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A APPENDIX

B DIFFUSION MODELS : DEFINITION & TRAINING PROCEDURE RECAP

B.1 FORWARD TIME DIFFUSION PROCESS

The background and expressions on forward diffusion process is taken from Kingma et al. (2021b)
and included here for completeness. Re-iterating Eq. 1, we have the forward diffusion as:

q(zt | x) = N (↵tx,�
2
t I). (15)

Forward Conditional q(zt|zs): The distribution q(zt|zs) for any t > s are also Gaussian, and
from Kingma et al. (2021b), we can re-write as

N (↵t|szs,�
2
t|sI) (16)

where, ↵t|s = ↵t/↵s, (17)

and, �
2
t|s = �

2
t � ↵

2
t|s�

2
s (18)

Reverse Conditional, q(zs|zt, x): The posterior q(zs|zt, x) from Kingma et al. (2021b) can be
written as:

q(zs|zt, x) = N (µQ(zt, x; s, t),�
2
Q(s, t)I) (19)

where, �
2
Q(s, t) = �

2
t|s�

2
s/�

2
t (20)

and, µQ(zt, x; s, t) =
↵t|s�

2
s

�2
t

zt +
↵s�

2
t|s

�2
t

x (21)

B.2 REVERSE DIFFUSION : DEFINING p✓(zs|zt)

Here, we describe in detail the conditional reverse model distributions p✓(zs|zt) for the two cases
of variance-exploding and variance preserving diffusion process. Given these formulations, it
is straightforward to compute the KL distance between our posterior q�(zs|zt, y) and the prior
p✓(zs|zt) in our loss objective (Eq. 13) since both are conditionally Gausian distributions and com-
puting the KL between two Gaussians can be done in closed form.

Variance Exploding Diffusion Process In this case, ↵t = 1 and �t is usually in the range
[0.002, 50] Song et al. (2021b). We follow the ancestral sampling rule from the same work to define
our prior conditional Gaussian distributions p✓(zs|zt) :

p✓(zs|zt) = N (µ✓(zt; s, t),�
2
Q(s, t)I) (22)

where, �
2
Q(s, t) = (�2

t � �
2
s)
�
2
s

�2
t

(23)

and, µ✓(zt; s, t) =
�
2
s

�2
t

zt +
�
2
t � �

2
s

�2
t

x̂✓(zt, t) (24)

where x̂✓(zt, t) = zt �
p
(�2

t � �2
s) ⇤ ✏✓(zt, t)

Variance Preserving Diffusion Process In this case, ↵t =
p
1� �2

t and �
2
t is usually in the

range [0.001, 1] Ho et al. (2020b). We follow the DDIM sampling rule Song et al. (2021a) to define
our prior conditional Gaussian distributions p✓(zs|zt). This sampling rule is widely used to generate
unconditional samples in small number of steps, and naturally becomes a key design choice of our
prior. Here,
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p✓(zs|zt) = N (µ✓(zt; s, t),�
2
Q(s, t)I) (25)

where, �
2
Q(s, t) = ⌘(

1� ↵t�1

1� ↵t
)(1� ↵t

↵t�1
) (26)

and, µ✓(zt; s, t) =
p
↵t�1x̂✓(zt, t) +

q
1� ↵t � �2

t ✏✓(zt, t) (27)

where x̂✓(zt, t) =
zt�

p
1�↵t✏✓(zt,t)p

↵t
. This schedule is adopted by the Latent Diffusion models.

B.3 DERIVATION OF OBJECTIVE FOR TRAINING DIFFUSION MODELS: L(0,T )(z0)

The usual variational bound on the negative loglikehood on data x: E[� log p✓(x)] 
Eq[� log p✓(z0:T )

q(z1:T |z0,x) ] = Eq[� log p(zT ) �
PT

t=1 log
p✓(zt�1|zt)
q(zt|zt�1)

]. Let 0 < s < t < T , we expand
this derivation from Ho et al. (2020b) as follows:

L = Eq

"
log

q(z1:T |z0)
p✓(z0)

#
(28)

= Eq

"
� log p(zT ) +

X

t�1

log
q(zt|zs)
p✓(zs|zt)

