covariance model setting

Related to the proof of
Theorem 1 (Section D):
Stk(Rp

) Stiefel manifold, which consists with the matrix M 2 Rp⇥k satisfying
M>M = Ik⇥k

Gk(Rp
) Grassmann manifold, which is the Riemannian manifold with k-

dimensional subspace in the Rp

[M] 2 Gk(Rp
) k-dimensional subspace generated with the columns of M 2 Stk(Rp

)

G[M]![N]( 
0
) principal rotation from [M] to [N]

s latent value for the lower bound
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C.2 Technical Lemmas

Lemma 3 (Theorem 2.6.1, [28]). Let S1 and S2 be two subspaces of Rp, such that dim(S1)=dim(S2).
We define the distance between these two subspaces (S1,S2) by kP1 � P2k, where Pi, i = 1, 2 is
the orthogonal projection onto Si (i = 1, 2). Moreover, suppose M = [M1

k
M2

p�k
], N = [N1

k
N2

p�k
] are

p⇥ p orthogonal matrices. If S1 = ran(M1) and S2 = ran(N1), then:

dist(S1,S2) = kM>
1
N2k = kM>

2
N1k .

Lemma 4 (Davis-Kahan sin(✓) theorem; Theorem VII.3.1, [8]). For given symmetric matrices M,N
with singular value decomposition SVD(M) = UDU and SVD(M+N) = ÛD̂Û, we have:

kU1:kU
>
1:k � Û1:kÛ

>
1:kk 

kNk

sk(M)� sk+1(M) + kNk
.

Lemma 5 (Weyl’s theorem). For any M,N 2 Rp⇥k and 1  i  min(p, k),

si(M+N)  si(M) + s1(N) .

Lemma 6 (Sub-additivity of rank). For any M,N 2 Rp⇥k,

rk(M+N)  rk(M) + rk(N) .

C.3 Grassmann Manifold

To effectively handle the k-dimensional subspace of Euclidean space, we would like to consider the
Grassmann manifold [7, 19, 20, 41, 47].
Definition 4 (Grassmann manifold). Grassmann manifold Gk(Rp

) is the k(p � k) dimensional
Riemannian manifold with k-dimensional subspace in Rp as elements. For example, RPp�1 is
topologically isomorphic with Grassmann manifold G1(Rp

). The elements in Gk(Rp
) are often

expressed as the equivalence class [M] of p⇥ k orthogonal matrix (M 2 Stk(Rp
)). Here, each class

is a collection of orthogonal matrices sharing the same column space. A necessary and sufficient
condition for both elements of Stk(Rp

) to have the same column space is that the associated projection
matrices are the same. That is,

M1 ⇠ M2 (M1, M2 2 Stk(Rp
)) () M1M

>
1
= M2M

>
2
.

Definition 5 (Principal angle). We can define k principal angles between two elements in Gk(Rp
).

This is clear generalization of an angle 2 [0,⇡/2] between two 1d-lines in Rp.

(a) Let us assume [M] , [N] 2 Gk(Rp
) (M ,N 2 Stk(Rp

)). Then we define the principal angle
by the inverse cosine of the diagonal matrix ⌃ in SVD(M>N) = U⌃V>. Therefore, the
principal angle can be treated as the k-dimensional vector in [0 ,⇡/2]k.

(b) The principle angle is well defined in terms of the fact that:

for M1 ,M2 ,N1 ,N2 2 Stk(Rp
) s.t M1 ⇠ M2 and N1 ⇠ N2 ,

M>
1
N1 and M>

2
N2 have same set of singular values.

(c) Generally, we mean the set of angles or k dimensional vector or k ⇥ k diagonal matrix when
we denote principal angle. Specifically, We denote  = cos

�1
(diag(⌃)) as the vector in

Rk with the principal angles as elements. On the other hand, when we apply trigonometric
function on  , we treat the result as a diagonal matrix.

To measure the distance between two elements in Gk(Rp
), we define the projection 2-distance d2(· , ·),

which is the operator 2-norm between projectors of element in Gk(Rp
). We summarize about the

projection distance as follows.
Definition 6 (Projection 2-distance). Let [U], [V] 2 Gk(Rp

) (U ,V 2 Stk(Rp
)). Assumte that the

principal angles between [U] and [V] are = ( i)i 2 [0 ,⇡/2]k. We define the projection 2-distance
as:

d2([U] , [V]) := kUU>
�VV>

k = k sin k1 = max
1ik

sin i .
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Note also that the following equality holds for U and V in Stk(Rp
):

d2([U] , [V]) = d(U,V)(= d(ran(U), ran(V)) .

We consider the r-ball covering with respect to the projection 2-distance. This result can be derived
from the slight variation of the proof on the chordal metric r-ball [20] (Precisely, we can get the proof
by redefining the integral domain Dr).
Proposition 1 (Projection 2-distance ball in Gk(Rp

)). Let us define B([M], r) 2 Gk(Rp
)(r 2 (0, 1))

as the d2-ball with radius r and center [M]. Then there exists a measure µ on Gk(Rp
) such that

µ(B([M], r))=µ(r) for all M] 2 Gk(Rp
) where µ(r) satisfies:

cp,kr
k(p�k)

 µ(r) 
cp,krk(p�k)

(1� r2)k/2
.

Here, cp,k is a constant determined with p and k.

While the rotation between two vectors is self-explanatory, the rotation between two orthogonal planes
is not intuitive. Because we have k principal angles, we may consider k-dimensional rotation. Let
 = diag( i)

k
i=1

be the principal angles between [M] and [N] (M ,N 2 Stk(Rp
)). The following

definition defines G-mapping, which faithfully generalize traditional rotation.
Definition 7 (Principal rotation). Let us assume [M] , [N] 2 Gk(Rp

). Then, we have G-mapping

G[M]![N] : [0 , 1]⇥ [0 , 2]⇥ · · ·⇥ [0 , k] ! Gk(Rp
) ,

which satisfies:

•  = ( i)
k
i=1

is principal angle between [M] and [N].

• G[M]![N](0) = [M] , and G[M]![N]( ) = [N].

• Principal angle between G( 
1
) and G( 

2
) is | 1

� 
2
|.

From the last property, for 0� 1
=( 1

i )
k
i=1

, 2
=( 2

i )
k
i=1

� , we have:

• d2(G( 1
) ,G( 2

)) = max1ik |sin( 1

i �  2

i )| .

Proof. Consider the following singular value decomposition:

M>N = U⌃V>
) (MU)

>
(NV) = ⌃ = cos . (0 �  � ⇡/2)

Note that MU ⇠ M , NV ⇠ N. We provide the G-mapping from [M] to [N]:

G[M]![N]( ) = [MU cos 
0
+ (�MU cot +NV csc ) sin 

0
] . (0 �  

0
�  )

If  i =  0
i = 0, we treat sin 0

i /sin i as 1. Since the first two requirements are obvious, we will
show that the above formulation satisfies the third condition. From

(MU cos 
0
)
>
(�MU cot +NV csc ) sin 

0
= cos 

0
(� cot + cos csc ) sin 

0
= 0 ,

and

sin 
1
(�MU cot +NV csc )

>
(�MU cot +NV csc ) sin 

2

=sin 
1
csc (�MU cos +NV)

>
(�MU cos +NV) csc sin 

2

=sin 
1
csc (Ip⇥p � cos

2
 ) csc sin 

2
= sin sin 

2 ,

we have:
G( 

1
)
>
G( 

2
) = cos 

1
cos 

2
+ sin 

1
sin 

2
= cos( 

1
� 

2
) .

Therefore, the principal angles between G( 
1
) and G( 

2
) are | 

1
�  

2
|. The last property is

immediate from the third.
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D Proof of Theorem 1

D.1 Reduction to finite number of hypotheses

Let us define

s :=
3

r
log(3/2)

2160

✓��
�

�1/3�p�2
(�2

+ �)

�2
�1/3

+
1

p
T

�p�2
(�2

+ �)

�2
�1/2

◆
> 0,

and assume s < 1/3, and p > 2k + 1 (Note that we assume p � k). Then we have:

EX⇠PA

⇣
d(ran(AT ) , �X )

⌘
� sPA

�
d(ran(AT ) , �X ) � s

�
,

and

R
⇤
= inf

�
sup

A2Tu(�,�)
EX⇠PA

�
d
�
ran(AT ) , �X )

�
� s · inf

�
sup

A2Tu(�,�)
PA

⇣
d
�
ran(AT ) , �X

�
� s
⌘
.