#
(29)

= Eq

"
� log p(zT ) +

X

t>1

log
q(zt|zs)
p✓(zs|zt)

+ log
q(z1|z0)
p✓(z0|z1)

#
(30)

= Eq

"
� log p(zT ) +

X

t>1

log
q(zs|zt, z0)
p✓(zs|zt)

· q(zt|z0)
q(zs|z0)

+ log
q(z1|z0)
p✓(z0|z1)

#
(31)

= Eq

"
� log

p(zT )

q(zT |z0)
+
X

t>1

log
q(zs|zt, z0)
p✓(zs|zt)

| {z }
diffusion loss L(0,T )(z0)

� log p✓(z0|z1)
#

(32)
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C VIPAINT : VI METHOD USING DIFFUSION MODELS AS PRIORS

C.1 DERIVATION OF VIPAINT’S TRAINING OBJECTIVE

As specified in the main paper, we define a variational distribution over the latent space variable z as
q�(z) and re-use the diffusion prior to generate x ⇠ p✓(x | z). We derive the variational objective
here:

LN (�; y)

= Eq�(z,x)[log p✓(y, x, z)� log q�(z, x | y)]
= Eq�(z,x)[log p✓(z) + log p✓(x | zTs) + log p✓(y | zTs)� log q�(z)� log q�(x | zTs)]

= Eq�(z)[log p✓(y | zTs) + log p✓(z)� log q�(z)]

= Eq�(z)[log p✓(y | zTs)]� Eq�(z)[log q�(z)� log p✓(z)]

= Eq�(z)[log p✓(y | zTs)]� Eq�(z)[log q�(z)� log p✓(z)]

= Eq�(z)[log p✓(y | zTs)]� Eq�(z)[
K�1X

i=0

log q�(zs(i) | zs(i+1)) + log q�(zTe)�
K�1X

i=0

log p✓(zs(i) | zs(i+1))� log p✓(zTe)]

= Eq�(z)[log p✓(y | zTs)]�
K�1X

i=0

D[q�(zs(i) | zs(i+1))||p✓(zs(i) | zs(i+1))]�D(q(zTe)||p(zzTe
))

| {z }
L(Te,T )(zTe )

(33)

Negating the above objective, we get Eq. 13 in the main paper. Now, let’s derive the third term
L(Te,T )(zTe) following section B.3

C.2 DERIVATION OF L(Te,T )(zTe)

For any Te < s < t < T , we have :

EzTe⇠q�(zTe )

"
log

q(zTe+1:T |zTe)

p✓(zTe:T )

#
(34)

= EzTe⇠q�(zTe )

"
� log p(zT ) +

X

t�Te

log
q(zt|zs)
p✓(zs|zt)

#
(35)

= EzTe⇠q�(zTe )

"
� log p(zT ) +

X

t>Te

log
q(zt|zs)
p✓(zs|zt)

+ log
q(zTe+1|zTe)

p✓(zTe |zTe+1)

#
(36)

= EzTe⇠q�(zTe )

"
� log p(zT ) +

X

t>Te

log
q(zs|zt, zTe)

p✓(zs|zt)
· q(zt|zTe)

q(zs|zTe)
+ log

q(zTe+1|zTe)

p✓(zTe |zTe+1)

#
(37)

= EzTe⇠q�(zTe )

"
� log

p(zT )

q(zT |zTe)
+
X

t>Te

log
q(zs|zt, zTe)

p✓(zs|zt)
| {z }
diffusion loss L(Te,T )(zTe )

� log p✓(zTe |zTe+1)

#
(38)

The first and third term can be stochastically and differentially estimated using standard techniques.
Following Kingma et al. (2021b), we derive an estimator for the diffusion loss L(Te,T )(zTe). In the
case of finite timesteps t > Te, this loss is:

L(Te,T )(zTe) =
X

t>Te

Eq(zt|zTe )
D[q(zs|zt, zTe)||p✓(zs|zt)] (39)
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Estimator of L(Te,T )(zTe) Reparametering zt ⇠ q(zt|zTe) as zt = ↵t|Te
zTe + �t|Te

✏, where
✏ ⇠ N (0, 1), and to avoid having to compute all T � Te terms when calculating the diffusion loss,
we construct an unbiased estimator of L(Te,T )(zTe) using

L(Te,T )(zTe) =
T � Te

2
E✏,t⇠U(Te,T )[D(q(zs|zt, zTe)||p✓(zs|zt))] (40)

where U(Te, T ) is a uniform distribution to sample Te < t  T from a non-uniform descretization
of timesteps using Karras et al. (2022).