Since we are considering supremum over sequences in Tu(�,�), we immediately have that

inf
�

sup

A2Tu(�,�)
PA
�
d(ran(AT ) , �X ) � s

�
� inf

�
sup

A2{A0 ,... ,AM}
PA
�
d(ran(AT ) , �X ) � s

�
,

where
n
Ai = {A(i)

1
,A(i)

2
, . . . ,A(i)

T }

oT

i=1

is an appropriately chosen subset of Tu(�,�) of size
(M + 1) which will be defined with the construction below (Section D.2).

D.2 Constructing A(i)
t

On the construction, we construct a set with size M + 1, {Ai}
M
i=0

⇢ Tu(�,�), where A(i)
t (8t 2 [T ]

and 8i 2 [M ] [ {0}) to satisfy:

s1(A
(i)
t A(i)>

t ) = s2(A
(i)
t A(i)>

t ) = · · · = sk(A
(i)
t A(i)>

t ) = � .

Therefore, for the rest of Section D, we treat A(i)
t as orthogonal matrix in Rp⇥k for simplicity.

We consider the notation A(i)
t as the element of Gk(Rp

)(; equivalence class of orthogonal matrices)
or the particular orthogonal matrix in Stk(Rp

). As the matrices in hypothesis are the
p
�-scaled

orthogonal matrix, notation overloading does not harm the rigorousness of the proof. In summary, if
there is no conflict, we denote A(i)

t as orthogonal matrix, or its equivalent class.

We initialize with:
A0 = {A(0)

1
,A(0)

2
, . . . ,A(0)

T } ,

where A(0)

1
= A(0)

2
= · · · = A(0)

T with A(0)

T =
�
e1, e2, . . . , ek

�
2 Rp⇥k.

Using the above terminology, we first identify the orthogonal matrix A(i)
T and then construct other

elements of Ai from A(i)
T . First, we show that we can define M⇠(3/2)k(p�k) sequences, to bound

projection 2-distance between A(i)
T and A(j)

T in the range [2s , 6s].

Goal 1. Assume that we have sufficiently small s < 1/3. We want to construct A(i)
T 2 Gk(Rp

)

(i 2 [M ]), where M⇠(3/2)k(p�k) and :

8(i, j) s.t. i, j � 1 and i 6= j : 2s  d2([A
(i)
T ] , [A(j)

T ])  6s . (14)

=) Let A(i)
T be the elements in Gk(Rp

). We define Sc and Si as follows:

Sc = B(A(0)

T , 3s) , Si = B(A(i)
T , 2s) ,

where B(x , r) is a projection 2-norm ball in Gk(Rp
) with radius r. Now, we may choose

maximal M which keeps the inequality M · µ(B(2s))  µ(B(3s)). By using the Proposition 1
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on the Appendix C.3, we have:

µ(B(A(0)

T , 3s))

µ(B(A(i)
T , 2s))

�
�
1� (3s)2

�k/2
(3/2)k(p�k)

� M = (3/2)k(p�k�1/2) .

The last inequality comes from the assumption s < 1/3. If we fix A(0)

T 2 Gk(Rp
), we can

select A(1)

T in Sc and exclude S1 from Sc. By repeating this process, we can select at least
M k-dimensional plane A(i)

T while ensuring that Sc �
S

1iM�1
Si is non-empty. From the

construction, the condition by the equation (14) is satisfied by the triangle inequality.

For the next step, we construct A(i)
t (t < T , 0 < i) satisfying the following second goal:

Goal 2. Let us assume that we constructed A(i)
T 2 Gk(Rp

) to satisfy equation (14). We want to
construct A(i)

t for every t = 1 · · ·T and i = 1 · · ·M , satisfying:

d2([A
(i)
t�1

] , [A(i)
t ]) 

�

�
. (15)

=) Let us define the mapping G
(i)
( (t))

�
0 �  (t) �  

(i)
= ( (i)

j )
k
j=1

�
as G

[A(0)

T ]![A(i)
T ]

in the Definition 7 on the Appendix C.3. For t 2 [0, T ], we define A(i)
t as G(i)

( (t)), where
 (t) = ( 1(t), . . . , k(t)) is:

 j(t) =

8
><

>:

0 t  T �

j
d2([A

(0)

T ] , [A(i)
T ]) �/�

k

 (i)
j max

✓
1� (T � t) �

� d2([A
(0)

T ] ,[A(i)
T ])

, 0

◆
t > T �

j
d2([A

(0)

T ] , [A(i)
T ]) �/�

k
.

From the property of principal rotation, for every t 2 [T ], we have

d2([A
(i)
t�1

] , [A(i)
t ])  max

1jk

 
�

�

 (i)
j

d2([A
(0)

T ] , [A(i)
T ])

!
=
�

�
.

On the last step, we will bound the distance between different hypotheses at arbitrary t with 6s as in
the case of t = T :

Goal 3.
d2([A

(i)
t ] , [A(j)

t ])  6s . (16)

=) Here, we bound the above distance as:

d2([A
(i)
t ] , [A(j)

t ])  d2([A
(i)
t ] , [A(i)

T ]) + d2([A
(j)
t ] , [A(j)

T ]) (A(i)
0

= A(j)
0

= A(0)

T )
(F)

 d2([A
(i)
T ] , [A(i)

0
]) + d2([A

(j)
T ] , [A(j)

0
])

 6s ,

where (F) follows from the construction on the proof of Goal 2.

D.3 Reduction to error probability

Recall that by the construction of the sequence {Ai} (Goal 1), we have:

8(i, j) s.t. i, j � 1 and i 6= j : 2s  d2([A
(i)
T ] , [A(j)

T ]) .

Therefore, for any estimation of the top eigenvectors �X , by triangle inequality, we have that

PAj

⇥
d
�
ran(A(j)

T ),�X
�
� s
⇤
� PAj

�
⇠⇤ 6= j

�
,
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where ⇠⇤ : X 7! A denotes the minimum distance test defined by

⇠⇤ = argmin
1iMd(ran(A(i)

T ),�X ) .

The above equations imply that:

PAj

⇥
d(ran(A(j)

T ),�X
�
� s
⇤
� PAj

�
⇠⇤ 6= j

�
� pe,M ,

where pe,M = inf⇠ max0jM PAj (⇠ 6= j) and the infimum is over all possible tests ⇠. To analyze
and bound pe,M , we use the following Lemma 7.
Lemma 7 (Theorem 2.5 in [57]). Assume that Tu(�,�) contains elements A0,A1, . . . ,AM (M � 2)
such that

1

M

MX

j=1

KL
�
PAjkPA0

�
 ↵ logM.

Then, we have

pe,M �

p
M

1 +
p
M

⇣
1� 2↵�

r
2↵

logM

⌘
.

To apply Lemma 7, we first bound KL
�
PAikPAj

�
for all i 6= j. Since x1, . . . ,xT are independent,

KL
�
PAikPAj

�
=

TX

t=1

KL
�
A(i)

t kA(j)
t

�
 min

n
T, d2(A

(0)

T ,A(i)
T ) �/�

o
KL
�
A(i)

T kA(j)
T

�
,

where KL
�
A(i)

t kA(j)
t

�
is the KL-divergence between two spiked covariance models defined with

A(i)
t and A(j)

t . We first study the KL-divergence between models with A(i)
T and A(j)

T as below:

KL
�
A(i)

T kA(j)
T

�

= log

 
|�A(i)

T A(i)>
T + �2Ip⇥p|

|�A(j)
T A(j)>

T + �2Ip⇥p|

!
� p+ tr

⇣
(�A(i)

T A(i)>
T + �2Ip⇥p)

�1
(�A(j)

T A(j)>
T + �2Ip⇥p)

⌘

=� p+ tr

⇣
1

�2

�
Ip⇥p �

�

(�2 + �)
A(i)

T A(i)>
T

�
(�2Ip⇥p + �A(j)

T A(j)>
T )

⌘

=� p+ tr

⇣
1

�2

�
�2Ip⇥p + �A(j)

T A(j)>
T �

��2

(�2 + �)
A(i)

T A(i)>
T �

�2

(�2 + �)
A(i)

T A(i)>
T A(j)

T A(j)>
T

�⌘

=
�2

�2(�2 + �)
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⇣
A(i)

T A(i)>
T (Ip⇥p �A(j)

T A(j)>
T )

⌘

=
1

2

�2

�2(�2 + �)
kU(i)

T U(i)>
T �U(j)

T U(j)>
T k

2

F

(F)


�2

�2(�2 + �)
kkU(i)

T U(i)>
T �U(j)

T U(j)>
T k

2


k�2

�2(�2 + �)
(6s)2.

The (F) follows from the subadditivity of rank(Lemma 6) and the relation between two
norms(kMkF 

p
rk(M)kMk). Therefore, we have the following upper bound:

KL
�
PAikPAj

�


36k�2

�2(�2 + �)
min

n
T, d2(A

(0)

T ,A(i)
T ) �/�

o
s2


36k�2

�2(�2 + �)
min

n
T,

3s�

�

o
s2 , (17)

where the last inequality comes from the construction of Goal 1.

D.4 Proving the Theorem

Now, we establish Theorem 1 based on the progress so far. As mentioned at the last section, we are
using the notation A(i)

t to represent an orthogonal matrix(or its class), not scaled with
p
�. We first

start from the result in the Appendix D.1:
1/3 > 8s > 0 : R

⇤
� s inf

�
sup

A2{Ai}M
i=0

PA [d(ran(AT ) ,�X ) � s] ,
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where d2(· , ·) is distance defined by operator norm between projectors. From the construction of Goal
1⇠3 on the Appendix D.2, we bound the KL divergence between hypothesis at the equation (17):

KL
�
PAikPAj

�


36k�2

�2(�2 + �)
min

n
T,

3s�

�

o
s2 .

Now, we find the particular range of s satisfying:

KL(PAikPAj ) 
36�2

�2(�2 + �)
kmin

✓
T,

3�

�
s

◆
s2

(F1)


1

10
logM =

1

10
log

⇣
(3/2)k(p�k�1/2)

⌘
.

Note that (F1) is satisfied when the (F2) of the following inequality holds:

360�2

�2(�2 + �)
min

✓
T,

3�

�
s

◆
s2

(F2)


1

2
p log

3

2
 (p� k �

1

2
) log

3

2
.

Therefore, we have a constant (log(3/2)/2160)1/3 ' 0.05726 > 0 such that with

s =
3

r
log(3/2)

2160

✓��
�

�1/3�p�2
(�2

+ �)

�2
�1/3

+
1

p
T

�p�2
(�2

+ �)

�2
�1/2

◆
, (18)

we have
1

M

MX

j=1

KL(PAjkPA0
) 

1

10
logM .

Finally, we use the reduction to error probability argument at the Appendix D.1. For pe,M =

inf⇠ max0jM PAj (⇠ 6= j),

PAj [d(ran(AT ) ,�X ) � s] � PAj (⇠ 6= j) � pe,M .

Now, with s in the equation (18), we have the following:

R
⇤
� s · inf

�
sup

A2{A0 ,A1 ,...,AM}
PA [d(ran(AT ) ,�X ) � s]

� s · pe,M =
3

r
log(3/2)

2160

✓��
�

�1/3�p�2
(�2

+ �)

�2
�1/3

+
1

p
T

�p�2
(�2

+ �)

�2
�1/2

◆
pe,M ,

where the pe,M is lower bounded by ⇠ 0.8 since M � 1.5pk/2 is sufficiently large . ⌅

E Proof of Lemma 1

We prove the Lemma 1 under the condition E[xtx
>
t ] = AtA

>
t + �2Ip⇥p and Assumption 1 defined

at the Section 5 holds. Later at the Appendix B, we apply this result on the our original model. We
first start from the decomposition of 1

B

P`B
t=(`�1)B+1

xtx>
t ,

1

B

`BX

t=(`�1)B+1

xtx
>
t = E[x`Bx

>
`B ] + E(`) = A`BA

>
`B + �2Ip⇥p + E(`) = M(`) + E(`) .

Note that formulation for E(`) is following:

E(`) =
1

B

`BX

t=(`�1)B+1

xtx
>
t � E[x`Bx

>
`B ] .

We would decompose E(`) in two terms as following.

E(`) =
1

B

`BX

t=(`�1)B+1

⇣
xtx

>
t � E[xtx

>
t ] + E[xtx

>
t ]� E[x`Bx

>
`B ]

⌘

=
1

B

`BX

t=(`�1)B+1

⇣
xtx

>
t � E[xtxt]

⌘

| {z }
E1(`)

+
1

B

`BX

t=(`�1)B+1

⇣
E[xtx

>
t ]� E[x`Bx

>
`B ]

⌘

| {z }
E2(`)

.
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E.1 Bounding max` kE1(`)k with probability 1� 1/T

First, we bound the E1(`) using the following matrix Bernstein inequality.
Theorem 4 (Matrix Bernstein Inequality [56]). Let X1 , . . . ,XB 2 Rp⇥p be independent, centered,
symmetric real random variables, and assume that each one is uniformly bounded:

E[Xi] = 0 and kXik  M for each i = 1 , . . . , B .

and let V denote upper bound for the matrix variance statistics of the sum:
V � kE[X2

i ]k .

Then

P
(���

1

B

BX

i=1

Xi

��� � x

)
 2p exp

⇢
�Bx2

2(V +Mx/3)

�
.

We set Xt as xtx
>
t � E[xtx

>
t ] for all (`� 1)B + 1  t  `B and overload the notation M and V .

Consider the following inequality:

log(2pT 2
) 

Bx2

2(V +Mx/3)
.

Then we have following sufficient condition for the above inequality:

x �
M log(2pT 2

)

3B

"
1 +

s

1 +
18V

M2

B

log 2pT 2

#
.

From the inequality
p
1 + x  1 +

p
x(x � 0), we get the following argument.

If x =
M

3

log 2pT 2

B
+

p

2V

r
log 2pT 2

B
, then P

8
<

:

���
1

B

`BX

t=(`�1)B+1

Xt

��� � x

9
=

; 
1

T 2
.

Let us assume the condition M
2
log(2pT 2

)/V  B. Then, with probability greater than 1� 1/T 2,
we have that:

kE1(`)k =

���
1

B

`BX

t=(`�1)B+1

Xt

��� 
1 + 3

p
2

3

r
V log(2pT 2)

B
.

Now, we use the union bound argument. That is, for probability greater than 1 � 1/T ( 1 �

(T/B)/T 2),

max
1`L(=T/B)

kE1(`)k 
1 + 3

p
2

3

r
V log(2pT 2)

B
.

E.2 Bounding kE2(`)k for all `

Since the our model limits the perturbation amount of covariance matrix, we may bound the kE2(`)k
as follows:

kE2(`)k 

���
1

B

`BX

t=(`�1)B+1

⇣
E[xtx

>
t ]� E[x`Bx

>
`B ]

⌘��� 
1

B

`BX

t=(`�1)B+1
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>
t ]� E[x`Bx

>
`B ]k

=
1

B

`BX
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kAtA
>
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>
`Bk 

1

B

`BX

t=(`�1)B+1

(`B � t)�


1

B

B(B � 1)

2
� 

B�

2
.

E.3 Bounding kE(`)k for all `, with high probability

On the Appendix E.1, we bounded max` kE1(`)k for the probability greater than 1� 1/T . Therefore,
for probability greater than 1� 1/T ,

max
`

kE(`)k  max
`

kE1(`)k+max
`

kE2(`)k 
1 + 3

p
2

3

r
V log(2pT 2)

B
+

B�

2
. (19)

⌅
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F Proof of Theorem 2

We prove the Theorem 2 under the condition defined by the equation (19), which holds for probability
greater than 1� 1/T .

F.1 Deriving optimal learning block size B

Consider the upper bound (for probability greater than 1�1/T ) on max` kE(`)k from the Appendix E:

max
`

kE(`)k  CNPM

r
log 2pT 2

B
+

B�

2
, where CNPM =

1 + 3
p
2

3

p

V .

By differentiating and find the critical point, we have the following optimal block size:

Bopt =
CNPM

2/3
log(2pT 2

)
1/3

�2/3
= ⌦

✓
V
2/3

log(2pT 2
)
1/3

�2/3

◆
.

In this case, the uniform upper bound for error matrix becomes:

max
`

kE(`)k 
3

2
C2/3

NPM
log(2pT 2

)
1/3
�
1/3 .