Now, we elaborate on the expression q(zs|zt, zTe) and p(zs|zt) for any Te < s < t < T .

C.2.1 q(zs|zt, zTe)

Our posterior at Te is q(zTe) = N (µTe , ⌧
2
Te
). For any Te < s < t < T , we have q(zs|zTe) =

N (↵s|Te
zTe , ⌧

2
s|Te

) and q(zt|zs) = N (↵t|szs,�
2
t|s), yielding the posterior :

q(zs|zt, zTe) = N (µQ(zt, zTe ; s, t, Te),�
2
Q(s, t, Te)I) (41)

where, �
2
Q(s, t, Te) = �

2
t|s

⌧
2
s|Te

�2
t|s + ↵2

s|Te
⌧2s|Te

(42)

and, µQ(zt, zTe ; s, t, Te) = �
2
Q

 
↵s|Te

⌧2s|Te

zTe +
↵t|s

�2
t|s

zt

!
(43)

=
↵s|Te

�
2
t|s

(�2
t|s + ↵2

s|Te
⌧2s|Te

)
zTe +

↵t|s⌧
2
s|Te

(�2
t|s + ↵2

s|Te
⌧2s|Te

)
zt (44)

C.2.2 p(zs|zt)

The conditional model distributions can be chosen as:

p✓(zs|zt) = q(zs|zt, zTe = ẑ✓,Te(zt, t)) = N (zs;µ✓(zt, zTe ; s, t, Te),�
2
Q(s, t, Te)) (45)

where, µ✓(zt, zTe ; s, t, Te) =
↵s|Te

�
2
t|s

(�2
t|s + ↵2

s|Te
⌧2s|Te

)
ẑ✓,Te(zt, t) +

↵t|s⌧
2
s|Te

(�2
t|s + ↵2

s|Te
⌧2s|Te

)
zt (46)

and, �
2
Q(s, t, Te) = �

2
t|s

�
2
s|Te

�2
t|s + ↵2

s|Te
�2
s|Te

(47)

where ẑ✓,Te(zt, t) =
zt��t|Te⇤✏✓(zt,t)

↵t|Te

C.3 TIME ANALYSIS

For a K step hierarchical posterior, each optimization step to fit the posterior requires K+1 number
of function evaluations (#NFEs) of the denoising network, where it uses K #NFEs during sampling
from the posterior and 1 to compute the diffusion prior loss. Gradients are back-propagated through
the denoising network during optimization, making each optimization step more informative than
other works iteratively refining samples. We see the progress of fitting VIPaint’s posterior in Fig.
4 and often times, we observe that convergence occurs as low as in 50 optimization steps. Thus,
VIPaint with 2 steps in its hierarchy can effectively infer the semantics in the image using only a
cumulative of 50 ⇤ (2+ 1) = 150 NFEs of the denoisinng network. The optimization time is O(K),
where K << T . but also linearly increases the inference time.
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Figure 8: Expanded comparison of methods for diffusion model-based inpainting. Left: Timeline illustration
of sampling steps with time flowing rightward from t = 0 (clean images) to t = T (pure noise). Orange
arrows indicate a single step of ancestral sampling under the generative prior p✓(zt�1|zt). Red arrows indi-
cate a single step of the Blended approximation of p✓(zt�1|zt, y), while blue arrows indicate a single step
of the DPS approximation. Green arrows indicate steps forward in time according to the diffusion process
q(zt|z<t). Methods such as RePaint and CoPaint alternate between forward and reverse steps. Purple arrows
indicate sampling from a step in the hierarchical VIPaint posterior q�(zs(i�1)|zs(i)). Both VIPaint and RED-