F.2 Defining Regime and Parameters

Let us set B = Bopt and consider the regime:

(A) 36Bopt� = 24C2/3
NPM

log(2pT 2
)
1/3
�
1/3

 �, from � = O

⇣
�3

C2

NPM
log(2pT 2)

⌘
.

(B) � � 12

17
�2 .

For this regime, we define ⇤ , ✏ , ⌘ > 0 as:

(a) ⇤ :=
3

2
Bopt� =

3

2
C2/3

NPM
log(2pT 2

)
1/3
�
1/3

(� max` kE(`)k on probability greater than 1� 1/T, shown at the Appendix F.1) .

(b) ✏ :=
4⇤

�


1

4
.

(c) ⌘ :=
Bopt�

� �Bopt�
.

Note that from the item (A) and (c) above, we have:
⌘

✏
=

Bopt�/(� �Bopt�)

4⇤/�
=

Bopt�/(� �Bopt�)

6Bopt�/�
=

1

6

�

� �Bopt�


6

35


1

5
.

With this parameters, we show the following lemma:
Lemma 8. Assume the regime in the above. Let M 2 Rn⇥n be a positive definite matrix and
SVD(M) = UDU> with sk(M) � � + �2 and sk+1(M) = �2. Then we have:

• � := (1� (⌘ + ✏)2)
�+�2�⇤/

p
1�(⌘+✏)2

�2+⇤
� 1.4465 > 1

0.7 > 1 .

• ✏p
1�✏2

sk(M)�⇤/✏

sk+1(M)+⇤/
p
1�✏2

�
✏p

1�✏2
0.75sk(M)+0.25sk+1(M)

0.25sk(M)+0.75sk+1(M)

(�)

> ✏+⌘p
1�(✏+⌘)2

.

• sk(M)�⇤/
p

1�(✏+⌘)2

sk+1(M)+⇤/(✏+⌘)

p
1�(✏+⌘)2

✏+⌘ >
p
1�✏2

✏ .

Proof. Here we provide the bound for (✏+ ⌘): ✏+ ⌘  6✏/5  3/10 . For the first item, we have:
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�
p
100/91⇤
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�
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100

� + �2
�
p
100/91 �/16

�2 + �/16
=
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⇣
1�

q
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1
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16
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�2

�
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where the inequalities follows from ✏+ ⌘  3/10, ⇤  �/16, and � � 12�2/17 respectively.

For the second one, the first inequality is immediate from ✏  1/4. We now show the inequality (�).
We provide the sufficient condition as:

✓
✏

p
1� ✏2

�2
+

3

4
�

�2 +
1

4
�
=

◆
✏

p
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�2

� +
3

4

�2

� +
1

4

�
✏+ ⌘p

1� (✏+ ⌘)2

(=

✓
✏

p
1� ✏2

17/12 + 3/4

17/12 + 1/4
=

◆
13

10

✏
p
1� ✏2

�
✏+ ⌘p

1� (✏+ ⌘)2
(� �

12�2

17
)

() 1.69

✓
✏

✏+ ⌘

◆2

� 1 � 0.69✏2

(= 1.69

✓
✏
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◆2

� 1 �
0.69

16
(✏  1/4)

(= ⌘  0.288 ✏ .

The final condition is automatically satisfied the inequality ⌘  ✏/5 (from the definition of ⌘).
Therefore, we proved the second inequality.

For the last inequality, enough to show:
✏+ ⌘p

1� (✏+ ⌘)2
�2

+ �✏/4(✏+ ⌘)

�2 + � � �✏/4
p

1� (✏+ ⌘)2


✏
p
1� ✏2

.

We upper bound second term of LHS:

�2
+ �✏/4(✏+ ⌘)
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p
1� (✏+ ⌘)2
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4
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(⌅)


17/12 + ✏
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29/3 � 1/(1 + ⌘/✏)
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13
,

where the (⌅) comes from:

✏+ ⌘ 
1
p
2


p
1� (✏+ ⌘)2 =)

✏

4

 
1

✏+ ⌘
+

1p
1� (✏+ ⌘)2

!

✏

4

2

✏+ ⌘


1

2

=) 1�
✏

4
p

1� (✏+ ⌘)2
�

✏

4(✏+ ⌘)
,

and the (⌥) is immediate from ✏+ ⌘ 
1p
2

p
1� (✏+ ⌘)2. Finally, the only left part is :

10

13

✏+ ⌘p
1� (✏+ ⌘)2


✏

p
1� ✏2

,

which was shown (from ⌘  ✏/5), when we proved the inequality (�) above.

F.3 Lemmas for N(`) and W(`)

Lemma 9 (Orthogonal amplification). Assume the regime in the Appendix F.2. Let M 2 Rp⇥p be
a positive definite matrix and SVD(M) = UDU>. Moreover, let E 2 Rp⇥p with kEk  ⇤. For
0 < k < p, let Y be the set of Y 2 Stp�k(Rp

) such that s1
�
U>

1:kY
�
 ✏ + ⌘. For every given

Y 2 Y , there exists a N 2 Stp�k(Rp
) such that

ran
�
(M+ E)N

�
✓ ran (Y) , s1

�
U>

1:kN
�
 ✏, (20)

s1
�
(M+ E)N

�


�2
+ ⇤p

1� (✏+ ⌘)2
. (21)
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Proof. We first show that for any positive definite matrix M 2 Rp⇥p, E 2 Rp⇥p and Y 2 Y , there
exists N 2 Stp�k(Rp

) such that ran
�
(M+ E)N

�
✓ ran (Y) as follows:

1. When M + E is a full-rank matrix, ran
�
(M+ E)N

�
= ran (Y) with N =

b
�
(M+ E)

�1Y
�
.

2. When the rank of M + E is r  k, every N such that (M + E)N = 0 satisfies that
ran

�
(M+ E)N

�
= ; ✓ ran (Y).

3. Assume that the rank of M + E is r, k < r < p. We identify N in parts by identifying
the first (r � k) columns and then the remaining columns. Let (M + E) = ŨD̃Ṽ>

and Y>Ũ1:r = ÛD̂V̂> be the singular value decomposition of (M + E) and Y>Ũ1:r

respectively.

Observe that Y has (p� k) columns and Ũ1:r has r columns and these vectors form a basis
for (p � k) dimensional subspace and r dimensional subspace of Rp respectively. Since
(p� k) + r > p, the column spaces of Y and Ũ1:r overlap on a subspace of dimension at
least r� k. Therefore, we can find (r� k) orthonormal vectors in this shared subspace, say,
v1,v2, . . . ,vr�k 2 Rp. For 1  j  r, let fj 2 Rr be such that

Ũ1:rfj = vj

i.e. fj = Ũ>
1:rvj . Thus the fj are orthonormal, and since {vj}

r�k
j=1

are orthonormal
and contained in the column space of Y, for 1  j  r we have 1 = kY>vjk =

kY>Ũ1:rfjk = kŨ1:rfjk. Thus, {fj}r�k
j=1

are right-singular vectors of Y>Ũ1:r with
singular value 1 (which is the maximum singular value of Y>Ũ1:r) and therefore without
loss of generality, they are the first r � k columns of V̂. To identify these vj we use the
above paragraph, that is to say,

{vj}
r�k
j=1

= Ũ1:r�k(V̂)1:r = (M+ E)(ṼD̃�1
)1:r(V̂)1:r�k.

Hence, since the vj are spanned by the columns of Y,

(M+ E)(ṼD̃�1
)1:r(V̂)1:r�k ✓ ran (Y) .

Define {zi}
r�k
i=1

to be an orthonormal basis of the column space of (ṼD̃�1
)1:r(V̂)1:r�k

i.e. {zi}
r�k
i=1

= b((ṼD̃�1
)1:r(V̂)1:r�k). The first r � k columns of N are defined to

be {zi}
r�k
i=1

. At this point we have identified only r � k columns for N. The remaning
(p� r) columns are picked from the null space of (M + E). A vector f in the null space
(M+ E)f = 0 is also a right singular vector of (M+ E) whose singular value is 0. Since
M+ E has rank r, there are p� r right singular vectors of M+ E with zero singular value
and we use them to define the remaining r � k columns of N. Thus, when

N =

h
b
⇣
(ṼD̃�1

)1:r(V̂)1:r�k

⌘
, Ṽr+1:p

i
,

we have ran
�
(M+ E)N

�
✓ ran (Y).

We establish the second part of (20) by contradiction. To show that ran
�
(M+ E)N

�
✓ ran (Y) )

s1
�
U>

1:kN
�
 ✏, we will show that:

If f 2 ran(N), kfk = 1, and
��U>

1:kf
�� > ✏ , then (M+ E)f /2 ran (Y) .

To show this, when
��U>

1:kf
�� > ✏,

• kU>
1:k(M+ E)fk

(i)
� kU>

1:kMfk � kU>
1:kEfk > sk(M)✏� ⇤

• kU>
k+1:p(M+ E)fk

(ii)
 kU>

k+1:pMfk+ kU>
k+1:pEfk  sk+1(M)

p
1� ✏2 + ⇤

27



where (i) and (ii) follows from triangle inequality for matrix norms. kU>
1:kYk  ✏+ ⌘ is equivalent

to kU>
1:kvk

kU>
k+1:pvk


✏+⌘p

1�(✏+⌘)2
for any unit-norm v 2 ran(Y). Thus, using (i) and (ii), we obtain

(M+ E)f /2 ran(Y) since the inequality (22) follows from the Lemma 8.
✏

p
1� ✏2

sk(M)� ⇤/✏

sk+1(M) + ⇤/
p
1� ✏2

�
✏

p
1� ✏2

0.75sk(M) + 0.25sk+1(M)

0.25sk(M) + 0.75sk+1(M)
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✏+ ⌘p
1� (✏+ ⌘)2

.

(22)
We can derive (21) from (20) as follows:

s1
�
(M+ E)N

�
= sup

y2Rp�k:kyk=1

��(M+ E)Ny
��

(iii)
 sup
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���U>
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���U>
k+1:p(M+ E)

���
p
1� (✏+ ⌘)2

(iv)


sk+1(M) + ⇤p
1� (✏+ ⌘)2

.

For validating (iii), observe:

• (M+ E)Ny 2 ran(Y)

• kU>
1:k(M+ E)Ny)k  (✏+ ⌘)k(M+ E)Nyk

• kU>
k+1:p(M+ E)Nyk2 = k(M+ E)Nyk2 � kU>

1:k(M+ E)Nyk2

Then we have,

k(M+ E)Nyk2 
kU>

k+1:p(M+ E)Nyk2

(1� (✏+ ⌘)2)
.

Finally (iv) follows from (20) where we have
���U>

k+1:p(M+ E)

���  sk+1(M) + ⇤.

Next, we provide the second lemma for W(`).

Lemma 10 (Amplification). Assume the regime in the Appendix F.2. Let M 2 Rp⇥p be a positive
definite matrix and SVD(M) = UDU>, and let W 2 Stk(Rp

). When d (U1:k,W)  ✏+ ⌘,

sk ((M+ E)W) �

p
1� (✏+ ⌘)2(� + �2

)� ⇤ , and d (U1:k, (M+ E)W)  ✏.

Proof. First, we show that sk ((M+ E)W) �
p
1� (✏+ ⌘)2sk(M)� ⇤:

sk ((M+ E)W)

(i)
� sk

�
U>

1:k(M+ E)W
�

(ii)
� sk

�
U>

1:kMW
�
� kEWk
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�
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(iv)
= sk (M)

p
1� (✏+ ⌘)2 � kEWk .

Where (i) follows from the equation Ip⇥p = U1:kU>
1:k + Uk+1:pU>

k+1:p, (ii) follows from the
Lemma 5. (iii) follows from:

sk
�
U>

1:kMW
�
= sk

�
diag(s1(M) , . . . sk(M))U>

1:kW
�

= min
f2Sp�1

kdiag(s1(M) , . . . sk(M))U>
1:kWfk

� min
f̃2sk(U>

1:kW)·Sk�1

kdiag(s1(M) , . . . sk(M))f̃k

= sk(M)sk(U
>
1:kW) .
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To obtain (iv), let columns of W̃ represent the space orthogonal to column space of W and note that
both W and W̃ have orthonormal columns. Then,

kf>U>
1:k(W + W̃)k

2
= kf>U>

1:kWk
2
+ kf>U>

1:kW̃k
2
= 1

and therefore,

min
f2Sk�1

kf>U>
1:kWk

2
= 1� max

f2Sk�1

kf>U>
1:kW̃k

2
= 1� (d(U1:k ,W))

2

(iv) now follows from the definition of largest singular value and the assumptions on this Lemma.

We now prove that d (U1:k, (M+ E)W)  ✏ or equivalently sk(U1:k, b((M+ E)W))
2
� 1� ✏2,

since

d (U1:k, (M+ E)W) = s1
�
U>

1:k b((M+ E)W)?
�
=

q
1� sk

�
U>

1:k b((M+ E)W)
�2

.

Further,

sk
�
U>

1:k b((M+ E)W)
�2 (vi)

= min
f2Sk�1

kU>
1:k(M+ E)Wfk2

k(M+ E)Wfk2

(vii)
= min

f2Sk�1

kU>
1:k(M+ E)Wfk2

k(M+ E)Wfk2

(viii)
= min

f2Sk�1

kU>
1:k(M+ E)Wfk2

kU>
1:k(M+ E)Wfk2 + kU>

k+1:n(M+ E)Wfk2

To obtain (vi) note that by definition of b((M+E)W) and (M+E)W share the same column space
and therefore, 8 f 2 Rk, 9 y 2 Rk such that b((M + E)W)f =

(M+E)Wy
k(M+E)Wyk , (vi) then follows

from the definition of the largest singular value. (vii) and (viii) follow by projecting (M+ E)W
onto the column spaces of U1:k and Uk+1:n and noting that kUyk = kyk when U has orthonormal
columns. Using this decomposition it now suffices to show:

min
f2Sk�1

kU>
1:k(M+ E)Wfk2

kU>
1:k(M+ E)Wfk2 + kU>

k+1:p(M+ E)Wfk2
� 1� ✏2 (23)

To obtain the equation (23) observe that its left hand side is of the form minf2Sk�1

µ(f)
1+µ(f) with

µ(f) = kU>
1:k(M+E)Wfk

kU>
k+1:p(M+E)Wfk and it monotonically increases in µ and therefore the minimum is attained

at the smallest possible value of µ. Therefore, we bound µ from below as:

min
f2Sk�1

kU>
1:k(M+ E)Wfk

kU>
k+1:p(M+ E)Wfk

(viii)
�

sk(M)� ⇤/
p
1� (✏+ ⌘)2

sk+1(M) + ⇤/(✏+ ⌘)

p
1� (✏+ ⌘)2

✏+ ⌘

(ix)
>

p
1� ✏2

✏
,

where (viii) stems from the fact that for all given unit vector f 2 Rk,

kU>
1:k(M+ E)Wfk � kU>

1:kMWfk � kU>
1:kEWfk � sk(M)

p
1� (✏+ ⌘)2 � ⇤

and,

kU>
k+1:p(M+ E)Wfk  kU>

k+1:pMWfk+ kU>
k+1:pEWfk  sk+1(M)(✏+ ⌘) + ⇤

and (ix) can be obtained from the Lemma 8. Substituting µ >
p
1�✏2

✏ gives the desired lower bound
in the equation (23).

F.4 Proving the Theorem 2

We split the proof of theorem 2 into three steps. In the first two steps, using Lemma 9 and 10 we
identify appropriate matrices N(`) and W(`). Then, in the last step we bound the distance between
the output of the robust power method and the real low-dimensional space by bridging them with
M

(L)W(1).

Step 1: Constructing N(`)

We construct the sequence {N(`)
}1`L+1,N(`)

2 Stp�k(Rp
) so that the following is satisfied:
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N.1 N(L+1)
= Uk+1:p(L) .

N.2 ran((M(`) + E(`))N(`)
) ✓ ran(N(`+1)

) , 8` 2 [L] .

N.3 s1(U1:k(`)
>N(`)

)  ✏ and s1((M(`) + E(`))N(`)
) 

sk+1(M(`)) + ⇤p
1� (✏+ ⌘)2

, 8` 2 [L] .

N.4 s1
�
U1:k(`� 1)

>N(`)
�
 ✏+ ⌘ , 2  8`  L+ 1 .

To show the existence of {N(`)
}
L+1

`=1
satisfying N.1-N.4, we use the Lemma 9 and backward mathe-

matical induction.

Base case: At ` = L+ 1, N(L+1)
= Uk+1:p(L) , therefore N.4 holds from the model assumption

k(Uk+1:p(`))>U1:k(`� 1)k  ⌘. Other conditions are required for `  L and hence N(L+1) exists.