Diff (without annealing) involve an initial optimization stage to fit variational parameters per-image. Gray
arrows indicate the flow of gradient information during this optimization stage. Gray points are steps only used
during optimization. Right: Illustration of each reverse-time sampling step in 2 dimensions. The horizontal
dimension is assumed to be observed at the value marked by the red line. Each approach begins by computing
p✓(zt�1|zt) via a prediction of x using the pre-trained denoising network x̂✓(zt, t). Blended replaces observed
dimensions with q(zt�1|y). DPS updates p✓(zt�1|zt) according to a single-step approximation to the likeli-
hood p✓(y|zt�1). Finally, VIPaint, uses a learned variational distribution q�(zt�1|zt), which can be seen as
interpolating between the prediction of x and a variational parameter µt, coupled with a learned variance.
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D EXPANDED FIGURE 8

E EXPERIMENTAL DETAILS

E.1 VIPAINT

Choosing (Ts, Te) for VIPaint Extensive prior work Song et al. (2021b); Nichol & Dhariwal
(2021); Dhariwal & Nichol (2021); Karras et al. (2022) explores different noise schedules for train-
ing diffusion models, and how it affects the generated image quality. Since we use these diffusion
models incorporating different noise schedules, our latent hierarchical posterior needs to account for
this shift, and we show that it is flexible to do so. To concentrate posterior inference on the noise lev-
els which are most crucial to perceptual image quality, we define our posterior at intermediate time
steps that induce a signal-to-noise-ratio (↵2

t /�
2
t ) 2 [0.2, 0.5], Kingma et al. (2021b)) approximately

across our experiments. This corresponds to choosing (Te = 5, Ts = 2)] for the pixel-based EDM
prior with a variance-exploding noise schedule and (Te = 550, Ts = 400) ((DDIM sampling coef-
ficient, ⌘ = 0.2) ) for the LDM prior using the VP noise schedule for both LSUN and ImageNet256
datasets. VIPaint is not sensitive to any subset of K timesteps in between this signal-to-noise range.
For instance, for VIPaint-4, we take [Te = 5, 4, 3.5, 2.5, Ts = 2] for the EDM noise schedule and
[Te = 550, 500, 450, Ts = 400] for the LDM prior.

Choosing K We discussed in section ?? that for a K step hierarchical posterior, the optimization
run-time of VIPaint is O(K). From the experiments conducted, we see that K can be easily selected
to trade-off time and sample quality.

Initialization We follow the forward and reverse diffusion process defined by each VE and VP
noise schedules to initialize VIPaint’s variational parameters. For LDM prior, we use the lower
dimensional encoding of y. We provide a comprehensive summary in Table 2.

Table 2: Initialization of Variational Parameters for VE and VP Schedules

VI Parameters VP Schedule VE Schedule

µTe = ↵Tey + a1�Te✏
(Scale factor to retain information from y.) a1 = 0.8 a1 = 0.01

µs(i) = ↵s(i)y + a2�s(i)✏
(Noise adding process is still quite high
for VE schedules.)

a2 = 1 a2 = 0.01

⌧Te = �Te
(From the forward diffusion process. ) – –

⌧s(i)|s(i+1)

(From the reverse diffusion process.)
Eq. 26 with scaling factor a3/⌘
a3 = 0.7

Eq. 23

�s(i)8i 2 [1, K]
(Weights samples from prior to construct
plausible and close to real looking samples.)

0.98 (ImageNet256), 0.88 (LSUN) 0.5

Optimization We fit three sets of variational parameters at every i-th critical time in our hierarchy:
means, µs(i), variances ⌧2s(i) and weights �s(i). Instead of optimizing ⌧ and � directly, we optimize
the real valued ⌧̃ = log ⌧2, and �̃ = log( �

1�� ). We optimize this set of variational parameters � =

{µ, �̃, ⌧̃} using Adam with an initial learning rate of {0.1, 0.1, 0.01} respectively and decreasing the
learning rate by a factor of 0.99 every 10 iterations. We find this setting to be robust across all prior
diffusion models and datasets in our work.