Inductive Hypothesis: Assume that there exists N(`+1) satisfying N.1-N.4. We show that there exists
an N(`). Define N(`) to be the matrix identified as N in the Lemma 9 with M = M(`), E = E(`)
and Y = N(`+1). Then, the Lemma 9 shows that N(`) satisfies N.2 and N.3. Further, since

s1(U1:k(`� 1)N(`)
)
(i)
= kU1:k(`� 1)U>

1:k(`� 1)� (Ip⇥p �N(`)
(N(`)

)
>
)k

(ii)
 kU1:k(`� 1)U>

1:k(l � 1)�U1:k(`)U
>
1:k(`)k+ kU1:k(`)U

>
1:k(`)� (Ip⇥p �N(`)

(N(`)
)
>
)k

(iii)
 ⌘ + ✏

where, (i) follows from Lemma 3, (ii) follows from triangle inequality and (iii) follows since
k(Uk+1:p(`))>U1:k(l � 1)k  ⌘. Therefore, we can conclude that there exists desired sequence
{N(`)

}1`L+1 with properties N.1-N.4.

From the properties N.1-N.3 of {N(`)
}1`L+1, we have:

ran(M(L)N(1)
) ✓ ran(Uk+1:p(L)) and kM

(L)N(1)
k 

LY

`=1

 
sk+1(M(`)) + ⇤p

1� (✏+ ⌘)2

!
. (24)

Step 2: Constructing W(`)

Next, we define the sequence {W(`)
}
L+1

`=1
, W(`)

2 Stk(Rp
) as follows:

W.1 W(1)
2 Stk(Rp

) be a matrix such that (W(1)
)
>N(1)

= 0.

W.2 W(`+1)
= Gram-Schmidt((M(`) + E(`))W(`)

) , 8` 2 [L] .

From N.4 and the triangle inequality, we have d(U1:k(1),W(1)
)  ✏ + ⌘. Then, the Lemma 10

implies that:

CW.1 sk
⇣
(M(`) + E(`))W(`)

⌘
�

p
1� (✏+ ⌘)2sk(M(`))� ⇤ , 8` 2 [L] .

CW.2 d(U1:k(`),W
(`+1)

)  ✏ and since, kU1:k(`)>U1:k(` + 1)k  ⌘, we have
d(U1:k(`),W(`)

)  ✏+ ⌘ . (8` 2 [L])

From CW.1 and CW.2, we have

d(W(L+1),U1:k(L))  ✏ and sk(M
(L)W(1)

) �

LY

`=1

⇣p
1� (✏+ ⌘)2sk(M(`))� ⇤

⌘
. (25)

This establishes the existence and properties of the sequence {N(`),W(`)
}
L+1

`=1
. We now use this

characterization to bound the distance between the k-dimensional subspace of Rp and M
(L)Û(0).
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Since, N.3 bounds the distance between the (p� k) dimensional subspace of Rp and M
(L)Û(0), we

consider bound the distance between M
(L)Û(0) and W(L+1).

Step 3: Distance between actual and recovered spaces

Now, we upper bound the distance between the output of the power method Û1:k(L) and the first k
singular vectors of the true underlying subspace U1:k(L), d(U1:k(L), bU1:k(L)). From the triangle
inequality we have,

d(U1:k(L), bU1:k(L))  d(U1:k(L),W
(L+1)

) + d(M(L)W(1), bU1:k(L)). (26)

(Note that W(L+1) and M
(L)W(1) represents the same column space) From the equation (25), we

have
d(U1:k(L),M

(L)W(1)
)  ✏ . (27)

To bound the second term in the RHS of the equation (26), consider the following:

d(M(L)W(1), bU1:k(L))
(i)
=

���(M(L)W(1)
)
>
?
bU1:k(L)

���
(ii)
=

���(M(L)W(1)
)
>
?M

(L) bU1:k(0)((M
(L) bU1:k(0))

>
M

(L) bU1:k(0))
�1/2

���
(iii)
 k(M

(L)W(1)
)
>
?M

(L) bU1:k(0)kk((M
(L) bU1:k(0))

>
M

(L) bU1:k(0))
�1/2

k

(iv)


���(M(L)W(1)
)
>
?M

(L) bU1:k(0)

���

sk(M(L) bU1:k(0))

(v)
=

���(M(L)W(1)
)
>
?M

(L)N(1)
(N(1)

)
> bU1:k(0)

���

sk(M(L) bU1:k(0))

(vi)


k(M
(L)W(1)

)
>
?kkM

(L)N(1)
kk(N(1)

)
> bU1:k(0)k

sk(M(L) bU1:k(0))
.

where, (i) follows by substituting the definition of distance function and (ii) follows by observ-
ing that due to the power iterations bU1:k(L) is an orthonormal basis of M(L) bU1:k(0) and there-
fore can be written as b(M(L) bU1:k(0)). (iii) follows by using the Cauchy-Schwarz inequal-
ity for matrix norms. (iv) follows by noting that k((M

(L) bU1:k(0))
>
M

(L) bU1:k(0))
�1/2

k =

1/kM(L) bU1:k(0)k  1/sk(ML
bU1:k(0)). To obtain (v), decompose the numerator of (iv) as

(M
(L)W(1)

)?M
(L) bU1:k(0) = (M

(L)W(1)
)?M

(L)
(W1W>

1
+N1N>

1
)M

(L) bU1:k(0) and note
that by orthogonality of (MLW(1)

)? and (M
(L)W1), (MLW(1)

)?(M
(L)W1)W>

1
bU1:k(0) = 0.

Finally, (vi) follows from the repeated application of Cauchy-Schwarz inequality for matrix norms.

Further, when sk(M(L)W(1)
)sk((W(1)

)
> bU1:k(0))�

��M(L)N(1)
��
���(N(1)

)
> bU1:k(0)

��� > 0, (Con-

sider the amplifying/contracting singular value argument for sk(M(L)W(1)
) and s1(M(L)N(1)

)

respectively.)

d(M(L)W(1), bU1:k(L))

(vii)


��M(L)N(1)
��
���(N(1)

)
> bU1:k(0)

���

sk(M(L)W(1))sk((W(1))> bU1:k(0))�
��M(L)N(1)

��
���(N(1))> bU1:k(0)

���

(viii)


��M(L)N(1)
��
���(N(1)

)
> bU1:k(0)

���
.
sk(M(L)W(1)

)sk((W(1)
)
> bU1:k(0))

1�
��M(L)N(1)

��
���(N(1))> bU1:k(0)

���
.
sk(M(L)W(1))sk((W(1))> bU1:k(0))

(ix)


��L
���(N(1)

)
> bU1:k(0)

���
.
sk((W(1)

)
> bU1:k(0))

1� ��L
���(N(1))> bU1:k(0)

���
.
sk((W(1))> bU1:k(0))

, (28)
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where (vii) follows from k(M
(L)W(1)

)?k = 1 since (M(L)W(1)
)? is a projection matrix and (ix)

stems from the equation (24) and (25). Putting (27) and (28) onto (26), we have

d(U1:k, bU1:k)  ✏+min

8
<

:1, 2��L

���N(1)> bU1:k(0)

���

sk(W(1)> bU1:k(0))

9
=

; .

Further, by Lemma 2.5 in [29], we have

k(N(1)
)bU1:k(0)k

sk(W(1) bU1:k)(0)


c
p
p

p
p�

p
k � 1

,

with probability 1� c⌦(p�k+1)
� e�⌦(p) (c > 0).

Therefore, when

L >
log

⇣
c
p
p/(

p
p�

p
k � 1)

⌘

log(�)
,

we have:

d(U1:k, bU1:k)  ✏+O(
��Lpp

p
p�

p
k � 1

) .

for probability greater than 1�1/T�c⌦(p�k+1)
�e�⌦(p). The term 1/T stems from the probabilistic

upper bound of kE(`)k. Finally, by looking back at the order of ✏:

✏ =
4⇤

�
⇠

C2/3
NPM

log(2pT 2
)
1/3
�
1/3

�
,

we get our desired result.

G Proof of Lemma 2

In this section, we analyze the error matrix for Oja’s algorithm. First, we consider the regime that
adversary factor � is strictly, indeed far less than the learning rate ⇣ , to apply Davis-Kahan theorem (4)
properly. Although the more refined calculation may eliminate this condition, we would provide
a more intuitive and straightforward analysis to show our qualitative result. To simply bound the
error matrix, we consider the virtual learning block with size B = d1/⇣e while the total time is T
is strictly larger than B. Furthermore, we assume the exact relation; B ⇣ = 1 for simplicity. The
following lemma controls the error caused by covariance matrix estimators on the product case.

Similar to the Lemma 1, we consider the environment with Cov[xtx
>
t ] = AtA

>
t + �2Ip⇥p and

Assumption 1 holds. Moreover, we ought to restrict our analysis to particular regime � ⌧ ⇣ for
convenience. We first decompose the covariance estimator of the Oja’s algorithm with MOja

(`) and
E(`). Note that MOja

(`) should be the positive semi-definite matrix to apply proof arguments at the
Theorem 2.

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ xtx
>
t ) =

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ Ex`Bx
>
`B)

| {z }
MOja(`)

+E(`)
⇣
= MOja

(`) + e�̃+�2

E
0
(`)
⌘
.

By decomposing the error matrix, we get the following two terms.

E(`) =
`BY

t=(`�1)B+1

(Ip⇥p + ⇣xtx
>
t ) �

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ Ex`Bx
>
`B)

=

`BY

t=(`�1)B+1

(Ip⇥p +
1

B
xtx

>
t ) �

`BY

t=(`�1)B+1

(Ip⇥p +
1

B
Extx

>
t )

| {z }
E1(`)

+

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ Extx
>
t ) �

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ Ex`Bx
>
`B)

| {z }
E2(`)

.
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G.1 Bounding max` kE1(`)k with probability 1� 1/T

For bound kE1(`)k, we consider the matrix multiplicative concentration inequality.

Lemma 11 (‘Perturbations of the identity’ in [32]). Consider the independent family of matrices
Z1, . . . ,ZB 2 Rp⇥p, each drawn from the distributions satisfying:

kEZtk  �̃ + �2 and kZt � EZtk  M (8 t 2 [B]) .

Then, for ⇧ � p e�B/2M2

, the product Z = (Ip⇥p + ZB/B) · · · (Ip⇥p + Z1/B) is bounded as the
below argument, with the probability greater than 1�⇧ :

kZ� EZk  e�̃+�2

r
2e2 M2

B
log

p

⇧
.

In our situation Zt and EZt are x`B+tx
>
`B+t and A`B+tA>

`B+t + �2Ip⇥p. By setting ⇧ = 1/T 2

and applying union bound on ` 2 [L], we have:

max
1`L(=T/B)

kE1(`)k  e�̃+�2

r
2e2 M2 log pT 2

B
= e�̃+�2

· COja

r
log 2pT 2

B
,

for probability greater than 1� 1/T . We define COja as
p
2eM.

G.2 Bounding kE2(`)k for all `

Next, we present the upper bound for E2(`), using the condition (2). We define Y(`)
t as

Ex`B+tx
>
`B+t � Ex`Bx

>
`B and use the fact kY(`)

t k  (`B � t)�. We rewrite the E2(`) as fol-
lows:

E2(`) =
`BY

t=(`�1)B+1

(Ip⇥p + ⇣ Extx
>
t )�

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ Ex`Bx
>
`B)

=

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ Ex`Bx
>
`B + ⇣Y(`)

t )�

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ Ex`Bx
>
`B) .

Therefore, we have the following expanded terms:

kE2(`)k  ⇣ (1 + ⇣(�̃ + �2
))

B�1
X

t1

kY(`)
t1 k+ ⇣2 (1 + ⇣(�̃ + �2

))
B�2

X

t1<t2

kY(`)
t1 kkY(`)

t2 k

+ · · ·+ ⇣B�1
(1 + ⇣(�̃ + �2

))

X

t1<···<tB�1

kY(`)
t1 k · · · kY(`)

tB�1
k .

Then by spaciously bound the sum of products:
X

t1<···<tn

kY(`)
t1 k · · · kY(`)

tn k 

X

t1

kY(`)
t1 k

X

t2

kY(`)
t2 k · · ·

X

tn

kY(`)
tn k 

✓
B2
�

2

◆n

.

Thus, when we substitute above bound,

kE2(l)k  (1 + ⇣(�̃ + �2
))

B
B�1X

n=1

✓
⇣

1 + ⇣(�̃ + �2)

◆n ✓B2
�

2

◆n

= (1 + ⇣(�̃ + �2
))

B
B�1X

n=1

✓
B�

2(1 + ⇣(�̃ + �2))

◆n



 
1 +

�̃ + �2

B

!B
B�

2(1�B�/2)
 e�̃+�2

·
B�

2(1�B�/2)
.

Finally, we have the following result:

kE2(`)k  e�̃+�2

·

✓
B�

2
+ ✏B,�

◆
,

where ✏B,� = (B�)2/(1�B�/2) is negligible if � is sufficiently small relative to ⇣.
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G.3 Bounding kE(`)k for all `, with probability 1� 1/T

Consequently, with probability 1� 1/T , we have:

max
1`L

kE(`)k  max
1`L

kE1(`)k+ max
1`L

kE2(`)k

 e�̃+�2

·

"
COja

r
log pT 2

B
+

B�

2
+ ✏B,�

#
.

Note also that we have the following equivalent formulation for scaled error matrix E
0
(`):

max
1`L

kE
0
(`)k  COja

s
log pT 2

B⇣
+

B⇣�

2
+ ✏B⇣ ,� (B⇣ = B = 1/⇣) . (29)

H Proof of Theorem 3

For the Theorem 3, we use the same technique with the Theorem 2 for the robust power method. To
apply the iterative method we used in the previous proofs, it is enough to maintain the Lemma 8
at the Appendix F.2. However, the problem is that the spectrum are exponentiated (si(M(`)) !
(1 + si(M(`))/B)

B), therefore � that we defined is no longer the spectral gap of M(`) in the Oja’s
algorithm case. Observe:

MOja
(`) =

`BY

t=(`�1)B+1

(Ip⇥p +
1

B
Ex`Bx

>
`B) =

✓
Ip⇥p +

A`BA
>
`B + �2Ip⇥p

B

◆B

.

So we should reconsider the condition on M(`) for Oja’s algorithm. Since we can use the same
argument in the Appendix F.3-F.4, it is enough to reset parameters and regime.

H.1 Deriving optimal learning rate ⇣

Correspondingly, we provide the guide for proving the Theorem 3 when the equation (29) holds for
probability greater than 1�1/T as done in the Section F.1. Consider the upper bound (for probability
greater than 1� 1/T ) on max` kE

0
(`)k from the Section G. We would neglect the term ✏B,� since

we are considering the regime �⌧ ⇣.

max
1`L

kE
0
(`)k  COja

s
log pT 2

B⇣
+

B⇣�

2
.

By differentiating and find the critical point, we have the following optimal learning rate:

(⇣opt)
�1

= B⇣opt
=

COja
2/3

log(pT 2
)
1/3

�2/3
= ⌦

 
COja

2/3
log(pT 2

)
1/3

�2/3

!
.

In this case, the uniform upper bound for error matrix becomes:

max
`

kE
0
(`)k 

3

2
C2/3

Oja log(pT 2
)
1/3
�
1/3 .

H.2 Defining Regime and Parameters

We define the following parameters:

• ⇤Oja := e�̃+�2
3

2
B⇣opt

� (� max` kE(`)k)

• �Oja :=

⇣
1 +

�+�2

B⇣opt

⌘B⇣opt

�

⇣
1 +

�2

B⇣opt

⌘B⇣opt
( sk(MOja

)� sk+1(MOja
))

• �2

Oja :=

⇣
1 +

�2

B⇣opt

⌘B⇣opt

(= sk+1(MOja
))
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• ⌘Oja :=
B⇣opt

�

��B⇣opt
�

Note that we may use the same ⌘ value with the case of power method, since it measures the distance
between column space, which is invariant with the transformation MOja

7! (I+MOja/B)
B . Let us

consider the following approximations to simply our regime:

�Oja =

✓
1 +

� + �2

B⇣opt

◆B⇣opt

�

✓
1 +

�2

B⇣opt

◆B⇣opt

' �e�
2
+� and �2

Oja ' e�
2

.