During pre-training, most diffusion models parameterize the mean prediction at every diffusion time
step t and fix variances, however some previous work Nichol & Dhariwal (2021); Dhariwal & Nichol
(2021) has found that (with appropriate training “tricks”) learning variances improves performance.
Some previous works like ReSample tunes this as a hyperparameter. We instead learn this in our
work, and we adjust learning rates to avoid local optima in this process. We optimize the parameters
in VIPaint with K = 2 for 50 iterations; VIPaint with K = 4 is optimized for 100 steps in the
case of LSUN Churches, 150 steps for the ImageNet64 dataset and 250 steps for the ImageNet256
dataset.
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Observed Observed
VIPaint

(no Ploss) VIPaint
VIPaint

(no Ploss) VIPaint

Figure 9: An ablation showing the effect of addition the perceptual loss (PLoss) in the reconstruc-
tion term for the task of image inpainting using latent diffusion priors. We see that even though
VIPaint can inpaint the image semantically without the Perceptual loss, this loss becomes important
to produce sharper reconstructions.

Figure 10: (Left) We show the effect of the hyperparameter � with VIPaint with respect to optimization
iterations. (Right) we show the respective loss curves. With � = 10, VIPaint captures more variations under
the diffusion prior instead of ”setting” to one kind of completion with � = 1.

Sampling Post training, we take 400 iterative refinement steps from Ts = 400 in the LDM vari-
ance preserving schedule to sample inpaintings using a scale factor of 2, similar to the DPS algorithm
using perceptual loss. On the other hand, for the EDM prior, we take 700 refinement steps to pro-
duce inpaintings after Ts = 2, with scale 5 (similar to DPS tuned for EDM in our work). This scale
hyperparameter is tuned over the values [0.1, 0.5, 1, 2, 5, 10] on a validation set of 20 images. Dur-
ing the sampling phase, we use the classifier-free guidance rule with scale = 3 for the ImageNet256
latent diffusion prior.

Reconstruction loss We assume p(y|zTs) as a Laplacian distribution, where the mean is given by
y and a scale parameter, which is computed over 100 images per dataset as a standard deviation
over all pixel dimensions. For the 256 pixel datasets, this is 0.56, and for ImageNet64 it is 0.05.
In addition to this, we add the perceptual loss for LDM priors, computing them via feeding the
pre-trained Inception network with masked images and masked reconstructions. See Fig. 9 for the
benefits of using the perceptual loss with VIPaint. Additionally, we use � = 1 for VIPaint with
K = 1, which is optimized for 50 iterations for faster convergence. For VIPaint with K = 4, we
use � = 50 for pixel-based EDM prior and � = 10 for LDM prior. We show the effect of the
different � values in Fig. 10. Generally speaking, higher values of � explores the diffusion latent
space more and lower values weighs the likelihood term relatively more and converges faster to a
solution.

Descretization of timesteps for prior diffusion loss L(Te,T )(zTe) Lastly, we directly adapt the
descretization technique from EDM Karras et al. (2022) to compute the diffusion loss. We use ⇢ = 7
across all models and datasets as used by Karras et al. (2022).

E.2 BASELINE DETAILS

Across all the baselines applicable to the latent diffusion models for the ImageNet256 dataset, we
use the classifier-free guidance with a scale 3 Rombach et al. (2022b).

Blended We run blended for 1000 discretization steps using the EDM and LDM prior.
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RePaint RePaint uses a descritization of 256 steps along with the standard jump length = 10, and
number of times to perform this jump operation also set to 10, following standard practice Lugmayr
et al. (2022).

DPS Similar to blended, we take 1000 denoising steps for DPS and set scale = 5 for the edm-based
diffusion model, while take 500 steps and keep scale as 0.5 for the Latent Diffusion prior (similar
to the original work in Chung et al. (2023)). When using the perceptual loss for the latent diffusion
prior, we increase the scale to 2.

PSLD This is an inference technique only for the Latent Diffusion prior. Similar to DPS, we take
500 steps and keep scaling hyperparameters set to 0.2 as opposed to choosing 0.1 in the original
paper Rout et al. (2023). We observe artifacts in the innpainted image if we increase the scale
further as also observed by Chung et al. (2024).