Similar to the proof of the Theorem 2, we assumed the following regime:

• ⇤Oja := e�̃+�2
3

2
B⇣opt

� = e�̃+�2
3

2
C2/3

Oja log(pT 2
)
1/3
�
1/3


1

16
�Oja , from the regime :

� = O

✓
�3Oja

e3(�̃+�2)C2

Oja log(pT
2)

◆
= O

⇣
�3/e3(�̃��)

M
2
log(pT 2

)

⌘

• �Oja � 12�2

Oja/17 , and

• ✏Oja :=
4⇤Oja
�Oja


1

4
, satisfying ⌘Oja 

1

5
✏Oja

For the second item, we consider the following sufficient condition:

�Oja �
12

17
�2

Oja ⇠ �e�
2
+�

�
12

17
e�

2

(= � �
12

17
.

Assuming the below regime on the Oja’s algorithm

36e�̃+�2

B⇣opt
� = 24e�̃+�2

C2/3
Oja log(pT 2

)
1/3
�
1/3

 �Oja ,

the Lemma 8 and the section F.3-F.4 follows . Finally, by considering ✏Oja has the order:

✏Oja ⇠
⇤Oja

�Oja
⇠

e�̃+�2

C2/3
Oja log(pT 2

)
1/3
�
1/3

�e�2
⇠ e�̃

M
2/3

log(pT 2
)
1/3
�
1/3

�
,

we obtain the desired result.

I Experiment Settings

I.1 Random matrix generation

We generate (At)
T
t=1

2 Rp⇥k as the product of three matrices, Ut 2 Stp(Rp
),Dt 2 Rp⇥k(;

diagonal), and Vt 2 Stk(Rk
). We update each matrix at each iteration and multiply them to calculate

At = Ut Dt Vt
>. First, we generate a Gaussian random matrix and then perform QR decomposition

and use the resulting right matrix as Vt. Dt is a diagonal matrix, with diagonal elements uniformly
sampled from {�

p
�,

p
�}. This results in At satisfying adversarial budget(�) and the spectral

gap(�) condition:

sk(AtA
>
t ) = � · sk


Ut

✓
Ik⇥k 0

0 0

◆
U>

t

�
= � , (30)

and

kAtA
>
t �At�1A

>
t�1

k = �

����Ut

✓
Ik⇥k 0

0 0

◆
U>

t �Ut�1

✓
Ik⇥k 0

0 0

◆
U>

t�1

����  � . (31)

We initialize U0 to random orthogonal matrix and rotate Ut�1 to generate Ut. Then the first
condition is automatically satisfied. For the second condition, we restrict the structure of the random
rotation matrix Rt. Assume that Ut = Ut�1Rt (Rt R>

t = Ip). Then the second condition becomes:
����Rt

✓
Ik⇥k 0

0 0

◆
R>

t �

✓
Ik⇥k 0

0 0

◆����  �/� < 1. (32)
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(We only consider the case of � < � on the experiments.) To satisfy the above condition, con-
sider 2N( k) indices i1, ..., i2N among {1, 2, ..., k} with no replacement, where only one of
index for each (i2n�1, i2n) pair lies in {1, . . . , k}. Next, we select ✓1, . . . ✓N from the range
[� sin

�1
(�/�), sin�1

(�/�)].

After initializing Rt (= Ip⇥p), we write ✓n-rotation matrix on the 2⇥2 (i2n�1, i2n)-submatrix. Then
it can be easily shown that the singular value of the matrix in RHS of the equation (32) becomes
| sin ✓1|, . . . | sin ✓N | , 0 , . . . , 0. Since ✓n lies in the limited range [� sin

�1
(�/�), sin�1

(�/�)], we
have the desired inequality (32).

I.2 Environments

We used the value N = 1, (i1, i2) = (1, p), and ✓1 = sin
�1

(�/�) for all synthetic experiments. We
implement algorithms with NumPy and NumBa library. We used the dimensions (p, k) = (100, 5).
We run each algorithm during T = 144000 for each stage. This value is compatible with the slowest
convergence time among the case we tested. Generally, we consider the case (�,�)=(1.00, 0.15).
When running each algorithm, we maintained B-list and ⌘-list respectively as follows:

(Noisy Power Method) B_list = [ 2, 3, 8, 10, 20, 30, 40, 60, 300, 400, 600, 800, 1000, 1200, 1500,

1800, 2000, 3000, 4000, 6000, 8000, 9600 ]

(Oja’s Algorithm) zeta_list = [ float(1/B) for B in B_list ]

I.3 Additional synthetic experiment

We provide the additional result for larger perturbations in Figure 3a. We repeated five experiments
for each algorithm and learning parameter. Except for the magnitude of � and number of repetitions,
every other set was the same as Figure 1a. Qualitatively, the result shows the same tendency as the
result provided in the main paper.

In the second set of experiments in Figure 3b, we show that the noisy power method converges for
different values of adversarial budget � for different block sizes, B. The first observation from these
sets of experiments is that there is an optimal block size B that attains the minimum error. Such
behavior is in line with Theorem 2. Another key observation from these figures is that a smaller block
size implies faster convergence; this is also in line with the dependence on the number of blocks
(L =

T
B ) in Theorem 2.

(a) Convergence of noisy power method and Oja’s algo-
rithm. Variation with block size B and learning rate ⇣
for (�, �, p, k,�)=(0.15, 1.0, 100, 5, 3.0e� 5).

(b) Convergence of noisy power method and
Oja’s algorithm, for bigger perturbations.
(�, �, p, k)=(0.15, 1.0, 100, 5).

Figure 3: Numerical results. We used the setting (�, �, p, k)=(0.15, 1.0, 100, 5).

I.4 Details for each experiment

In this section, we expand on the computational setup used to generate Figure 1 and Figure 3.
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For the Figure 1a, we plot the distance between the estimated subspace and true space at the
termination time T for two algorithms with learning parameters at the Section I.2. We used four
different � : [0.0, 1.0e�5, 3.0e�5, 5.0e�5]. We run the experiment 10 times, and plot error bar on
each marker.

For Figure 3a, we used same methodology with the Figure 1a, but the larger perturbations � :
[0.0, 1.0e�5, 5.0e�5, 1.0e�4, 5.0e�4, 1.0e�3] were used. We ran 5 experiments each.

For the Figure 1b, we find the empirically optimal value of the block size B of the noisy power
method and the learning rate ⇣ of Oja’s algorithm for various �. We first identify a lower and upper
bound on the optimal value (B and ⇣) from the simulations done for Figure 1a (For simulations for
the Figure 1a we used learning parameters denoted in section I.2.) Once we identify upper and lower
bounds for optimal value, we split the interval into 50 points and run each experiment with a fixed
value of B belonging to this interval for 30 runs. Finally, we calculate the average and standard
deviation on those 30 runs. We denote 50 candidates for each � with small dots. The optimal value
incurring the least average convergence error is plotted as a big marker. Smaller markers for each �
denotes the parameter, which has lower avg+ std than the optimal value’s case.

In Figure 3b, we visualize the convergence of two algorithms for various learning parameters, B, and
⇣. We reused the experiment result from Figure 1a. The first observation from these experiments is
that there is an optimal learning parameter that attains the minimum error (such behavior is in line
with Theorem 2). Another key observation from these figures is that a smaller block size implies
faster convergence; this is also in line with the dependence on the number of blocks (L = T/B) in
Theorem 2.

J Experiment on the S&P500 Stock Dataset

J.1 Non-stationary in the Setting

To observe the distribution shift in this environment, we visualized the distance between covariance
matrix with various window sizes and histogram for absolute values of daily return at the Figure 4.
For the covariance distance, we first split the data stream into chunks with w (window size) data
each and calculated the covariance estimators. Then we plotted the operator 2-norm between the
covariance matrix divided by

p
w. As the left figure displays, the distribution on this dataset shifts

over time (the average distance is about 0.17). Furthermore, on the right, we visualized the counts for
the absolute value of daily return with a logarithmic scale. We can observe a lot of zero elements and
outliers. Note that both axes have a logarithmic scale.

Figure 4: Non-stationary distribution characteristics of S&P500 stock market daily return. (Left):
Distance of covariance matrix with window size variation and (Right): Histogram of the absolute
value of daily returns.

J.2 Experimental Detail

We ran five experiments for each algorithm and k = 1, 2, . . . , 5, on the various regime of learning
parameters (B : 1� 1600, ⌘ : 10

�3.5
� 10

2.5). For the noisy power method, we just ignored the first
T modB data to approximate the final space properly.
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