CoPaint We directly adapt the author-provided implementation of CoPaint and CoPaint-TT Zhang
et al. (2023) to use the EDM prior. Apart from the diffusion schedule and network architecture (taken
from EDM) all other hyperparameters are preserved from the base CoPaint implementation.

RED-Diff As with CoPaint, We directly adapt the author-provided implementation of RED-Diff
Mardani et al. (2024) and Red-Diff (Var) to use the EDM prior. In this case we increased the prior
regularization weight from 0.25 to 50, which we found gave improved performance and more closely
matches our VIPaint settings.

ReSample As with other baselines, we directly adapt the author-provided implementation of Re-
Sample Song et al. (2024) for the LDM prior. Because the original code takes larger optimization
steps, resulting in high sampling time, we decrease the number of optimization steps to 50, such that
the wall-clock run-time of this method matches the other baselines.

F INFERENCE TIME.

We report the time taken for each inference method to produce 10 inpaintings for 1 test image.
VIPaint with K = 2 is comparable to the baseline methods in terms of wall clock time and the
number of functional evaluations (#NFEs) of the denoising network. Red-Diff, Blended and RePaint
baseline methods do not take gradient of the noise prediction network, whereas all other methods
require gradients. In terms of time and NFEs, we can see that VIPaint (fast) takes comparable time
and NFEs as other baselines, but performs far better (Table ??).

Overall, gradient based methods like DPS take longer with an LDM prior because of the use of a
decoder per gradient step. PSLD additionally utilizes the encoder and hence, takes longer than DPS.

Table 3: Time (in mins) & #NFEs of denoising network per Inference method using EDM Prior
(top) and LDM Prior (bottom)

Red-Diff Blended DPS RePaint CoPaint CoPaint-TT VIPaint-2 VIPaint

(1.13, 1000) (1.13, 1000) (2.55, 1000) (2.8, 4700) (2.6, 500) (5.4, 1000) 3.3 = (1.5, 150) (optimization)
(1.8, 700) (sampling)

11.8 = (10, 900) (optimization)
(1.8, 700) (sampling)

Dataset Blended DPS PSLD VIPaint-2 VIPaint

ImageNet256 (4, 1000) (10, 500) (12.4, 500) 10 = (2, 150) (optimization)
(8, 400) (sampling)

18 = (10, 1250) (optimization)
(8, 400) (sampling)

LSUN (1.3, 1000) (5.1, 500) (7.0, 500) 6.4 = (2.1, 150) (optimization)
(4.3, 400) (sampling)

10 = (5.53, 750) (optimization)
(4.3, 400) (sampling)

G COMPUTATIONAL RESOURCES

All experiments were conducted on a system with 4 Nvidia A6000 GPUs.
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Figure 11: Paired comparison of LPIPS scores for VIPaint-2 and CoPaint with time-travel (CoPaint-
TT) on the Imagenet64 “Random Mask” inpainting task (expanding on the experiment shown in
table 1. Each point shows the mean LPIPS score across 10 sampled completions of the masked
image, with the x and y coordinates showing the VIPaint and CoPaint-TT scores respectively. Ad-
ditionally, we validated that VIPaint improves on CoPaint-TT using a one-sided paired t-test on the
mean LPIPS scores of each method. We found that the improvement was statistically significant
with a p-value of 4.133e-05. As the normality assumption of the t-test may not hold, we also verfied
the results using a nonparametric Wilcoxon signed ranked test, which indicated a statistically signif-
icant improvement with a p-value of 0.000114

H ADDITIONAL EXPERIMENTS

H.1 ANALYSIS OF IMAGENET RESULTS

Fig. 11 shows details of the comparison between VIPaint and CoPaint with time-travel over 100
randomly selected images from the Imagenet-64 task.

H.2 LINEAR INVERSE PROBLEMS

For linear inverse problems other than inpainting, we consider the following tasks: (1) Gaussian
deblurring and (2) super resolution. For Gaussian deblurring, we use a kernel with size 61 × 61
with standard deviation 3.0. For super resolution, we use bicubic downsampling, similar setup as
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Figure 12: Qualitative results on Imagenet256 for Super Resolution. We see that DPS produces
completely blurry images. We see improvements with ReSample. In contrast, VIPaint-4 leads to
samples closer to the true image and produces very realistic images.

ImageNet256 ImageNet64
Task Super-resolution 4x Gaussian Deblur Gaussian Deblur

Metric LPIPS # PSNR " LPIPS # PSNR " LPIPS # PSNR "

VIPaint-4 0.33 19.31 0.44 17.90 0.306 13.47
VIPaint-2 0.46 16.36 0.48 16.35 0.305 13.60
ReSample 0.395 18.410 0.435 18.03 – –
PSLD 0.67 7.77 0.583 0.022 – –
DPS 0.579 12.99 0.595 12.608 0.319 13.43

Table 4: Quantitative results (LPIPS, PSNR) for solving linear inverse problems on ImageNet256
using LDM priors and ImageNet64 using EDM priors. Best results are in bold and second best
results are underlined. For nonlinear deblurring.

Chung et al. (2023). Even though the focus of VIPaint is to remedy inconsistencies in image com-
pletion tasks, it can also be extended to linear inverse problems like Super Resolution and Gaussian
Deblurring.

We compare the performance of VIPaint with ReSample, PSLD & DPS for ImageNet256 dataset
using the LDM prior and for the pixel-based model, we include results for Gaussian Deblurrring-
compring VIPaint with DPS. Since the Peak-Signal-to-Noise-Ratio (PSNR) is well defined for such
tasks, we report it along with LPIPS in Table 4. Some qualitative plots are in Fig. 12 and 13. A
quantitative analysis is reported in Table ?? and qualitative results in Fig. 14 and ??. We see that
VIPaint shows strong advantages over ReSample, DPS and Red-Diff for complex image datasets
like ImageNet.
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Figure 13: Qualitative results on Imagenet256 Gaussian DeBlurring using LDM prior.
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Figure 14: Qualitative results for Gaussian DeBlurring using EDM prior for ImageNet64. We see VIPaint
leads to samples closer to the true image and producess more realistic images.

H.3 LARGE-MASK IMAGE INPAINTING FOR LSUN

We show some qualitative figures for large masking ratios in Fig. 15 for LSUN-Church.

H.4 SMALL-MASK IMAGE INPAINTING FOR LSUN, IMAGENET256

We show some qualitative figures for small masking ratios (upto 20% of the image is corrupted) in
Fig. 16 and 17 for ImageNet-256 and LSUN-Church datasets respectively.

H.5 VIPAINT CAPTURES MULTI-MODAL POSTERIOR

In addition to producing valid inpaintings, we show multiple samples per test image for all datasets
we consider in Fig. 18-24.
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Figure 15: Qualitative results for LSUN-church dataset using LDM prior for the tasks of image
inpainting with large masks. We see that VIPaint-2 can inpaint the images consistently and without
any artifacts at the mask borders.
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Figure 16: Qualitative results on the performance across methods for small masking ratios for Ima-
geNet256 dataset using LDM prior. All methods seem to perform reasonably well in this regime.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 17: Qualitative results on the performance across methods for small masking ratios for
LSUN-Church dataset using LDM prior. All methods seem to perform reasonably well in this
regime. However, some minor artifacts start to show up for contiguous masks.
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Figure 18: LSUN diversity results. Examples of diverse generation using VIPaint and baseline
methods on LSUN using the same input and different initial noise.
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Figure 19: LSUN diversity results.
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Figure 20: ImageNet-256 diversity results. Some examples of diverse generation using VIPaint and
baseline methods on ImageNet using the same condition and masked input but with different initial
noise.
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Figure 21: ImageNet diversity results.
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Figure 22: ImageNet64 diversity results with the same class condition but different initial noise.
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Figure 23: ImageNet64 diversity results with the same class condition but different initial noise.
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Figure 24: Qualitative results for VIPaint diversity for ImageNet256 with LDM prior using different class
conditioning. We see that VIPaint follows the input label and ensures consistency with the observed set of
pixels.
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